RU2149888C1 - Способ получения судового маловязкого топлива - Google Patents
Способ получения судового маловязкого топлива Download PDFInfo
- Publication number
- RU2149888C1 RU2149888C1 RU99107787A RU99107787A RU2149888C1 RU 2149888 C1 RU2149888 C1 RU 2149888C1 RU 99107787 A RU99107787 A RU 99107787A RU 99107787 A RU99107787 A RU 99107787A RU 2149888 C1 RU2149888 C1 RU 2149888C1
- Authority
- RU
- Russia
- Prior art keywords
- fraction
- fuel
- fractions
- catalytic cracking
- distillate
- Prior art date
Links
Images
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Изобретение относится к способам получения топлива для судовых двигателей и может быть использовано в нефтеперерабатывающей промышленности. Описывается способ получения судового маловязкого топлива, который заключается в том, что путем атмосферно-вакуумной перегонки выделяют фракции 155-360°С, 155-435°С и 220-550°С, которые смешивают в массовом соотношении 40:55:5 - 55: 35: 10, а фракцию тяжелого вакуумного газойля 240-560°С подвергают предварительно гидроочистке на алюмокобальтмолибденовом катализаторе, затем каталитическому крекингу в псевдоожиженном слое микросферического катализатора с отделением от полученного продукта фракции 155-420°С при массовом соотношении в дистилляте каталитического крекинга фракции 155-325oС и фракции 325-420°С 90: 10 - 99:1 с последующим смешением этой фракции с дистиллятом прямой перегонки нефти в массовом соотношении 15:85-65:35. Технический результат - улучшение эксплуатационных свойств топлива, химической стабильности, смазывающей и теплотворной способности, антикоррозионных и низкотемпературных свойств и высвобождение низкокипящих фракций для их использования по целевому назначению. 5 табл.
Description
Изобретение относится к способам получения топлива для судовых двигателей и может быть использовано в нефтеперерабатывающей промышленности.
Топливо судовое маловязкое предназначено для использования в среднеоборотных и высокооборотных дизельных двигателях взамен дефицитного дизельного топлива по ГОСТ 305-82, потребляемого на водном транспорте. Требования к дизельному топливу марки Л-0,5-62 (ГОСТ 305-82) и предлагаемому судовому маловязкому топливу представлены в табл. 1. Из данных табл. 1 следует, что к судовому маловязкому топливу (ТУ 38.101567-87) предъявляются менее жесткие требования по сравнению с дизельным топливом марки "Л" по ГОСТ 305-82. Так, цетановое число судового маловязкого топлива (СМТ) должно быть не менее 40, а для дизельного топлива "Л" - не менее 45 единиц. Содержание серы в разрабатываемом топливе допускается до 1,5% вместо до 0,5% для дизельного топлива "Л". Так как в состав судового маловязкого топлива вовлекаются дистилляты вторичных процессов (каталитического, термического крекинга и коксования) йодное число в СМТ может достигать 20 г йода на 100 г топлива, тогда как в дизельном "Л" топливе оно не должно превышать 6 г йода на 100 г топлива; плотность при 20oC для СМТ может достигать 890 кг/м3 против 860 кг/м3 для дизельного Л-0,5. Фракционный состав в требованиях ТУ 38.10156787 на предлагаемое СМТ не нормируется, однако кинематическая вязкость при 20oC может достигать 11,4 мм2/с вместо не более 6,0 мм2/с
-верхнего предела для дизельного топлива. Однако потребителем предъявляются жесткие требования к эксплуатационным характеристикам СМГ: повышению химической стабильности, смазывающей и теплотворной способности, снижению коррозионной активности и нагарообразования, улучшению низкотемпературных свойств (температуры застывания).
-верхнего предела для дизельного топлива. Однако потребителем предъявляются жесткие требования к эксплуатационным характеристикам СМГ: повышению химической стабильности, смазывающей и теплотворной способности, снижению коррозионной активности и нагарообразования, улучшению низкотемпературных свойств (температуры застывания).
