RU2136622C1 - Способ контроля температуры в обжиговой печи и устройство для производства цементного клинкера - Google Patents

Способ контроля температуры в обжиговой печи и устройство для производства цементного клинкера Download PDF

Info

Publication number
RU2136622C1
RU2136622C1 RU96122789A RU96122789A RU2136622C1 RU 2136622 C1 RU2136622 C1 RU 2136622C1 RU 96122789 A RU96122789 A RU 96122789A RU 96122789 A RU96122789 A RU 96122789A RU 2136622 C1 RU2136622 C1 RU 2136622C1
Authority
RU
Russia
Prior art keywords
kiln
temperature
sulfur
sulfur content
production
Prior art date
Application number
RU96122789A
Other languages
English (en)
Other versions
RU96122789A (ru
Inventor
Хундебель Серен
Original Assignee
Ф.Л.Смидт энд Ко. А/С
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ф.Л.Смидт энд Ко. А/С filed Critical Ф.Л.Смидт энд Ко. А/С
Publication of RU96122789A publication Critical patent/RU96122789A/ru
Application granted granted Critical
Publication of RU2136622C1 publication Critical patent/RU2136622C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/42Arrangement of controlling, monitoring, alarm or like devices
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/361Condition or time responsive control in hydraulic cement manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/121Energy efficiency measures, e.g. improving or optimising the production methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

Изобретение относится к производству цементного клинкера. Изобретение дает возможность контролировать температуру в обжиговой печи и, следовательно, контролировать производство клинкера, который получают в печи для обжига цемента, снижая одновременно до минимума выделение NOx в обжиговой печи. По способу в соответствии с изобретением делают расчет испарения серы в обжиговой печи, получая величину текущей температуры в зоне обжига. Фактор испарения рассчитывают на основе измерений содержания серы в материале из циклона, который проходит в обжиговую печь, или измерений содержания серы в газах, выходящих из обжиговой печи. Устройство для производства цементного клинкера содержит подогреватель, печь обжига и измеритель содержания серы на входе или выходе обжиговой печи, скорость подачи топлива в которую изменяют как функцию измеренного количества серы-фактора ее испарения. 2 с. и 9 з.п. ф-лы, 3 ил.

