RU2139499C1 - Волоконно-оптический гироскоп - Google Patents
Волоконно-оптический гироскоп Download PDFInfo
- Publication number
- RU2139499C1 RU2139499C1 RU98104169/28A RU98104169A RU2139499C1 RU 2139499 C1 RU2139499 C1 RU 2139499C1 RU 98104169/28 A RU98104169/28 A RU 98104169/28A RU 98104169 A RU98104169 A RU 98104169A RU 2139499 C1 RU2139499 C1 RU 2139499C1
- Authority
- RU
- Russia
- Prior art keywords
- fiber
- optical
- coupler
- phase modulator
- circuit
- Prior art date
Links
Images
Landscapes
- Gyroscopes (AREA)
Abstract
Гироскоп предназначен для использования в волоконной технике. Гироскоп содержит последовательно расположенные и соединенные оптическим волокном излучающий модуль, первый ответвитель, поляризатор, второй ответвитель, волоконный контур, фазовый модулятор и фотоприемный модуль. Два преобразователя одной поляризационной моды волокна в другую выполнены в виде скрученных и зафиксированных утонченных участков волокна. Один преобразователь располагается в волоконном контуре, а другой - в свободной петле фазового модулятора. Фазовый модулятор выполнен в виде свободной петли волокна, входной и выходной отрезки которой уложены и зафиксированы на поверхности пьезокерамического элемента в виде двух параллельных волокон одинаковой длины. Существенно уменьшается квадратурный сигнал и, следовательно, повышается точность волоконно-оптического гироскопа за счет уменьшения сдвига и дрейфа нуля. 4 ил.
Description
Изобретение относится к области волоконной техники, а именно к технике волоконно-оптических гироскопов (ВОГ), и может использоваться при разработке и изготовлении ВОГ.
Известен ВОГ, содержащий источник излучения, волоконный направленный ответвитель [3 х 3], волоконный контур и фотоприемное устройство (US Patent N 4440498, 1984, Optical fiber gyroscope with [3 х 3] directional coupler.). Обладая такими положительными качествами ВОГ, как малое время выхода на режим, высокая серийнопригодность и потенциально низкая цена, малые габариты и энергопотребление, этот гироскоп имеет ряд недостатков. Так, например, наличие 1/f шумов фотоприемника и интерференционных шумов волоконного гироскопа.
Существенное улучшение точностных характеристик достигнуто в ВОГ (Optics Letters, Vol.8(10), pp. 540 - 542, 1983, "Fiber-optic gyroscope with polarization-holding fiber), содержащем последовательно расположенные и соединенные оптическим волокном: излучающий и фотоприемный модули, первый ответвитель, поляризатор, второй ответвитель, волоконный контур и фазовый модулятор, выполненный в виде пьезокерамического элемента с зафиксированным на его поверхности отрезком оптического волокна (такой состав оптической схемы ВОГ получил название "минимальной конфигурации"), причем все оптические элементы изготавливаются на основе одномодового двулучепреломляющего волокна. Улучшение точностных характеристик такого ВОГ обусловлено применением пространственно-поляризационной фильтрации на входе-выходе волоконного контура и использованием поляризационно-устойчивого волокна, что позволяет значительно уменьшить сдвиг и дрейф нулевого сигнала ВОГ. Кроме того, использование модуляционной методики позволяет существенно снизить влияние различных шумов на точность измерений ВОГ. При этом модуляция разности фаз встречных волн, распространяющихся во встречных направлениях по волоконному контуру, осуществляется за счет периодического растяжения небольшого участка волоконного контура, намотанного на пьезокерамический цилиндр. Выходной сигнал гироскопа формируется путем детектирования первой гармоники частоты фазовой модуляции в сигнале фотоприемного модуля (устройства).
Однако при возбуждении пьезокерамического модулятора периодическим сигналом на выходе фотоприемного устройства появляется компонента на частоте модуляции, сдвинутая по фазе на 90o по отношению к полезному сигналу (сигналу вращения).
