RU2139499C1 - Волоконно-оптический гироскоп - Google Patents

Волоконно-оптический гироскоп Download PDF

Info

Publication number
RU2139499C1
RU2139499C1 RU98104169/28A RU98104169A RU2139499C1 RU 2139499 C1 RU2139499 C1 RU 2139499C1 RU 98104169/28 A RU98104169/28 A RU 98104169/28A RU 98104169 A RU98104169 A RU 98104169A RU 2139499 C1 RU2139499 C1 RU 2139499C1
Authority
RU
Russia
Prior art keywords
fiber
optical
coupler
phase modulator
circuit
Prior art date
Application number
RU98104169/28A
Other languages
English (en)
Inventor
В.Н. Логозинский
В.А. Соломатин
Original Assignee
Логозинский Валерий Николаевич
Соломатин Владимир Александрович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Логозинский Валерий Николаевич, Соломатин Владимир Александрович filed Critical Логозинский Валерий Николаевич
Priority to RU98104169/28A priority Critical patent/RU2139499C1/ru
Application granted granted Critical
Publication of RU2139499C1 publication Critical patent/RU2139499C1/ru

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

Гироскоп предназначен для использования в волоконной технике. Гироскоп содержит последовательно расположенные и соединенные оптическим волокном излучающий модуль, первый ответвитель, поляризатор, второй ответвитель, волоконный контур, фазовый модулятор и фотоприемный модуль. Два преобразователя одной поляризационной моды волокна в другую выполнены в виде скрученных и зафиксированных утонченных участков волокна. Один преобразователь располагается в волоконном контуре, а другой - в свободной петле фазового модулятора. Фазовый модулятор выполнен в виде свободной петли волокна, входной и выходной отрезки которой уложены и зафиксированы на поверхности пьезокерамического элемента в виде двух параллельных волокон одинаковой длины. Существенно уменьшается квадратурный сигнал и, следовательно, повышается точность волоконно-оптического гироскопа за счет уменьшения сдвига и дрейфа нуля. 4 ил.