Description

Изобретение относится к производству цементного клинкера.
Общеизвестно, что цемент производят путем смешения и перемалывания нескольких исходных материалов, в частности, извести (CaCO)3, глины песка, пиритного шлака, зольной пыли и других материалов, в сырьевую смесь, в которой содержание оксидов CaO, SiO2, Al2O3, Fe2O3 должно быть особо подобрано в пределах относительно узких границ. Сырьевую смесь далее разогревают и прокаливают и во время этого процесса удаляются H2O и CO2.
Тогда между окислами пройдет ряд реакций, причем первые и основные реакции таковы:
2 CaO + SiO2---> (CaO)2 (SiO2) (белит);
(CaO)2 (SiO2) + CaO ---> (CaO)2 (SiO2) (алит).
Эти реакции между твердыми веществами проходят в расплавленной массе, с участием окислов алюминия и железа, которые необходимы для образования расплавленной массы.
Общей целью каждого процесса обжига является обеспечение того, чтобы образовалось достаточное количество алита и чтобы объем свободного, еще не израсходованного CaO одновременно уменьшился до приемлемо низкого уровня. Обычно процесс обжига происходит во вращающейся печи и в зоне обжига вращающейся печи происходит конечная реакция, причем протекание реакции контролируют регулированием температуры посредством того, что корректируют скорость горения и режим пламени. Для обычных типов клинкера температура во время процесса обжига достигает 1400-15450oC.
Соответственно будет необходимо проводить измерение, обеспечивающее непрерывное определение температуры в обжиговой печи, что также указывает на состав и качество клинкера, однако до сих пор не было возможности непосредственно измерять представляющую интерес температуру.
Термопары (Pt-Pt Rh) невозможно установить с гарантией того, что они не будут разрушены за короткое время в результате контакта с твердым клинкером.
Можно использовать пирометры излучения, но только если имеет место хорошая видимость в зоне обжига, что редко происходит, так как во время процесса обжига неизбежно будет возникать определенное запыление.
Косвенным сигналом, который широко используют для определения температуры, является измерение силы, которую используют для вращения печи. Причина, по которой можно использовать этот сигнал, заключается в том, что чем выше температура клинкера, тем больше количество образованной расплавленной массы, в результате чего большая часть загрузки затягивается выше вдоль стороны вращающейся печи во время ее вращения. В результате будет увеличен момент силы (сила-плечо), что, таким образом, также увеличивает мощность, необходимую для того, чтобы вращать печь. Однако момент силы является относительным сигналом, на который влияют множество факторов: произвольная неоднородность в образовании корки, адгезионных свойствах исходных материалов вдоль всей длины обжиговой печи и т.д. Следовательно, невозможно точно указать, каким должен быть момент для того, чтобы обеспечить достаточный обжиг.
Другой способ измерения температуры в зоне обжига включает измерение выделения NOx из обжиговой печи. Образование NOx в зоне обжига особым образом связан с температурой пламени, и при постоянной производительности и неизменном режиме работы печи для обжига на него влияет только дополнительный воздух, требуемый для процесса горения; и поскольку общая цель заключается в том, чтобы поддерживать количество дополнительного воздуха на постоянном уровне, выделение NOx является прямой мерой температуры обжига. В действительности, в течение многих лет обжиговые печи работают на основе измерений NOx, причем ими управляют как вручную, так и автоматически, с помощью нечеткой логики.
Однако признанным фактом является то, что выделение NOx вредно для окружающей среды и поэтому многие попытки в основном направлены на уменьшение выделения NOx, включая выделение из вращающейся печи установки для обжига цемента.
Эти меры сильно уменьшают возможности контроля за обжиговой печью. Лучше всего это понять путем рассмотрения кривой образования NOx как функции температуры T(oC) (см. фиг. 1). Эту кривую нашли путем измерения образования NOx как функции конечной температуры клинкера, при определенном режиме пламени.
При обжиге обычного клинкера имеется рабочая точка, которая расположена почти там, где А. Здесь образовавшийся NOx имеет, по существу, термическое происхождение, т.е. атом азота в NOx происходит от N2 воздуха, и отклонения вверх/вниз от требуемой температуры заметно отражается в значительном изменении количества образовавшегося NOx.
Когда принимают меры для уменьшения содержания NOx, что соответствует более низкой температуре в обжиговой печи, произойдет приближение к рабочей точке В, где образующийся NOx, в основном, происходит из топлива. Вблизи точки В температурная зависимость образования NOx пренебрежимо мала, в реальной практике измерение NOx нельзя использовать как параметр контроля при таком режиме работы с малым содержанием NOx.
Когда температура пламени снижена, кроме уменьшения выделения NOx также достигается энергоснабжение, что делает эти условия особо желаемыми во время работы обжиговой печи.
Для того чтобы получить рабочие условия с малой степенью выделения NOx, можно использовать возможность распространения пламени в обжиговой печи, например, путем снижения начального потока воздуха или начальной скорости в форсунке. При использовании этого метода клинкер будет иметь более низкую конечную температуру, но с другой стороны, для клинкера потребуется большее время выдержки при температурах выше минимального предела, при котором может происходить образование алита.