Источником возникновения этой компоненты (квадратурного сигнала) является модуляция двулучепреломления волокна, намотанного на пьезокерамический цилиндр, при его растяжении, а также связь между поляризационными модами волокна на его неоднородностях. Модуляция двулучепреломления волокна приводит к модуляции интенсивности излучения после прохождения поляризатора. Глубина модуляции интенсивности зависит от ориентации поляризатора по отношению к осям двулучепреломления волокна. После синхронного детектирования квадратурный сигнал подавляется, но не полностью, что приводит к появлению сдвига нуля ВОГ.
Оптическая блок-схема ВОГ представлена на фиг. 1. Два основных механизма возникновения квадратурного сигнала объясняются на фиг. 2.
Фиг. 2а. Волна на входе в модулятор распространяется в "быстрой" оси волокна. На центре связи q3 (неоднородность волокна) часть энергии волны ответвляется в "медленную" ось. На центре q4 часть ответвленной энергии возвращается в "быструю" ось волокна. Разность фаз между волнами, распространяющимися в "быстрой" и "медленной" осях волокна модулируется в процессе работы модулятора за счет периодического растяжения волокна. Если расстояние между центрами q3 и q4 меньше, чем длина деполяризации (Ld), интенсивность волны, распространяющейся в "быстрой" оси, будет модулироваться.
Фиг. 2б. Волна на входе в модулятор распространяется как в "быстрой" оси, так и в "медленной". Участок волокна между центрами q1 и q2 волна проходит в одной поляризации (в "медленной" оси), но участки L1, L2 в обоих осях. В случае интенсивность волны на выходе поляризатора оказывается промодулированной.
Зависимость квадратурного сигнала Q от ориентации поляризатора (α0) по отношению к осям двулучепреломления волокна можно представить в виде
θ ~ δφ(Ld/I)q3q4cos22α0+δφq1q2sin22α0, (*)
где q1, q2, q3, q4 - коэффициенты связи между поляризационными модами, l - длина отрезка волокна, закрепленного на пьезокерамике, δφ - амплитуда модуляции разности фаз между поляризационными модами. Величина δφ (~0,1 рад) пропорциональна удлинению волокна и его двулучепреломлению. Учитывая, что Ld/l ~0,1 можно сделать вывод, что квадратурный сигнал может быть уменьшен, как при уменьшении δφ, так и при юстировке оси поляризатора по отношению к осям двулучепреломления волокна.
θ ~ δφ(Ld/I)q3q4cos22α0+δφq1q2sin22α0, (*)
где q1, q2, q3, q4 - коэффициенты связи между поляризационными модами, l - длина отрезка волокна, закрепленного на пьезокерамике, δφ - амплитуда модуляции разности фаз между поляризационными модами. Величина δφ (~0,1 рад) пропорциональна удлинению волокна и его двулучепреломлению. Учитывая, что Ld/l ~0,1 можно сделать вывод, что квадратурный сигнал может быть уменьшен, как при уменьшении δφ, так и при юстировке оси поляризатора по отношению к осям двулучепреломления волокна.
Целью настоящего изобретения является повышение точности волоконно-оптического гироскопа за счет уменьшения сдвига и дрейфа нуля ВОГ, обусловленных наличием квадратурного сигнала на выходе фотоприемного устройства.
Поставленная цель достигается тем, что в известном волоконно-оптическом гироскопе, включающем последовательно расположенные и соединенные двулучепреломляющим оптическим волокном: излучающий и фотоприемный модули, первый ответвитель, поляризатор, второй ответвитель, волоконный контур и фазовый модулятор, выполненный в виде пьезокерамического элемента с зафиксированным на его поверхности отрезком оптического волокна, последний представляет собой пьезокерамический элемент, на поверхность которого намотаны (уложены) и зафиксированы два параллельных волокна одинаковой длины, являющихся входным и выходным отрезками петли волокна, не зафиксированной на поверхности пьезокерамического элемента, а в состав гироскопа дополнительно введены два преобразователя (конвертера) одной поляризационной моды волокна в другую, выполненные в виде скрученных и зафиксированных утонченных участков волокна, причем один преобразователь располагается в волоконном контуре, а другой преобразователь располагается в свободной петле фазового модулятора.