Description

Изобретение относится к области волоконной техники, а именно к технике волоконно-оптических гироскопов (ВОГ), и может использоваться при разработке и изготовлении ВОГ.
Известен ВОГ, содержащий источник излучения, волоконный направленный ответвитель [3 х 3], волоконный контур и фотоприемное устройство (US Patent N 4440498, 1984, Optical fiber gyroscope with [3 х 3] directional coupler.). Обладая такими положительными качествами ВОГ, как малое время выхода на режим, высокая серийнопригодность и потенциально низкая цена, малые габариты и энергопотребление, этот гироскоп имеет ряд недостатков. Так, например, наличие 1/f шумов фотоприемника и интерференционных шумов волоконного гироскопа.
Существенное улучшение точностных характеристик достигнуто в ВОГ (Optics Letters, Vol.8(10), pp. 540 - 542, 1983, "Fiber-optic gyroscope with polarization-holding fiber), содержащем последовательно расположенные и соединенные оптическим волокном: излучающий и фотоприемный модули, первый ответвитель, поляризатор, второй ответвитель, волоконный контур и фазовый модулятор, выполненный в виде пьезокерамического элемента с зафиксированным на его поверхности отрезком оптического волокна (такой состав оптической схемы ВОГ получил название "минимальной конфигурации"), причем все оптические элементы изготавливаются на основе одномодового двулучепреломляющего волокна. Улучшение точностных характеристик такого ВОГ обусловлено применением пространственно-поляризационной фильтрации на входе-выходе волоконного контура и использованием поляризационно-устойчивого волокна, что позволяет значительно уменьшить сдвиг и дрейф нулевого сигнала ВОГ. Кроме того, использование модуляционной методики позволяет существенно снизить влияние различных шумов на точность измерений ВОГ. При этом модуляция разности фаз встречных волн, распространяющихся во встречных направлениях по волоконному контуру, осуществляется за счет периодического растяжения небольшого участка волоконного контура, намотанного на пьезокерамический цилиндр. Выходной сигнал гироскопа формируется путем детектирования первой гармоники частоты фазовой модуляции в сигнале фотоприемного модуля (устройства).
Однако при возбуждении пьезокерамического модулятора периодическим сигналом на выходе фотоприемного устройства появляется компонента на частоте модуляции, сдвинутая по фазе на 90o по отношению к полезному сигналу (сигналу вращения).
Источником возникновения этой компоненты (квадратурного сигнала) является модуляция двулучепреломления волокна, намотанного на пьезокерамический цилиндр, при его растяжении, а также связь между поляризационными модами волокна на его неоднородностях. Модуляция двулучепреломления волокна приводит к модуляции интенсивности излучения после прохождения поляризатора. Глубина модуляции интенсивности зависит от ориентации поляризатора по отношению к осям двулучепреломления волокна. После синхронного детектирования квадратурный сигнал подавляется, но не полностью, что приводит к появлению сдвига нуля ВОГ.
Оптическая блок-схема ВОГ представлена на фиг. 1. Два основных механизма возникновения квадратурного сигнала объясняются на фиг. 2.
Фиг. 2а. Волна на входе в модулятор распространяется в "быстрой" оси волокна. На центре связи q3 (неоднородность волокна) часть энергии волны ответвляется в "медленную" ось. На центре q4 часть ответвленной энергии возвращается в "быструю" ось волокна. Разность фаз между волнами, распространяющимися в "быстрой" и "медленной" осях волокна модулируется в процессе работы модулятора за счет периодического растяжения волокна. Если расстояние между центрами q3 и q4 меньше, чем длина деполяризации (Ld), интенсивность волны, распространяющейся в "быстрой" оси, будет модулироваться.
Фиг. 2б. Волна на входе в модулятор распространяется как в "быстрой" оси, так и в "медленной". Участок волокна между центрами q1 и q2 волна проходит в одной поляризации (в "медленной" оси), но участки L1, L2 в обоих осях. В случае
Figure 00000002
интенсивность волны на выходе поляризатора оказывается промодулированной.
Зависимость квадратурного сигнала Q от ориентации поляризатора (α0) по отношению к осям двулучепреломления волокна можно представить в виде
θ ~ δφ(Ld/I)q3q4cos20+δφq1q2sin20, (*)
где q1, q2, q3, q4 - коэффициенты связи между поляризационными модами, l - длина отрезка волокна, закрепленного на пьезокерамике, δφ - амплитуда модуляции разности фаз между поляризационными модами. Величина δφ (~0,1 рад) пропорциональна удлинению волокна и его двулучепреломлению. Учитывая, что Ld/l ~0,1 можно сделать вывод, что квадратурный сигнал может быть уменьшен, как при уменьшении δφ, так и при юстировке оси поляризатора по отношению к осям двулучепреломления волокна.
