RU2142357C1 - Способ переработки изношенных шин - Google Patents

Способ переработки изношенных шин Download PDF

Info

Publication number
RU2142357C1
RU2142357C1 RU98112378A RU98112378A RU2142357C1 RU 2142357 C1 RU2142357 C1 RU 2142357C1 RU 98112378 A RU98112378 A RU 98112378A RU 98112378 A RU98112378 A RU 98112378A RU 2142357 C1 RU2142357 C1 RU 2142357C1
Authority
RU
Russia
Prior art keywords
carbon residue
carried out
reactor
liquid
residue
Prior art date
Application number
RU98112378A
Other languages
English (en)
Inventor
Э.М. Соколов
Б.Н. Оладов
С.Р. Иванов
В.А. Тимофеев
Н.И. Володин
Л.Л. Залыгин
Н.М. Качурин
В.В. Мирошина
Original Assignee
Тульский государственный университет
Открытое акционерное общество Научно-исследовательский институт "Техуглерод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тульский государственный университет, Открытое акционерное общество Научно-исследовательский институт "Техуглерод" filed Critical Тульский государственный университет
Priority to RU98112378A priority Critical patent/RU2142357C1/ru
Application granted granted Critical
Publication of RU2142357C1 publication Critical patent/RU2142357C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

Способ переработки изношенных шин включает термическое разложение при 400 - 600°С с образованием парогазовых продуктов и твердого углеродного остатка, охлаждение их до 40-50°С, разделение их на жидкую, парообразную фазы и углеродный остаток, разделение жидкой фазы на легкую и тяжелую фракции, измельчение углеродного остатка, гранулирование углеродного остатка с использованием смачивающей жидкости и карбонизацию углеродного остатка. Охлаждение углеродного остатка ведут испарением пиролизной воды с добавлением в зону охлаждения газообразного аммиака. Гранулирование проводят с использованием в качестве смачивающей жидкости смеси фусов, пекового дистиллята и смолы карбонизации при соотношении компонентов смачивающей жидкости 1,0 : (0,8 - 3,0) : (0,1-2,2) и соотношении смачивающей жидкости и углеродного остатка (0,80 - 0,95) : 1,00. Гранулирование проводят при 30 - 80°С в течение 15 - 30 мин. Карбонизацию углеродного остатка ведут при 450 - 800°С в течение 45 - 90 мин. Дополнительно проводят активацию углеродного остатка при 850 - 1050°С в течение 80 - 100 мин и окисление тяжелой фракции жидкой фазы до конечного продукта (пластификатора) кислородом воздуха при 150 - 160°С в течение 15-18 ч при избыточном давлении 0,2 - 0,4 МПа. Образующиеся в предлагаемом процессе газы и легкие смолы подают на сжигание в топки реактора, карбонизатора и активатора, твердого углеродного остатка. Способ позволяет экономить энергоресурсы на измельчение сырья и обогрев реакторных устройств, расширяет сферу применения активированного угля, пластификатора. Способ уменьшает объем и спектр выбросов от процесса переработки изношенных шин. 1 табл., 1 ил.