Повышение точности волоконно-оптического гироскопа за счет уменьшения сдвига и дрейфа нуля связано с тем, что при выполнении модулятора в виде двух синхронно растягиваемых отрезков волокна одинаковой длины (бифилярная намотка), между которыми установлен преобразователь одной поляризационной моды волокна в другую, устраняется модуляция двулучепреломления волокна в модуляторе δφ = 0, см. *), что приводит к существенному уменьшению квадратурного сигнала Q и соответствующей компоненты сдвига нуля ВОГ. Второй преобразователь мод волокна, расположенный в волоконном контуре, позволяет восстановить уровень интерференционного (полезного) сигнала, существенно уменьшаемый при использовании преобразователя мод волокна в составе фазового модулятора.
Существенность отличий предлагаемого гироскопа состоит в том, что впервые задача повышения точности волоконно-оптического гироскопа решается за счет того, что фазовый модулятор выполняется в виде пьезокерамического элемента, на поверхность которого намотаны (уложены) и зафиксированы два параллельных волокна одинаковой длины, являющихся входным и выходным отрезками петли волокна, не зафиксированной на поверхности пьезокерамического элемента, а в состав гироскопа дополнительно введены два преобразователя одной поляризационной моды волокна в другую, выполненные в виде скрученных и зафиксированных утонченных участков волокна, причем один преобразователь располагается в волоконном контуре, а другой преобразователь располагается в свободной петле фазового модулятора.
Оптическая схема предлагаемого гироскопа представлена на фиг. 3.
Гироскоп включает: излучающий и фотоприемный модули, два ответвителя, поляризатор, волоконный контур, фазовый модулятор, два преобразователя (конвертера) одной поляризационной моды волокна в другую.
Устройство работает следующим образом. Излучение от излучающего модуля вводится в одномодовое двулучепреломляющее волокно, проходит первый ответвитель, поляризатор и вторым ответвителем делится на две волны, распространяющиеся во встречных направлениях по волоконному контуру и модулятору. После обхода волоконного контура встречные волны смешиваются вторым ответвителем, интерферируют и вновь проходят поляризатор и первый ответвитель, который направляет часть излучения (сигнал интерференции) на фотоприемное устройство (модуль). Сигнал интерференции пропорционален [1 + cos(F)], где F - разность фазовых набегов (сдвиг фаз) встречных волн в волоконном контуре. При вращении создается сдвиг фаз (фаза Саньяка) между встречными волнами Φ = 2πDLW/λc (D - диаметр катушки; L - длина волокна; λ - длина волны излучения; с - скорости света; W - скорость вращения вокруг нормали к плоскости контура (оси чувствительности).
Поляризатор обеспечивает поляризационную фильтрацию на входе и выходе волоконного контура для улучшения взаимности оптических путей встречных волн с целью уменьшения сдвигов фаз между ними, не связанных с вращением.
Для повышения чувствительности используется пьезокерамический фазовый модулятор (ПЗТ). При питании его переменным напряжением создается дополнительный сдвиг фаз m(t)=M•sin(wt) за счет периодического растяжения участка волоконного контура. При работе модулятора выходной сигнал фотоприемного модуля имеет вид:
В этом соотношении представлены основные составляющие сигнала фотоприемного устройства (Jn - функция Бесселя порядка n): первая гармоника частоты модуляции, вторая гармоника, постоянная составляющая и сигнал квадратурной помехи (Q). Они зависят от амплитуды модуляции (М) и угловой скорости. Квадратурный сигнал (Q) также проявляется на частоте модуляции, однако он не зависит от вращения и сдвинут по фазе на 90o относительно сигнала вращения.
В этом соотношении представлены основные составляющие сигнала фотоприемного устройства (Jn - функция Бесселя порядка n): первая гармоника частоты модуляции, вторая гармоника, постоянная составляющая и сигнал квадратурной помехи (Q). Они зависят от амплитуды модуляции (М) и угловой скорости. Квадратурный сигнал (Q) также проявляется на частоте модуляции, однако он не зависит от вращения и сдвинут по фазе на 90o относительно сигнала вращения.