Целью настоящего изобретения является повышение точности волоконно-оптического гироскопа за счет уменьшения сдвига и дрейфа нуля ВОГ, обусловленных наличием квадратурного сигнала на выходе фотоприемного устройства.
Поставленная цель достигается тем, что в известном волоконно-оптическом гироскопе, включающем последовательно расположенные и соединенные двулучепреломляющим оптическим волокном: излучающий и фотоприемный модули, первый ответвитель, поляризатор, второй ответвитель, волоконный контур и фазовый модулятор, выполненный в виде пьезокерамического элемента с зафиксированным на его поверхности отрезком оптического волокна, последний представляет собой пьезокерамический элемент, на поверхность которого намотаны (уложены) и зафиксированы два параллельных волокна одинаковой длины, являющихся входным и выходным отрезками петли волокна, не зафиксированной на поверхности пьезокерамического элемента, а в состав гироскопа дополнительно введены два преобразователя (конвертера) одной поляризационной моды волокна в другую, выполненные в виде скрученных и зафиксированных утонченных участков волокна, причем один преобразователь располагается в волоконном контуре, а другой преобразователь располагается в свободной петле фазового модулятора.
Повышение точности волоконно-оптического гироскопа за счет уменьшения сдвига и дрейфа нуля связано с тем, что при выполнении модулятора в виде двух синхронно растягиваемых отрезков волокна одинаковой длины (бифилярная намотка), между которыми установлен преобразователь одной поляризационной моды волокна в другую, устраняется модуляция двулучепреломления волокна в модуляторе δφ = 0, см. *), что приводит к существенному уменьшению квадратурного сигнала Q и соответствующей компоненты сдвига нуля ВОГ. Второй преобразователь мод волокна, расположенный в волоконном контуре, позволяет восстановить уровень интерференционного (полезного) сигнала, существенно уменьшаемый при использовании преобразователя мод волокна в составе фазового модулятора.
Существенность отличий предлагаемого гироскопа состоит в том, что впервые задача повышения точности волоконно-оптического гироскопа решается за счет того, что фазовый модулятор выполняется в виде пьезокерамического элемента, на поверхность которого намотаны (уложены) и зафиксированы два параллельных волокна одинаковой длины, являющихся входным и выходным отрезками петли волокна, не зафиксированной на поверхности пьезокерамического элемента, а в состав гироскопа дополнительно введены два преобразователя одной поляризационной моды волокна в другую, выполненные в виде скрученных и зафиксированных утонченных участков волокна, причем один преобразователь располагается в волоконном контуре, а другой преобразователь располагается в свободной петле фазового модулятора.
Оптическая схема предлагаемого гироскопа представлена на фиг. 3.
Гироскоп включает: излучающий и фотоприемный модули, два ответвителя, поляризатор, волоконный контур, фазовый модулятор, два преобразователя (конвертера) одной поляризационной моды волокна в другую.
Устройство работает следующим образом. Излучение от излучающего модуля вводится в одномодовое двулучепреломляющее волокно, проходит первый ответвитель, поляризатор и вторым ответвителем делится на две волны, распространяющиеся во встречных направлениях по волоконному контуру и модулятору. После обхода волоконного контура встречные волны смешиваются вторым ответвителем, интерферируют и вновь проходят поляризатор и первый ответвитель, который направляет часть излучения (сигнал интерференции) на фотоприемное устройство (модуль). Сигнал интерференции пропорционален [1 + cos(F)], где F - разность фазовых набегов (сдвиг фаз) встречных волн в волоконном контуре. При вращении создается сдвиг фаз (фаза Саньяка) между встречными волнами Φ = 2πDLW/λc (D - диаметр катушки; L - длина волокна; λ - длина волны излучения; с - скорости света; W - скорость вращения вокруг нормали к плоскости контура (оси чувствительности).
Поляризатор обеспечивает поляризационную фильтрацию на входе и выходе волоконного контура для улучшения взаимности оптических путей встречных волн с целью уменьшения сдвигов фаз между ними, не связанных с вращением.
Для повышения чувствительности используется пьезокерамический фазовый модулятор (ПЗТ). При питании его переменным напряжением создается дополнительный сдвиг фаз m(t)=M•sin(wt) за счет периодического растяжения участка волоконного контура. При работе модулятора выходной сигнал фотоприемного модуля имеет вид:
Figure 00000003