Description

Изобретение относится к термической переработке твердых полимерных отходов и может быть применено в автомобильной, химической, нефтехимической и других отраслях промышленности.
Известен способ переработки резиносодержащих отходов (патент РФ N 2057012, МПК B 29 B 17/00, Б.И. N 9, 27.03.86 г.), при котором осуществляют предварительную обработку резиновых отходов продуктом конденсации парогазовой смеси при 35-200oC до достижения степени набухания 5-60%. Термическое разложение резиносодержащих отходов проводят при 250-380oC в среде высококипящих углеводородов с образованием парогазовой смеси и суспензии деструктированной резины в них. Производят разделение продуктов с последующим конденсированием парогазовой смеси. В результате термодеструкции выделяются следующие продукты: парогазовая смесь, суспензия деструктированной резины и армирующие элементы.
Указанный способ обладает рядом недостатков: высокие энергозатраты на проведение процесса, периодичность процесса, высокие давления, ограниченное применение конечных продуктов.
Наиболее близким является способ переработки резиносодержащих отходов (а.с. N 1201294, МПК C 10 G 1/20, Б.И. N 48, 30.12.85 г.), включающий термическое разложение их при 400-980oC с образованием парогазовых продуктов и твердого углеродного остатка, охлаждение их до 40-50oC, разделение на жидкую и парообразную фазы и твердый углеродный остаток. Образующийся в результате термического разложения отходов твердый углеродный остаток после стадии измельчения и сепарации представляет собой дисперсный сажеподобный материал. При гранулировании этого продукта в качестве смачивающей жидкости используют смесь тяжелой фракции жидкой фазы пиролиза, воды и сажесмоляной суспензии, после чего продукт карбонизуют при 300-450oC. Полученный подобным образом гранулированный углеродный продукт используют в качестве наполнителя резин и пластмасс. Легкую фракцию жидкой фазы пиролиза используют в качестве котельного топлива. Газы, образующиеся в процессе термического разложения полимеров, сжигают в топке реактора.
Описанный способ обладает рядом недостатков: большие энергозатраты на измельчение сырья, неполное использование получаемых продуктов, загрязнение атмосферы отходящими газами процесса.
Задачей предлагаемого способа является экономия энергоресурсов на измельчение сырья и обогрев реакторных устройств, расширение сферы применения конечных продуктов (активированного угля, пластификатора), уменьшение объемов и спектра выбросов от процесса переработки изношенных шин.
Поставленная задача решается таким образом, что в способе переработки изношенных шин, включающем термическое разложение пир 400-600oC с образованием парогазовых продуктов и твердого углеродного остатка, охлаждение их до 40-50oC, разделение их на жидкую, парообразную фазы и углеродный остаток, разделение жидкой фазы на легкую и тяжелую фракции, измельчение углеродного остатка, гранулирование углеродного остатка с использованием смачивающей жидкости, карбонизацию углеродного остатка, охлаждение углеродного остатка ведут испарением пиролизной воды с добавлением в зону охлаждения газообразного аммиака, гранулирование проводят при 30-80oC в течение 15-30 мин, при гранулировании в качестве смачивающей жидкости используют смесь фусов, пекового дистиллята и смолы карбонизации при соотношении компонентов смачивающей жидкости 1,0: (0,8-3,0): (0,1-2,2) и соотношении смачивающей жидкости и углеродного остатка (0,80-0,95):1,00, карбонизацию углеродного остатка ведут при 450-800oC в течение 45-90 мин, дополнительно проводят активацию углеродного остатка при 850-1050oC в течение 80-100 мин и окисление тяжелой жидкой фазы до конечного продукта (пластификатора) кислородом воздуха при 150-160oC в течение 15-18 ч при избыточном давлении 0,2-0,4 МПа, причем образующиеся в предлагаемом процессе газы и легкие смолы подают на сжигание в топки реактора, карбонизатора и активатора.
Сущность предлагаемого изобретения поясняется чертежом, на котором изображена установка для переработки изношенных шин. Установка для термического разложения (пиролиза) изношенных автомобильных шин содержит: резательную машину 1, связанную с реактором пиролиза 2, имеющим трубчатый теплообменник и обогреваемый кожух, внизу реактора 2 расположено разгрузочное устройство, сбоку в нижней части реактора расположена топка 3 для сжигания топлива, реактор 2 в верхней части последовательно соединен с горячими циклонами 4, скруббером 5, соединенным в верхней части с холодильником 6, который сообщен с сепаратором 7, соединенным с реактором 2 и топкой 3, скруббер 5 в нижней части соединен с емкостью-отстойником 8, которая сообщена в нижней части с реактором 2 и топкой 3, а в верхней части с циклоном 9, скруббере 5 и циклон 9 связаны трубопроводами со сборной емкостью 10, которая последовательно связана с теплообменником 11 и реактором-окислителем 12, в верхней части реактор-окислитель 12 сообщен с холодильником 6, который сообщен с сепаратором 7, соединенным с реактором пиролиза 2 и топкой 3, а в нижней части реактор окислитель 12 сообщен с емкостью для пластификатора 13. Линия по получению активного угля содержит следующие аппараты: валковую дробилку 14, присоединенную к реактору пиролиза 2 в нижней части, валковая дробилка 14 связана с железоотделителем 15, соединенным с виброситом 16 и контейнером для металлокорда 17. Вибросито 16 и емкость подготовки смолы для грануляции 18 связаны с барабаном-гранулятором 19, имеющим бункер 20 для гранулированного продукта, который соединен с барабаном-карбонизатором 21, к которому присоединен бункер для продуктов карбонизации 22, имеющий выход к емкости подготовки смолы грануляции 18 и к бункеру насыщения гранул 23, который последовательно связан с барабаном активатором 24 и емкостью для продуктов активации 25.