Известен способ получения СМТ путем компаундирования фракции прямой перегонки нефти: атмосферного газойля - фракции 240-450oC, первого вакуумного погона - фракции 200-400oC, дистиллятов коксования - фракции 160-400oC и каталитического крекинга - фракции 180-400oC, с дизельным топливом - фракцией 160-360oC в соотношении 15:5:5:60:15 - 5:25:30:5:35 /Топливо маловязкое судовое, патент РФ N 2076138, БИ N9, 1997 г./
Однако в данном способе получения используются низкокипящие фракции, что приводит к низкой температуре вспышки (62oC), низкому цетановому числу СMT (42 единицы и ниже), невысокой теплоте сгорания (46-47 кДж/кг) и смазывающим свойствам (60-62 кг). Высокое содержание серы 1,12-1,18%) и непредельных углеводородов в СМТ (И.ч. = 12,5-16,4 г йода на 100 г топлива) привели к повышенной коррозии металла в обычных условиях (потеря стали 3 на приборе Пинкевича 16,7 г/м2) и в условиях конденсации воды (1,2-1,3 г/м2) по ГОСТ 18597-73. Использование дистиллята коксования, выкипающего в пределах 160-400oC, также способствует снижению стабильности топлива при хранении и повышенному содержанию в топливе сернистых и ненасыщенных соединений.
Однако в данном способе получения используются низкокипящие фракции, что приводит к низкой температуре вспышки (62oC), низкому цетановому числу СMT (42 единицы и ниже), невысокой теплоте сгорания (46-47 кДж/кг) и смазывающим свойствам (60-62 кг). Высокое содержание серы 1,12-1,18%) и непредельных углеводородов в СМТ (И.ч. = 12,5-16,4 г йода на 100 г топлива) привели к повышенной коррозии металла в обычных условиях (потеря стали 3 на приборе Пинкевича 16,7 г/м2) и в условиях конденсации воды (1,2-1,3 г/м2) по ГОСТ 18597-73. Использование дистиллята коксования, выкипающего в пределах 160-400oC, также способствует снижению стабильности топлива при хранении и повышенному содержанию в топливе сернистых и ненасыщенных соединений.
Наиболее близким техническим решением к заявляемому изобретению является способ получения маловязкого судового топлива /патент РФ N 2074232, С 10 С 57/00, БИ N6, 1997 г./ путем перегонки нефти на установке АВТ с выделением фракций: 160-360oC, 160-420oC и 300 - 480oC с последующим их смешиванием в массовом соотношении 40:40:20 - 60:30:10 с получением дистиллята прямой перегонки, фракцию 250-550oC, получаемую на установке АВТ, подвергают каталитическому крекингу на специальном цеолитсодержащем катализаторе типа "ЕМКАТ" на установке Г - 43/102. Из катализата выделяют фракцию 160-400oC и компаундируют ее с дистиллятом прямой перегонки в соотношении 20:80 - 60:40.
В известном способе производства СМТ используются легкие фракции прямой перегонки нефти и каталитического крекинга, что приводит к снижению температуры вспышки, цетанового числа, теплоты сгорания и смазочной способности топлива. Кроме того, в данном способе производства СМТ применяется очень трудоемкий и морально устаревший технологический процесс каталитического крекинга в движущемся слое крупногранулированного шарикового катализатора, приводящий также к ухудшению качества топлива.
Изобретение решает техническую задачу улучшения эксплуатационных свойств топлива, химической стабильности, смазывающей и теплотворной способности, антикоррозионных и низкотемпературных свойств и высвобождение низкокипящих фракций для их использования по целевому назначению.
Сущность изобретения заключается в том, что в известном способе получения судового маловязкого топлива, включающем выделение фракций путем атмосферно-вакуумной перегонки, смешение их с получением дистиллята прямой перегонки нефти, каталитический крекинг вакуумного газойля с выделением из катализата фракции и компаундированием ее с дистиллятом прямой перегонки нефти, согласно изобретению путем атмосферно-вакуумной перегонки выделяют фракции 155-360oC, 155-435oC, 220-500oC, которые смешивают в массовом соотношении 40: 55: 5 - 55:35:10, а фракцию тяжелого вакуумного газойля 240-560oC подвергают предварительно гидроочистке на алюмокобальтмолибденовом катализаторе, затем каталитическому крекингу в псевдоожиженном слое микросферического катализатора с отделением от полученного продукта фракции 155-420oC при массовом соотношении в дистилляте каталитического крекинга фракции 155-325oC и фракции 325-420oC 90:10 - 99:1 с последующим смешением этой фракции с дистиллятом прямой перегонки в массовом соотношении 15:85 - 65:35.
Выделение в предлагаемом способе путем прямой перегонки нефти фракций с минимальным содержанием низкокипящих и максимальным - высококипящих прямогонных компонентов и компаундирование их в определенном соотношении обеспечивает повышение смазывающей и теплотворной способности топлива, улучшение качества и высокие эксплуатационные свойства.