В этом соотношении представлены основные составляющие сигнала фотоприемного устройства (Jn - функция Бесселя порядка n): первая гармоника частоты модуляции, вторая гармоника, постоянная составляющая и сигнал квадратурной помехи (Q). Они зависят от амплитуды модуляции (М) и угловой скорости. Квадратурный сигнал (Q) также проявляется на частоте модуляции, однако он не зависит от вращения и сдвинут по фазе на 90o относительно сигнала вращения.
Осуществляя синхронное детектирование первой гармоники частоты модуляции в сигнале фотоприемного модуля, при малых скоростях вращения (Φ ≪ 1, sin(Φ) ~ Φ) получаем сигнал, пропорциональный скорости вращения волоконного контура W. Присутствие квадратурной помехи (Q) в сигнале фотоприемного модуля приводит к ошибке в измерении угловой скорости W при детектировании первой гармоники.
При выполнении модулятора в виде двух синхронно растягиваемых отрезков волокна одинаковой длины (бифилярная намотка), между которыми установлен преобразователь одной поляризационной моды волокна в другую, уменьшается модуляция двулучепреломления волокна в модуляторе (δφ 0, см.*), что приводит к существенному уменьшению квадратурного сигнала Q и соответствующей компоненты сдвига нуля ВОГ. Второй преобразователь мод волокна, расположенный в волоконном контуре, позволяет восстановить уровень интерференционного (полезного) сигнала, существенно уменьшаемый при использовании преобразователя мод волокна в составе фазового модулятора.
Для апробации предлагаемого изобретения был собран ВОГ (ВОГ1), оптическая схема которого приведена фиг. 3 и ВОГ - прототип (ВОГ2), оптическая схема которого приведена на фиг. 1. Излучательные модули изготавливались на основе полупроводниковых суперлюминесцентных диодов СЛД-2-2. Фотоприемные модули были выполнены на основе кремниевых фотодиодов ФДК-200. Все оптические элементы изготавливались на базе одномодового поляризационно-устойчивого кварцевого волокна. Длина волоконных контуров составила 100 м. Пьезокерамические цилиндры для изготовления фазовых модуляторов были выполнены из материала ЦТС. Диаметр цилиндров - 15 мм. Поляризаторы изготавливались на основе оптического контакта двулучепреломляющего монокристалла с перетяжкой на оптическом волокне. Волоконные ответвители изготавливались за счет вытяжки соприкасающихся волокон при их локальном тепловом размягчении. Диаметр катушки волоконного контура - 70 мм. Модовые преобразователи (конвертеры) для ВОГ1 изготавливались за счет вытяжки оптического волокна при его локальном тепловом размягчении, скрутки этого утонченного участка и его фиксации на кварцевой подложке. Фазовый модулятор для ВОГ1 изготавливался за счет формирования петли волокна и одновременной намотки двух сложенных вместе входного и выходного отрезков петли (бифилярная намотка) на боковую поверхность пьезокерамического цилиндра с последующей их фиксацией на ней, после чего на свободном участке петли изготавливался модовый конвертер.
Для формирования выходного сигнала гироскопов, пропорционального скорости вращения волоконного контура, использовался стандартный генератор Г3-118 для возбуждения модулятора и стандартный синхронный детектор SR830 для измерения амплитуды первой гармоники частоты модуляции.
Сигнал фотоприемного модуля перед подачей на вход синхронного детектора усиливался предварительным усилителем, изготовленным по стандартной схеме (В.Достал Операционные усилители, 1985) на основе микросхемы 544УД2.
При измерении дрейфа нуля (изменения выходного сигнала в отсутствии вращения) для ВОГ1 и ВОГ2 в диапазоне температур +20oC - +50oC получены следующие максимальные значения дрейфа нуля: 27o/час - для ВОГ1, и 139o/час - для ВОГ2. Таким образом, по сравнению с прототипом дрейф нуля снижен более, чем в пять раз за счет использования новой оптической схемы ВОГ.