Способ переработки изношенных шин состоит в следующем: изношенные покрышки поступают на резательную машину 1, где измельчаются на куски 100-200 мм. Эти куски подаются в реактор пиролиза 2, где сырье опускается сверху вниз, нагреваясь за счет контакта с восходящим потоком летучих продуктов пиролиза и топочных газов, а также за счет теплообмена с трубчатым подогревателем, расположенным внутри реактора 2, и обогреваемыми стенками реактора. При достижении 400-600oC органическая часть сырья (резина, текстильный и вискозный корд и др. ) разлагается с образованием летучих продуктов и углеродистого остатка. Для обеспечения необходимого температурного режима в топке 3 сжигаются собственные пиролизные газы. Летучие продукты выводятся из реактора 2 в систему горячих циклонов 4, где отделяются дисперсные частицы углеродного остатка. В верхнюю часть реактора 2, в целях утилизации, подается сажесмоляная суспензия, поступающая со стадии очистки летучих продуктов. Твердый углеродный остаток, образующийся в результате разложения сырья, в смеси с металлокордом и обрезками проволоки бортовых колец опускается под собственным весом вниз реактора 2, где за счет испарения пиролизной воды охлаждается до 150-200oC, для ускорения термического разложения резины и для нейтрализации кислых соединений сюда же периодически подается газообразный аммиак. В разгрузочном устройстве, расположенном внизу реактора 2, твердый углеродный остаток охлаждается до 40-50oC и выгружается в валковую дробилку 14. Летучие продукты из реактора 2 проходят через горячие циклоны 4 и поступают в скруббер 5, где орошаются собственной пиролизной смолой. При контакте летучих продуктов с капельным орошением снижается температура с 320-360oC до 70-90oC. При этом происходит конденсация основной массы пиролизной смолы и улавливается часть остаточного углерода. Сконденсированная смола стекает в кубовую часть скруббера 5, откуда поступает в емкость-отстойник 8. Здесь смола отстаивается в течение 2-4 ч от основной массы сажесмоляной суспензии. Осветленная смола через циклон 9 поступает на орошение в скруббер 5, а избыток - в сборную емкость 10. Сажесмоляная суспензия собирается в нижней части отстойника 8, после чего идет на утилизацию в реактор 2. Не сконденсировавшаяся в скруббер 5 легкая фракция смолы, пары воды и газа идут в холодильник 6, где охлаждаются до 30-40oC. Смола и пары воды конденсируются, и получившаяся газожидкостная смесь разделяется в сепараторе 7 на жидкую фазу и пиролизные газы. За счет большого времени пребывания в сепараторе 7 жидкая фаза разделяется на пиролизную воду и легкую смолу. Часть пиролизной воды поступает в реактор 2, а избыток - в топку 3. Пиролизные газы из сепаратора через фильтр и каплеотбойник поступают для сжигания в топку 3. Смола из сборника 10 через теплообменник 11, где она подогревается за счет тепла отходящих топочных газов до 150-160oC, поступает в реактор-окислитель 12. В реакторе-окислителе 12 смола обрабатывается воздухом при перемешивании мешалкой при 150-160oC в течение 15-18 ч при избыточном давлении 0,2-0,4 МПа. По окончании окисления готовый поластификатор поступает в емкость 13. Образующиеся при окислении легкие фракции в смеси с отработанным воздухом поступают в холодильник 6, где охлаждаются до 30-40oC, после чего сконденсировавшаяся жидкая фракция (смесь углеводородов и воды) и отработанный воздух поступают в сепаратор 7, откуда идут в реактор 2 и топку 3.
Твердый углеродный остаток выгружается из реактора 2 в дробилку 14, где измельчается на куски размером не более 20 мм. Измельченный остаток с обрывками металлокорда поступает на железоотделитель 15, где с помощью магнитов отделяется металлокорд, который выгружается в контейнер 17. Очищенный твердый углеродный остаток поступает на вибросито 16 с размером ячеек 20 мм. Крупные куски размером более 20 мм вновь поступают на дробилку 14, а мелкие и пыль - на грануляцию. Грануляция углеродного остатка проводится в барабане-грануляторе 19, куда из емкости подготовки 18 поступает смола грануляции, состоящая из фусов, пекового дистиллята и смолы карбонизации в соотношении 1,0: (0,8-3,0): (0,1-2,2). Соотношение связующего и углеродного остатка (0,80-0,95): 1,00, температура гранулирования 30-80oC, время, гранулирования 15-30 мин. Гранулированный продукт поступает в бункер для сбора гранулированного продукта.
Карбонизация и активация гранул из остаточного углерода и связующего проводится во вращающихся барабанных печах, изготовленных из термостойких стальных труб, снабженных продольными лопастями для перемешивания продукта. Подготовленный к карбонизации гранулированный продукт из загрузочного бункера 20 по транспортеру поступает в карбонизатор 21. Время карбонизации 45-90 мин. Температура карбонизации 450-800oC фиксируется термопарой. В обогреваемом через стенку горячими газами активации барабане-карбонизаторе 21 осуществляется формирование монолитного углеродного каркаса гранул с одновременным удалением выделяющихся из них летучих продуктов в виде паров смоли и газов карбонизации. Карбонизованные гранулы направляются в барабан-активатор 24, куда через бункер 23 вводится активирующая парогазовая смесь, которая состоит из водяного пара, углекислого газа и кислорода воздуха. Обогрев барабана-активатора 24 осуществляется за счет сжигания газов и смолы карбонизации, процесс активации осуществляется при 850-1050oC, время активации 80-100 мин. После активации охлажденный в бункере 25 готовый активный уголь ссыпается в приемную емкость, а образующаяся парогазовая смесь удаляется.
Примеры реализации способа переработки изношенных шин.