Каталитическому крекингу в предлагаемом способе подвергают фракцию тяжелого вакуумного газойля 240-560oC с минимальным содержанием дизельных фракций, выкипающих до 240oC и ограниченной температурой конца кипения, не превышающей 560oC, что обусловлено неблагоприятным их воздействием на процесс каталитического крекинга, качество получаемых продуктов и закоксовывание катализатора.
Предлагаемая предварительная гидроочистка сырья установки каталитического крекинга тяжелого вакуумного газойля 240-560oC на алюмокобальтмолибденовом катализаторе приводит к повышению химической стабильности топлива и уменьшению отложений в топливной системе за счет удаления из топлива части гетероорганических (серу-, азот- и кислородсодержащих) и ненасыщенных соединений. При этом общее снижение содержания сернистых и кислородсодержащих органических соединений уменьшает коррозионное воздействие топлива на детали цилиндро-поршневой группы двигателя.
Фракцию тяжелого вакуумного газойля 240-560oC подвергают каталитическому крекингу в псевдоожиженном слое микросферического цеолитсодержащего кетализатора в лифт-реакторе установки типа Г-43-107, дающем возможность провести крекинг тяжелого вакуумного дистиллята с образованием в основном моно-и бициклических ароматических и нафтеновых углеводородов, обеспечивающих хорошие смазывающие и низкотемпературные свойства топлива (высокую смазывающую способность и низкую температуру застывания). Из катализата выделяют фракцию 155-325oC и 325-420oC, смешивают их в соотношении 90:10 - 99:1, получают дистиллят каталитического крекинга, выкипающий в интервале 155-420oC, который компаундируют с дистиллятом прямой перегонки нефти в соотношении 15: 85-65:35.
В табл. 2 приведены показатели качества компонентов СМТ, в табл. 3 представлен компонентный состав, в табл. 4 - показатели качества судового маловязкого топлива и в табл. 5 - результаты испытаний образцов, полученных по прототипу и предлагаемому способу получения СМТ.
Пример-прототип. Нефть на установке АВТ подвергают перегонке на фракции 160-360oC, 160-420oC, 300-480oC и 250-550oC; фракцию 250-550oC направляют на установку Г-43-102, где на шариковом цеолитсодержащем катализаторе "ЕМКАТ" при температуре в реакторе 480oC вакуумный газойль подвергают каталитическому крекингу. Из катализата выделяют фракцию 160-400oC; фракции прямой перегонки 160-360oC, 160-420oC и 300-480oC смешивают в соотношении 50:35:15 мас.%. Полученный прямогонный дистиллят компаундируют с фракцией легкого газойля каталитического крекинга в соотношении 70:30 мас.%.
Пример 1. Нефть на установке АВТ подвергают перегонке с выделением фракций 155-360oC 155-435oC, 220-500oC и 240-560oC. Фракции 155-360oC, 155-435oC и фракцию 220-500oC смешивают в соотношении 40:55:5 мас.% и получают дистиллят прямой перегонки нефти. Фракцию тяжелого вакуумного газойля 240-560oC после предварительной гидроочистки на алюмокобальтмолибденовом катализаторе направляют на установку Г-43-107 с лифт-реактором, где в псевдоожиженном слое на микросферическом цеолитсодержащем катализаторе при температуре 500oC подвергают каталитическому крекингу. Из катализата выделяют фракцию 155-420oC при массовом соотношении в дистилляте каталитического крекинга фракции 155-325o и фракции 325-420oC 90:10 мас.% и компаундируют ее с дистиллятом прямой перегонки в соотношении 15:85 мас.%.
Из данных табл. 4 и 5 следует, что по сравнению с прототипом значительно улучшилось качество и эксплуатационные характеристики топлива, а именно снизились содержание серы, йодное число и коксуемость топлива, а также существенно возросли цетановое число и теплота сгорания топлива
Примеры 2-6. Нефть подвергают перегонке на установке АВТ с выделением фракций 155: 360oC, 155:435oC, 220-500oC и 240-560oC аналогично примеру 1. Фракции 155:360oC, 155:435oC и фракцию 220-500oC смешивают в соотношении соответственно 55: 35: 10 (пример 2) и 47,5:45:7,5 (пример 3) и получают дистиллят прямой перегонки нефти. Аналогично примеру 1 фракцию тяжелого газойля 240-560oC после предварительной гидроочистки на алюмокобальтмолибденовом катализаторе направляют на установку Г-43- 107 с лифт-реактором, где в псевдоожиженном слое на микросферическом цеолитсодержащем катализаторе при температуре 500oC подвергают каталитическому крекингу с выделением из катализата фракции 155:420oC при массовом соотношении в дистилляте фракций 155:325 и 325:420oC соответственно 99:1 (пример 2) и 95:5 (пример 3). Полученную фракцию газойля каталитического крекинга 155:420oC компаундируют с прямогонным дистиллятом в соотношении соответственно 65:35 (пример 2) и 40:60 (пример 3).