Осуществляя синхронное детектирование первой гармоники частоты модуляции в сигнале фотоприемного модуля, при малых скоростях вращения (Φ ≪ 1, sin(Φ) ~ Φ) получаем сигнал, пропорциональный скорости вращения волоконного контура W. Присутствие квадратурной помехи (Q) в сигнале фотоприемного модуля приводит к ошибке в измерении угловой скорости W при детектировании первой гармоники.
При выполнении модулятора в виде двух синхронно растягиваемых отрезков волокна одинаковой длины (бифилярная намотка), между которыми установлен преобразователь одной поляризационной моды волокна в другую, уменьшается модуляция двулучепреломления волокна в модуляторе (δφ 0, см.*), что приводит к существенному уменьшению квадратурного сигнала Q и соответствующей компоненты сдвига нуля ВОГ. Второй преобразователь мод волокна, расположенный в волоконном контуре, позволяет восстановить уровень интерференционного (полезного) сигнала, существенно уменьшаемый при использовании преобразователя мод волокна в составе фазового модулятора.
Для апробации предлагаемого изобретения был собран ВОГ (ВОГ1), оптическая схема которого приведена фиг. 3 и ВОГ - прототип (ВОГ2), оптическая схема которого приведена на фиг. 1. Излучательные модули изготавливались на основе полупроводниковых суперлюминесцентных диодов СЛД-2-2. Фотоприемные модули были выполнены на основе кремниевых фотодиодов ФДК-200. Все оптические элементы изготавливались на базе одномодового поляризационно-устойчивого кварцевого волокна. Длина волоконных контуров составила 100 м. Пьезокерамические цилиндры для изготовления фазовых модуляторов были выполнены из материала ЦТС. Диаметр цилиндров - 15 мм. Поляризаторы изготавливались на основе оптического контакта двулучепреломляющего монокристалла с перетяжкой на оптическом волокне. Волоконные ответвители изготавливались за счет вытяжки соприкасающихся волокон при их локальном тепловом размягчении. Диаметр катушки волоконного контура - 70 мм. Модовые преобразователи (конвертеры) для ВОГ1 изготавливались за счет вытяжки оптического волокна при его локальном тепловом размягчении, скрутки этого утонченного участка и его фиксации на кварцевой подложке. Фазовый модулятор для ВОГ1 изготавливался за счет формирования петли волокна и одновременной намотки двух сложенных вместе входного и выходного отрезков петли (бифилярная намотка) на боковую поверхность пьезокерамического цилиндра с последующей их фиксацией на ней, после чего на свободном участке петли изготавливался модовый конвертер.
Для формирования выходного сигнала гироскопов, пропорционального скорости вращения волоконного контура, использовался стандартный генератор Г3-118 для возбуждения модулятора и стандартный синхронный детектор SR830 для измерения амплитуды первой гармоники частоты модуляции.
Сигнал фотоприемного модуля перед подачей на вход синхронного детектора усиливался предварительным усилителем, изготовленным по стандартной схеме (В.Достал Операционные усилители, 1985) на основе микросхемы 544УД2.
При измерении дрейфа нуля (изменения выходного сигнала в отсутствии вращения) для ВОГ1 и ВОГ2 в диапазоне температур +20oC - +50oC получены следующие максимальные значения дрейфа нуля: 27o/час - для ВОГ1, и 139o/час - для ВОГ2. Таким образом, по сравнению с прототипом дрейф нуля снижен более, чем в пять раз за счет использования новой оптической схемы ВОГ.