Пример 1. На резательную машину 1 подается 1900 кг/ч автомобильных покрышек, где они разрезаются на крупные куски размером 100-200 мм. В резательную машину 1 для улучшения процесса резания и смывания грязи с покрышек подается оборотная тепла вода. Далее куски покрышек транспортерами и элеватором подаются непосредственно на загрузку в реактор 2 при отсутствии в нем верхнего уровня сырья. При наличии верхнего уровня сырья в реакторе куски покрышек автоматически ссыпаются на резервную площадку. Для предотвращения проскока атмосферного воздуха внутрь реактора при загрузке сырья загрузочные клапаны срабатывают только последовательно. Поступаемое в реактор сырье имеет насыпную плотность 300-350 кг/м3. В начале в топке 3 сжигают природный газ и образующиеся при этом топочные газы подают в реактор. В дальнейшем для обеспечения необходимого температурного режима в топке 3 сжигают собственные пиролизные газы в количестве 798 кг/ч с добавлением на подсветку природного газа - 1 кг/ч. Для снижения температуры топочных газов до 900-950oC в боров топки 3 подается промышленная вода - 230 кг/ч и излишки пиролизной воды - 70 кг/ч. Топочные газы в смеси с парами воды поступают в рубашку реактора в количестве 3581 кг/ч (2830 м3/ч), в реакционную зону реактора 2 в количестве 556 кг/ч (441 м3/ч) и рубашки горячих циклонов 4. Сырье, опускаясь по реактору сверху вниз, нагревается за счет контакта с восходящим потоком топочных газов. При нагревании до 400-600oC сырье разлагается на парогазовые продукты и твердый углеродный остаток.
Парогазовые продукты в количестве 1382 кг/ч прокачивают через горячие циклоны 4, где очищают от дисперсного углерода (13,2 кг/час), и скруббер 5, где их орошают пиролизной смолой в количестве 7200 кг/ч, при этом из парогазовых продуктов конденсируется жидкая фаза, которая стекает в емкость-отстойник 8. Здесь жидкую фазу отстаивают в течение 3 ч. Осветленная пиролизная смола через циклон 9 поступает на орошение в скруббер 5, а избыток в сборную емкость 10. Сажесмоляная суспензия в количестве 101,2 кг/ч собирается в нижней части отстойника 8, после чего идет на утилизацию в реактор 2, углеводородная часть которой испаряется и уходит с летучими продуктами в систему конденсации, а дисперсный углерод переходит в остаток. Несконденсировавшиеся в скруббере 5 легкие фракции смолы, пары воды и газы выходят в водяной холодильник 6, где охлаждаются до 30-40oC, образующаяся газожидкостная смесь стекает в отстойник-газосепаратор 7, в котором разделяется в течение 3 ч на жидкую фазу и пиролизные газы. Жидкая фракция отстаивается в левой секции аппарата, разделяясь на пиролизную воду (выход ее составляет 210 кг/ч) и легкую смолу в количестве 224 кг/ч. Смола перетекает через внутреннюю перегородку в правую секцию аппарата, откуда по мере накопления откачивается в дополнительный отстойник. Пиролизная вода из левой секции откачивается в зону охлаждения углеродного остатка реактора 2, избыток - в топку 3. Пиролизные газы в количестве 242 кг/ч откачиваются из сепаратора 7 газодувкой через пропиленовый фильтр, где очищаются от возможных капель смолы, и далее подаются через каплеотбойник, где освобождаются от капель сконденсировавшейся влаги, на сжигание в топку 3. Из сборной емкости 10 осветленная смола в количестве 19920 кг/сут откачивается через теплообменник 11 в реактор-окислитель 12. При движении смолы через теплообменник 11 она подогревается за счет тепла отходящих топочных газов до 150-160oC. В реакторе-окислителе 12 смола обрабатывается воздухом при перемешивании мешалкой при 150-160oC в течение 15-18 ч при избыточном давлении 0,2 - 0,4 МПа. Воздух на окисление подается с давлением 0,5 - 0,6 МПа в количестве 13880 кг/сут. Образующиеся при окислении легкие фракции, куда входят пары углеводородов в количестве 9285 кг/сут и пары воды в количестве 135 кг/сут, в смеси с отработанным воздухом в количестве 13440 кг/сут отходят из реактора-окислителя 12 в водяной холодильник 6, где охлаждаются до 30-40oC, при этом конденсируются углеводородные фракции и вода. Газожидкостная смесь поступает в сепаратор 7, где разделяется на жидкую фазу и отработанный воздух. Отработанный воздух направляется в топку 3. Жидкая фаза (смесь углеводородов и воды) отстаивается в отстойнике-газосепараторе 7. По окончании окисления готовый пластификатор в горячем виде в количестве 16940 кг/сут откачивают из реактора-окислителя 12 в емкость 13.
Углеродный остаток, образующийся от разложения сырья, в количестве 587 кг/ч в смеси с металлокордом, в количестве 159 кг/ч опускается под действием собственного веса в нижнюю часть реактора 2, в зону охлаждения, где за счет испарения воды, подаваемой по валу ворошителя в количестве 140 кг/ч непосредственно в слой остатка, охлаждается до 150-200oC. Для улучшения теплообмена ворошитель делает качательные движения в слое остатка. Пиролизная вода, подаваемая в зону охлаждения, содержит растворенные аммонийные соли и углеводороды, которые, испаряясь, попадают в реакционную зону. Для нейтрализации кислых соединений и ускорения термического разложения резины сюда же периодически подается газообразный аммиак - 0,04 кг/ч. Действие аммиака основано на протекании следующих реакций:
2NH3+H2S →← (NH4)2S;
2NH3+CO2+H2O →← (NH4)2CO3.
Для повышения эффективности использования аммиака в предлагаемой схеме предусматривается его многократное использование. Твердый углеродный остаток выгружается из реактора 2 в валковую дробилку 14, в которой подвергается измельчению на куски не более 20 мм. На железоотделителе 15 углеродный остаток очищается от металлокорда. Очищенный от металла углеродный остаток ссыпается на вибросито 16, где просеивается через решетку с размером ячеек 20 мм. Прошедшая через вибросито 16 углеродная фракция с размером частиц менее 20 мм ссыпается в дисмембратор, где подвергается тонкому измельчению, а затем подается в барабан-гранулятор 19. К основному потоку дисперсного углеродного остатка примешивают угольную пыль и спекшиеся гранулы активного угля со стадий очистки газов карбонизации и активации и рассеивания активного угля. Суммарная масса продукта, поступающего на грануляцию - 599 кг/ч. Одновременно с углеродным остатком в камеру барабана-гранулятора 