Примеры 2-6. Нефть подвергают перегонке на установке АВТ с выделением фракций 155: 360oC, 155:435oC, 220-500oC и 240-560oC аналогично примеру 1. Фракции 155:360oC, 155:435oC и фракцию 220-500oC смешивают в соотношении соответственно 55: 35: 10 (пример 2) и 47,5:45:7,5 (пример 3) и получают дистиллят прямой перегонки нефти. Аналогично примеру 1 фракцию тяжелого газойля 240-560oC после предварительной гидроочистки на алюмокобальтмолибденовом катализаторе направляют на установку Г-43- 107 с лифт-реактором, где в псевдоожиженном слое на микросферическом цеолитсодержащем катализаторе при температуре 500oC подвергают каталитическому крекингу с выделением из катализата фракции 155:420oC при массовом соотношении в дистилляте фракций 155:325 и 325:420oC соответственно 99:1 (пример 2) и 95:5 (пример 3). Полученную фракцию газойля каталитического крекинга 155:420oC компаундируют с прямогонным дистиллятом в соотношении соответственно 65:35 (пример 2) и 40:60 (пример 3).
Анализ образцов СMT по примерам 2 и 3 показал, что по сравнению с прототипом значительно улучшились низкотемпературные и смазывающие свойства топлива, снизилась его коррозионная активность, повысилась химическая стабильность. Увеличение в топливе фракции вакуумного газойля 240-560oC выше максимально заявленного значения (10%, пример 4) способствует повышению температуры застывания СМТ. При увеличении в топливе газойля каталитического крекинга выше максимально заявленного его значения (65%, пример 6) снижаются цетановое число и теплота сгорания топлива, возрастает его плотность, снижение его концентрации менее 15% (пример 5) приводит к ухудшению смазывающих свойств, возрастанию коррозионной активности и повышению температуры застывания топлива.
Полученное по предложенной технологии судовое маловязкое топливо характеризуется узким фракционным составом - низким содержанием легких фракций, выкипающих до 230-250oC (10-20%) и ограниченным содержанием высококипящих фракций (до 420-450oC) 96% по объему, высокой смазывающей и теплотворной способностью, улучшенным качеством и высокими эксплуатационными свойствами и может быть использовано на нефтеперерабатывающих заводах для получения топлива для судовых двигателей.
Claims (1)
- Способ получения судового маловязкого топлива путем атмосферно-вакуумной перегонки нефти с выделением фракций, каталитического крекинга вакуумного газойля, компаундирования этих фракций, отличающийся тем, что при атмосферно-вакуумной перегонке выделяют фракции 155 - 360oC, 155 - 435oC, 220 - 500oC и 240 - 560oC, первые три фракции смешивают в массовом соотношении 40 : 55 : 5 - 55 : 35 : 10 с получением дистиллята прямой перегонки нефти, а фракцию 240 - 560oC подвергают гидроочистке на алюмокобальтмолибденовом катализаторе, затем каталитическому крекингу в псевдоожиженном слое микросферического катализатора с отделением от полученного продукта фракции 155 - 420oC при массовом соотношении в дистилляте каталитического крекинга фракции 155 - 325oC и фракции 325 - 420oC 90 : 10 - 99 : 1 с последующим компаундированием ее с дистиллятом прямой перегонки в массовом соотношении 15 : 85 - 65 : 35.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99107787A RU2149888C1 (ru) | 1999-04-07 | 1999-04-07 | Способ получения судового маловязкого топлива |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99107787A RU2149888C1 (ru) | 1999-04-07 | 1999-04-07 | Способ получения судового маловязкого топлива |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2149888C1 true RU2149888C1 (ru) | 2000-05-27 |
Family
ID=20218580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99107787A RU2149888C1 (ru) | 1999-04-07 | 1999-04-07 | Способ получения судового маловязкого топлива |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2149888C1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005005580A1 (fr) * | 2003-07-15 | 2005-01-20 | Zakrytoe Aktsionernoe Obschestvo 'pioner-Petroleum' | Procede de production de combustible a faible viscosite pour bateaux |