Claims (1)

  1. Волоконно-оптический гироскоп, включающий последовательно расположенные и соединенные оптическим волокном излучающий модуль, первый ответвитель, поляризатор, второй ответвитель, волоконный контур, фазовый модулятор и фотоприемный модуль, отличающийся тем, что дополнительно введены два преобразователя одной поляризационной моды волокна в другую, выполненные в виде утонченных скрученных и зафиксированных в этом положении участков волокна, а фазовый модуль выполнен в виде свободной петли волокна, входной и выходной отрезки которой уложены и зафиксированы на поверхности пьезокерамического элемента в виде двух параллельных волокон одинаковой длины, причем один преобразователь поляризационной моды волокна размещен в волоконном контуре, а другой преобразователь размещен в свободной петле фазового модулятора.
RU98104169/28A 1998-03-05 1998-03-05 Волоконно-оптический гироскоп RU2139499C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98104169/28A RU2139499C1 (ru) 1998-03-05 1998-03-05 Волоконно-оптический гироскоп

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98104169/28A RU2139499C1 (ru) 1998-03-05 1998-03-05 Волоконно-оптический гироскоп

Publications (1)

Publication Number Publication Date
RU2139499C1 true RU2139499C1 (ru) 1999-10-10

Family

ID=20203059

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98104169/28A RU2139499C1 (ru) 1998-03-05 1998-03-05 Волоконно-оптический гироскоп

Country Status (1)

Country Link
RU (1) RU2139499C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077735A1 (ru) 2012-11-13 2014-05-22 Logozinski Valery Nikolaevich Волоконно-оптический гироскоп
RU2522147C1 (ru) * 2012-11-13 2014-07-10 Валерий Николаевич Логозинский Волоконно-оптический гироскоп

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077735A1 (ru) 2012-11-13 2014-05-22 Logozinski Valery Nikolaevich Волоконно-оптический гироскоп
RU2522147C1 (ru) * 2012-11-13 2014-07-10 Валерий Николаевич Логозинский Волоконно-оптический гироскоп

Similar Documents

Publication Publication Date Title
US6636321B2 (en) Fiber-optic current sensor
JPH07104166B2 (ja) 光ファイバ回転センサおよび位相誤差を減じるための方法
WO1989002060A1 (en) Fiber optic gyroscope with improved bias stability and repeatability and method
US6563589B1 (en) Reduced minimum configuration fiber optic current sensor
JPS6337212A (ja) 受動光学共振器による回転速度読出しのための方法
WO1999060337A1 (en) Integrated optics rotation sensor
CN101261127A (zh) Mz谐振干涉原理的光纤陀螺仪
EP0502196B1 (en) Optical interference angular velocity meter
RU2139499C1 (ru) Волоконно-оптический гироскоп
EP0462360A1 (en) Compound fiber-optic gyroscope using frequency discrimination
US6535654B1 (en) Method for fabrication of an all fiber polarization retardation device
JP2004361196A (ja) 光ファイバ電流センサ
JPH02504080A (ja) 統合されたオプチック干渉計的ファイバジャイロスコープモジュール
US5285257A (en) Optic rotation sensing apparatus and related method including providing synchronous detection at a phase at which the AM noise is minimized
RU126452U1 (ru) Волоконно-оптический гироскоп
RU2152001C1 (ru) Волоконно-оптический гироскоп
RU2764704C1 (ru) Волоконно-оптический гироскоп
RU2522147C1 (ru) Волоконно-оптический гироскоп
RU2783470C1 (ru) Волоконно-оптический гироскоп
JPS59166873A (ja) 光応用電圧・電界センサ
EP0501002B1 (en) Optic rotation sensing apparatus and related method
JP2003505670A (ja) 最小構成に低減した光ファイバ電流センサ
JPS63138208A (ja) 位相変調方式光フアイバジヤイロ
JPH04364420A (ja) 光位相変調器及びそれを用いた干渉センサ
JPH07270169A (ja) 光ファイバジャイロ用光ic

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20061017

QZ4A Changes in the licence of a patent

Effective date: 20061017

MM4A The patent is invalid due to non-payment of fees

Effective date: 20130306

NF4A Reinstatement of patent

Effective date: 20140910