19, работающего непрерывно, через форсунки из емкости подготовки 18 вводится подогретая до 80oC связующая смола, представляющая собой смесь фусов (143,3 кг/ч), смолы карбонизации (286,6 кг/ч) и пекового дистиллята (143,3 кг/ч). Связующая смола готовится путем растворения фусов (продукт улавливания каменноугольной пыли каменноугольной смолой) смесью смолы карбонизации и пекового дистиллята. Сформированные в барабане-грануляторе 19 при 30-80oC в 15-30 мин гранулы в количестве 1198,2 кг/ч по транспортной системе через бункер 20 поступают в барабан-карбонизатор 21. В обогреваемом через стенку горячими газами активации, поступающими в рубашку в количестве 6617 кг/ч, барабане-карбонизаторе 21 осуществляется формирование монолитного углеродного каркаса гранул при 450-800oC в течение 45-90 мин. Одновременно происходит удаление выделяющихся летучих продуктов в виде паров смол (335,5 кг/ч) и газов карбонизации (71,9 к/ч) в систему конденсации и разделения, где происходит улавливание частиц углерода (3 кг/ч), унесенных из барабана-карбонизатора 21, и разделение летучих продуктов карбонизации на смолу и газы карбонизации. Смола карбонизации поступает в отстойник, а оттуда в емкость 18 для дальнейшего использования при грануляции углеродного остатка, а также на сжигание в топку барабана-активатора 24 (в топку на сжигание поступает 48,9 кг/ч смолы карбонизации). Газы карбонизации, обогащенные легкими смолами и содержащие до 3% паров воды, в количестве 71,9 кг/ч также поступают на сжигание в топку барабана-активатора 24.
Карбонизованные гранулы в количестве 775,8 кг/ч через шлюзовый питатель из бункера 22 ссыпается в противоточный барабан-активатор 24. Процесс активации осуществляется при 850-1050oC в течение 80-100 мин с использованием в качестве агентов активации топочных газов в количестве 3048 кг/ч, образующихся в топке барабана-активатора, и водяного пара, подводимого к барабану-активатору 24 из емкости 23 в количестве 500 кг/ч. Активированные гранулы в количестве 500,8 кг/ч поступают в барабан-холодильник, после охлаждения до 80-100oC гранулы активного угля по элеватору поступают к виброситам, где отсеиваются спекшиеся в комки гранулы активного угля и пыль. Спекшиеся гранулы и пыль отправляются в барабан-гранулятор 19.
Пример 2. Процесс ведут аналогично примеру 1. Сырье нагревают до 300oC. Соответственно меняется выход продуктов пиролиза: увеличивается выход жидкой фазы, в то время как выход твердых и газообразных продуктов уменьшается (см. табл. ). При грануляции углеродного остатка берут фусы в количестве 71,65 кг/ч, пековый дистиллят - 85,98 кг/ч, смолу карбонизации - 114,64 кг/ч. Количество углеродного остатка - 388,95 кг/ч. Карбонизацию углеродного остатка проводили при 300oC, характеристика гранулированного продукта представлены в таблице. Активировали полученный продукт при 700oC той же парогазовой смесью, что и в примере 1. Характеристики активированного продукта представлены в таблице. Жидкую фазу обрабатывали аналогично примеру 1: отстаивание жидкой фазы проводили в течение 3 ч, окисление - в течение 10 ч при 130oC. Характеристики полученного пластификатора представлены в таблице. Качество продуктов, полученных при реализации примера 2, неудовлетворительно.
Пример 3. Переработку изношенных шин проводили аналогично примеру 1. Время пиролиза 180-210 мин, температура 900oC. Выход продуктов пиролиза и их характеристики представлены в таблице. При гранулировании твердого углеродного остатка брали фусы в количестве 214,95 кг/ч, пековый дистиллят - 501,55 кг/ч, смолу карбонизации - 358,25 кг/ч. Количество углеродного остатка - 977,22 кг/ч. Карбонизацию гранулированного углерода проводили при 900oC. Характеристики полученного гранулированного углерода представлены в таблице. Активацию гранулированного углерода проводили при температуре более 1050oC. Характеристики активированного продукта представлены в таблице. Жидкую фазу отстаивают в течение 3 ч окисление проводили при 200oC в течение 20 ч. Характеристики пластификатора представлены в таблице. Качество продуктов, полученных при реализации примера 3, неудовлетворительно.
Предлагаемый способ переработки старых шин методом пиролиза был проверен на опытной установке производительностью 2 т/сут по сырью. У полученных продуктов (активный уголь и пластификатор) был исследованы их пожароопасные и токсикологические свойства, результаты - положительные. Испытания пластификатора были проводились в институте ВНИИСтройполимер, в результате испытаний было установлено, что новый смоляной пластификатор может эффективно использоваться, улучшая эксплуатационные свойства (морозостойкость, водостойкость и др. ) в составе резино-битумных гидроизоляционных и кровельных материалов взамен дефицитных пластификаторов, получаемых из природного сырья. Испытания активного угля проводились во Всесоюзном научно-исследовательском институте антибиотиков, в Минском ПО "Белмедпрепараты" на очистке сточных вод от производства антибиотиков, при этом были получены следующие результаты: концентрация ПАВ в сточных водах снижена на 90-95%; эффективность очистки сточных вод по ХПК составила 70-80%, по БПК - 80-90%; обеспечивающая способность высокая; токсичность сточных вод снижена до уровня, нормального для развития микроорганизмов; установлено, что полученный уголь является эффективным катализатором разложения окислителя при биосорбционном способе очистки сточных вод. Дополнительные исследования угля, полученного при пиролизе изношенных шин, показали, что по адсорбционном и прочностным свойствам он не уступает более дорогой коммерческой марке БАУ. Общие показатели эффективности процесса по комплексу переработки составляют (в ценах января 1998 года) - 73,7 тыс. руб., из них строительно-монтажные работы - 49,43 тыс. руб. , оборудование - 17,03 тыс. руб., прочие затраты - 7,24 млн. руб. Срок окупаемости проекта - 2 года.