RU2596868C1 (ru) * | 2015-06-10 | 2016-09-10 | Общество с ограниченной ответственностью "ЛУКОЙЛ-Нижегороднефтеоргсинтез", (ООО "ЛУКОЙЛ-Нижегороднефтеоргсинтез") | Способ получения экологически чистого судового маловязкого топлива |
RU2646225C1 (ru) * | 2017-02-21 | 2018-03-02 | Общество с ограниченной ответственностью "Газпром нефтехим Салават" (ООО "Газпром нефтехим Салават") | Способ получения судового маловязкого топлива |
RU2723115C1 (ru) * | 2019-11-29 | 2020-06-08 | федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" | Способ получения судового маловязкого топлива |
RU2746591C2 (ru) * | 2017-02-12 | 2021-04-16 | МАДЖЕМА ТЕКНОЛОДЖИ, ЛЛСи | Способ и устройство для снижения загрязнителей окружающей среды в тяжелом судовом жидком топливе |
-
1999
- 1999-04-07 RU RU99107787A patent/RU2149888C1/ru active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005005580A1 (fr) * | 2003-07-15 | 2005-01-20 | Zakrytoe Aktsionernoe Obschestvo 'pioner-Petroleum' | Procede de production de combustible a faible viscosite pour bateaux |
RU2596868C1 (ru) * | 2015-06-10 | 2016-09-10 | Общество с ограниченной ответственностью "ЛУКОЙЛ-Нижегороднефтеоргсинтез", (ООО "ЛУКОЙЛ-Нижегороднефтеоргсинтез") | Способ получения экологически чистого судового маловязкого топлива |
RU2746591C2 (ru) * | 2017-02-12 | 2021-04-16 | МАДЖЕМА ТЕКНОЛОДЖИ, ЛЛСи | Способ и устройство для снижения загрязнителей окружающей среды в тяжелом судовом жидком топливе |
RU2768712C2 (ru) * | 2017-02-12 | 2022-03-24 | МАДЖЕМА ТЕКНОЛОДЖИ, ЛЛСи | Способ уменьшения загрязнения окружающей среды исходным сырьем тяжелого судового жидкого топлива и устройство для его осуществления |
US11492559B2 (en) | 2017-02-12 | 2022-11-08 | Magema Technology, Llc | Process and device for reducing environmental contaminates in heavy marine fuel oil |
RU2646225C1 (ru) * | 2017-02-21 | 2018-03-02 | Общество с ограниченной ответственностью "Газпром нефтехим Салават" (ООО "Газпром нефтехим Салават") | Способ получения судового маловязкого топлива |
RU2723115C1 (ru) * | 2019-11-29 | 2020-06-08 | федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" | Способ получения судового маловязкого топлива |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5248410A (en) | Delayed coking of used lubricating oil | |
US20070033859A1 (en) | Composition for blending of transportation fuels | |
JP5639532B2 (ja) | C重油組成物およびその製造方法 | |
CN103827272A (zh) | 具有改善的润滑性的低硫燃料组合物 | |
RU2149888C1 (ru) | Способ получения судового маловязкого топлива | |
RU2213125C1 (ru) | Способ получения экологически чистого судового маловязкого топлива | |
EP2468841A1 (en) | Diesel oil composition containing fluorenes and acenaphthylenes | |
AU2002353872A1 (en) | Components for blending of transportation fuels | |
CN1179022C (zh) | 伴有催化剂低温再生的轻质石油烃催化改质方法 | |
US6187171B1 (en) | Unleaded high-octane gasoline composition | |
RU2414502C2 (ru) | Состав топлива | |
RU2074232C1 (ru) | Способ получения маловязкого судового топлива | |
JPH08259966A (ja) | ディーゼル軽油組成物 | |
RU2723115C1 (ru) | Способ получения судового маловязкого топлива | |
EP2055760A1 (en) | Catalytic system and additive for maximisation of light olefins in fluid catalytic cracking units in operations of low severity | |
JP5676344B2 (ja) | 灯油の製造方法 | |
RU2646225C1 (ru) | Способ получения судового маловязкого топлива | |
JP4216624B2 (ja) | 深度脱硫軽油の製造方法 | |
CN1184281C (zh) | 一种采用双路进剂套管式反应器的催化裂化方法 | |
RU2134287C1 (ru) | Способ очистки бензина каталитического крекинга | |
JPH10298568A (ja) | 貯蔵安定性の良好なa重油組成物 | |
US3340178A (en) | Process for catalytically cracking pyrolysis condensates | |
RU2058372C1 (ru) | Судовое маловязкое топливо | |
US20030173250A1 (en) | Unleaded gasoline compositions | |
JP4553352B2 (ja) | ガソリン組成物 |