Claims (1)
- Волоконно-оптический гироскоп, включающий последовательно расположенные и соединенные оптическим волокном излучающий модуль, первый ответвитель, поляризатор, второй ответвитель, волоконный контур, фазовый модулятор и фотоприемный модуль, отличающийся тем, что дополнительно введены два преобразователя одной поляризационной моды волокна в другую, выполненные в виде утонченных скрученных и зафиксированных в этом положении участков волокна, а фазовый модуль выполнен в виде свободной петли волокна, входной и выходной отрезки которой уложены и зафиксированы на поверхности пьезокерамического элемента в виде двух параллельных волокон одинаковой длины, причем один преобразователь поляризационной моды волокна размещен в волоконном контуре, а другой преобразователь размещен в свободной петле фазового модулятора.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU98104169/28A RU2139499C1 (ru) | 1998-03-05 | 1998-03-05 | Волоконно-оптический гироскоп |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU98104169/28A RU2139499C1 (ru) | 1998-03-05 | 1998-03-05 | Волоконно-оптический гироскоп |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2139499C1 true RU2139499C1 (ru) | 1999-10-10 |
Family
ID=20203059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU98104169/28A RU2139499C1 (ru) | 1998-03-05 | 1998-03-05 | Волоконно-оптический гироскоп |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2139499C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014077735A1 (ru) | 2012-11-13 | 2014-05-22 | Logozinski Valery Nikolaevich | Волоконно-оптический гироскоп |
RU2522147C1 (ru) * | 2012-11-13 | 2014-07-10 | Валерий Николаевич Логозинский | Волоконно-оптический гироскоп |
-
1998
- 1998-03-05 RU RU98104169/28A patent/RU2139499C1/ru active IP Right Revival
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014077735A1 (ru) | 2012-11-13 | 2014-05-22 | Logozinski Valery Nikolaevich | Волоконно-оптический гироскоп |
RU2522147C1 (ru) * | 2012-11-13 | 2014-07-10 | Валерий Николаевич Логозинский | Волоконно-оптический гироскоп |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6636321B2 (en) | Fiber-optic current sensor | |
JPH07104166B2 (ja) | 光ファイバ回転センサおよび位相誤差を減じるための方法 | |
WO1989002060A1 (en) | Fiber optic gyroscope with improved bias stability and repeatability and method | |
US6563589B1 (en) | Reduced minimum configuration fiber optic current sensor | |
JPS6337212A (ja) | 受動光学共振器による回転速度読出しのための方法 | |
WO1999060337A1 (en) | Integrated optics rotation sensor | |
CN101261127A (zh) | Mz谐振干涉原理的光纤陀螺仪 | |
EP0502196B1 (en) | Optical interference angular velocity meter | |
RU2139499C1 (ru) | Волоконно-оптический гироскоп | |
EP0462360A1 (en) | Compound fiber-optic gyroscope using frequency discrimination | |
US6535654B1 (en) | Method for fabrication of an all fiber polarization retardation device | |
JP2004361196A (ja) | 光ファイバ電流センサ | |
JPH02504080A (ja) | 統合されたオプチック干渉計的ファイバジャイロスコープモジュール | |
US5285257A (en) | Optic rotation sensing apparatus and related method including providing synchronous detection at a phase at which the AM noise is minimized | |
RU126452U1 (ru) | Волоконно-оптический гироскоп | |
RU2152001C1 (ru) | Волоконно-оптический гироскоп | |
RU2764704C1 (ru) | Волоконно-оптический гироскоп | |
RU2522147C1 (ru) | Волоконно-оптический гироскоп | |
RU2783470C1 (ru) | Волоконно-оптический гироскоп | |
JPS59166873A (ja) | 光応用電圧・電界センサ | |
EP0501002B1 (en) | Optic rotation sensing apparatus and related method | |
JP2003505670A (ja) | 最小構成に低減した光ファイバ電流センサ | |
JPS63138208A (ja) | 位相変調方式光フアイバジヤイロ | |
JPH04364420A (ja) | 光位相変調器及びそれを用いた干渉センサ | |
JPH07270169A (ja) | 光ファイバジャイロ用光ic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
QB4A | Licence on use of patent |
Effective date: 20061017 |
|
QZ4A | Changes in the licence of a patent |
Effective date: 20061017 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20130306 |
|
NF4A | Reinstatement of patent |
Effective date: 20140910 |