Claims (1)

  1. Способ переработки изношенных шин, включающий их термическое разложение при 400-600oC с образованием парогазовых продуктов и твердого углеродного остатка, охлаждение их до 40-50oC, разделение их на жидкие и парообразные фазы и твердый углеродный остаток, разделение жидкой фазы на легкую и тяжелую фракции, измельчение углеродного остатка, гранулирование углеродного остатка с использованием смачивающей жидкости, карбонизацию углеродного остатка, отличающийся тем, что охлаждение углеродного остатка ведут испарением пиролизной воды с добавлением в зону охлаждения газообразного аммиака, при гранулировании в качестве смачивающей жидкости используют смесь фусов, пекового дистиллята и смолы карбонизации при соотношении компонентов смачивающей жидкости 1,0:(0,8-3,0):(0,1-2,2) и соотношении смачивающей жидкости и углеродного остатка (0,80-0,95):1,00, гранулирование углеродного остатка ведут при 30-80oC в течение 15-30 мин, карбонизацию углеродного остатка ведут при 450-800oC в течение 45-90 мин, дополнительно проводят активацию углеродного остатка при 850-1050oC в течение 80-100 мин и окисление тяжелой фракции жидкой фазы до конечного пункта (пластификатора) кислородом воздуха при 150-160oC в течение 15-18 ч при избыточном давлении 0,2-0,4 МПа, причем образующиеся в предлагаемом процессе газы и легкие смолы подают на сжигание в топки реактора, карбонизатора и активатора.
RU98112378A 1998-07-03 1998-07-03 Способ переработки изношенных шин RU2142357C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98112378A RU2142357C1 (ru) 1998-07-03 1998-07-03 Способ переработки изношенных шин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98112378A RU2142357C1 (ru) 1998-07-03 1998-07-03 Способ переработки изношенных шин

Publications (1)

Publication Number Publication Date
RU2142357C1 true RU2142357C1 (ru) 1999-12-10

Family

ID=20207813

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98112378A RU2142357C1 (ru) 1998-07-03 1998-07-03 Способ переработки изношенных шин

Country Status (1)

Country Link
RU (1) RU2142357C1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123970A2 (fr) * 2005-05-19 2006-11-23 Aleksey Viktorovich Matveev Procede de transformation de dechets caoutchoutes ou d'un melange de dechets caoutchoutes et polymeres et installation de mise en oeuvre du procede
WO2008030137A1 (fr) * 2007-01-10 2008-03-13 Konstanta, Obschestvo S Ogranichennoy Otvetstvennostyu Procédé et dispositif de traitement de déchets de caoutchouc
WO2011145980A1 (ru) * 2010-05-21 2011-11-24 Bochaver Kirill Zyskovich Процесс и установка по переработке резиносодержащих отходов.
RU2495076C1 (ru) * 2012-07-25 2013-10-10 Закрытое Акционерное Общество Научно-Производственная Компания "Интергаз" Способ переработки горючих углерод- и/или углеводородсодержащих продуктов, реактор для его осуществления (варианты) и установка для переработки горючих углерод- и/или углеводородсодержащих продуктов
RU2507237C2 (ru) * 2009-09-25 2014-02-20 Пироликс Аг Способ и устройство для многостадийной термической обработки резиновых отходов, в частности, отходов шин
RU2587455C1 (ru) * 2015-01-27 2016-06-20 Закрытое акционерное общество "ТехноХимИнжиниринг" (ЗАО "ТХИ") Способ утилизации отходов вододисперсионных полимерных материалов
CN109776855A (zh) * 2017-11-10 2019-05-21 中国石油化工股份有限公司 用于稀土异戊橡胶生产工艺的溶剂回收方法
RU2731633C1 (ru) * 2019-12-23 2020-09-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ") Способ получения активированного угля

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123970A2 (fr) * 2005-05-19 2006-11-23 Aleksey Viktorovich Matveev Procede de transformation de dechets caoutchoutes ou d'un melange de dechets caoutchoutes et polymeres et installation de mise en oeuvre du procede
WO2006123970A3 (fr) * 2005-05-19 2007-01-18 Aleksey Viktorovich Matveev Procede de transformation de dechets caoutchoutes ou d'un melange de dechets caoutchoutes et polymeres et installation de mise en oeuvre du procede
WO2008030137A1 (fr) * 2007-01-10 2008-03-13 Konstanta, Obschestvo S Ogranichennoy Otvetstvennostyu Procédé et dispositif de traitement de déchets de caoutchouc
RU2507237C2 (ru) * 2009-09-25 2014-02-20 Пироликс Аг Способ и устройство для многостадийной термической обработки резиновых отходов, в частности, отходов шин
WO2011145980A1 (ru) * 2010-05-21 2011-11-24 Bochaver Kirill Zyskovich Процесс и установка по переработке резиносодержащих отходов.
RU2495076C1 (ru) * 2012-07-25 2013-10-10 Закрытое Акционерное Общество Научно-Производственная Компания "Интергаз" Способ переработки горючих углерод- и/или углеводородсодержащих продуктов, реактор для его осуществления (варианты) и установка для переработки горючих углерод- и/или углеводородсодержащих продуктов
WO2014017955A2 (ru) 2012-07-25 2014-01-30 Закрытое Акционерное Общество Научно-Производственная Компания "Интергаз" Способ переработки горючих углерод- и/или углеводородсодержащих продуктов, реактор для его осуществления (варианты) и установка для переработки горючих углерод- и/или углеводородсодержащих продуктов
RU2587455C1 (ru) * 2015-01-27 2016-06-20 Закрытое акционерное общество "ТехноХимИнжиниринг" (ЗАО "ТХИ") Способ утилизации отходов вододисперсионных полимерных материалов
CN109776855A (zh) * 2017-11-10 2019-05-21 中国石油化工股份有限公司 用于稀土异戊橡胶生产工艺的溶剂回收方法
RU2731633C1 (ru) * 2019-12-23 2020-09-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ") Способ получения активированного угля

Similar Documents

Publication Publication Date Title
CA1313591C (en) Method for obtaining utilizable gas from garbage
KR101467204B1 (ko) 하수 슬러지의 농축-탈수 및 호기적 공기-건조의 통합 방법
CN102770509B (zh) 热解工艺和产物
US8691166B2 (en) System and method for activating carbonaceous material
EP1905811B1 (en) Method for Continuous Decomposing Waste Polymeric Materials
KR100843585B1 (ko) 가연성 폐기물 무공해 탄화처리 에너지생산 시스템
EP2997110B1 (en) A method and a system for processing plastic waste
RU2494128C2 (ru) Устройство для получения сажи из резиновых отходов
CN1189108A (zh) 硫化铁及其制造方法
RU2142357C1 (ru) Способ переработки изношенных шин
EP3031881A1 (en) Method of pyrolytic processing of polymer waste from the recycling of food packaging and a system for carrying out such method
SK163799A3 (en) Method and apparatus for thermolytic treatment of polymer- and cellulose containing materials, especially light shredder residues
RU2556645C1 (ru) Способ и устройство для эффективной утилизации органических компонентов городских и промышленных отходов
WO2006123970A2 (fr) Procede de transformation de dechets caoutchoutes ou d'un melange de dechets caoutchoutes et polymeres et installation de mise en oeuvre du procede
RU2296709C1 (ru) Установка получения гранулированного углеродного сорбента
CN206232427U (zh) 焦粉处理焦化废水并联产蒸汽的系统
JPH05105415A (ja) 成型活性コ−クスの製造方法
SU1201294A1 (ru) Способ утилизации отходов полимерных материалов
WO2021185387A2 (en) Method of electricity production through tyre pyrolysis
CA2067147A1 (en) Waste disposal process
CN114950504B (zh) 一种热解半焦的用途
CN114472477B (zh) 垃圾处理系统和方法
CN218811268U (zh) 一种污泥分离及高值化利用的装置
RU2815780C1 (ru) Способ изготовления пиролизного наполнителя
CN106365241A (zh) 焦粉处理焦化废水并联产蒸汽的系统