Другой способ получения рабочих условий с малой степенью выделения NOx и более низкой необходимой температурой пламени включает добавление к сырьевой смеси минерализатора, посредством чего снижается температура, требуемая для того, чтобы имело место образование алита. Например, добавление серы и фторида сопровождается тем, что процесс обжига клинкера может происходить при температуре, которая примерно на 125oC ниже, чем нормальная, т.е. при 1275 - 1325oC.
Наиболее близким по технической сущности к заявленному изобретению в части способа является способ контроля температуры в обжиговой печи по косвенному параметру, характеризующему степень обжига клинкера, при отклонении которого от задания изменяют уровень стабилизируемой температуры (SU 1167165, A, C 04 B 7/44, 15.07.85).
Наиболее близким по технической сущности к заявленному изобретению в части устройства является устройство для производства цементного клинкера, в котором сырьевая смесь через течку поступает в циклонный теплообменник и далее в декарбонизатор, откуда она поступает во вращающуюся печь. Температура в зоне спекания измеряется, сравнивается с заданием, а величина рассогласования подается на регулятор, который стабилизирует температуру путем изменения расхода топлива (SU 836498, A, F 21 D 19/00, 10.06.81).
Задачей заявленного изобретения является получение клинкера с одновременным снижением выделения NOx из обжиговой печи до абсолютного минимума.
По первому объекту поставленная задача решается тем, что в способе контроля температуры в обжиговой печи для производства цементного клинкера по косвенному сигналу измеряют содержание серы на входе или выходе обжиговой печи по отношению ко времени, рассчитывают фактор ее испарения, по которому получают величину несущей температуры в зоне обжига, после чего регулируют подачу топлива в обжиговую печь так, что для серы, которую подают в обжиговую печь, поддерживается требуемый фактор испарения. Содержание серы может быть измерено в газе, выходящем из обжиговой печи или в потоке поступающего в обжиговую печь материала. Кроме того, температура в зоне обжига обжиговой печи может находиться в диапазоне 1100-1500oC или 1100-1350oC или 1275-1325oC.
По второму объекту поставленная задача решается тем, что устройство для производства цементного клинкера, содержащее подогреватель, через который вначале проходит сырьевая смесь, и обжиговую печь обжига, температурные условия в которой регулируют путем изменения скорости подачи топлива, снабжено измерителем содержания серы на выходе обжиговой печи, скорость подачи топлива в которую изменяют как функцию измеренного количества серы-фактора ее испарения.
Далее изобретение описано более подробно со ссылкой на чертежи, где:
на фиг. 1 показано количество образовавшегося NOx как функция температуры;
на фиг. 2 показан фактор испарения E как функция температуры;
на фиг. 3 показан схематично поток масс в установке для производства цемента.
Испарение использовано для значения реакций разложения, которые в основном проходят при температурах выше 1100oC:
CaSO4--->CaO + SO2 + 1/2 O2;
K2SO4---> K2+SO2+1/2 O2.
Фактор испарения E определяется как доля серы S, которую подают в зону обжига обжиговой печи вместе с прокаленными исходными материалами и которая подвержена испарению. Этот фактор очень интересен, так как он существенно увеличивается, когда температура лежит в диапазоне 1100-1500oC (см. фиг. 2), и потому, что именно этот температурный диапазон используется для процесса обжига клинкера.
Выражение для фактора испарения E может быть найдено путем составления двух балансов масс для установки для производства цементного клинкера (см. фиг. 3).
Такая установка состоит из системы I, где исходные материалы подготавливают для обжига и системы II, в которой происходит обжиг. Выгодно, чтобы система I включала в себя циклонный подогреватель и, возможно, декарбонизатор, а система II включала в себя вращающуюся печь.
Содержание серы в различных потоках, т.к. количество серы которое входит и выходит в двух системах I и II, можно измерять в кг серы /час или в кг серы/кг клинкера, произведенного на установке.
Исходные материалы 1 с содержанием серы Sподачи и выходящие газы 2 из вращающейся печи с содержанием серы Sпеч.газ подают в систему I.
Серу Sвтор.топ также можно подавать по 3 в декарбонизатор или вертикальный трубопровод через вторичное топливо.
Поток охлажденных выходящих газов 4 с содержанием серы Sвыход.газ выводят из системы I, а предварительно прокаленный или просто подогретый материал с содержанием серы Sцик обычно из циклона течет по 5 вниз в обжиговую печь.
Входящие в систему II потоки состоят из подогретого или предварительно прокаленного материала Sцик 5 и топлива обжиговой печи 6, т.е. первичного топлива, с содержанием серы Sперв.топ.. Выходящие потоки состоят из выходящих газов Sпеч.газ 2 из обжиговой печи и готового клинкера 7 с содержанием серы Sклинк..
В любое конкретное время фактор испарения E представляет собой отношение между количеством серы, которое образуют пары в зоне обжига, и количеством твердой, входящей в соединение серы, которая проходит в зону обжига. Однако не существует возможности измерения содержания серы для двух данных, представляющих интерес потоков в зоне обжига.
Тем не менее ситуация будет таковой, что количество серы, которое образует пары в зоне обжига, будет приблизительно равно количеству серы, которое выходит от обжиговой печи, в 2, Sпеч.газ за вычетом вклада, происходящего из первичного топлива Sперв.топ, а количество твердой, входящей в соединение серы, которое проходит в зону обжига, будет примерно равно количеству, которое проходит вниз из системы 1 по 5 Sцик.. Это значит, что
Figure 00000002

Содержание серы в первичном топливе будет постоянным для конкретного типа топлива и, следовательно, известно: Sперв.топ., если известен расход топлива в течение периода времени t. Sцик. будет изменяться за период времени вследствие флуктуаций в вводе серы в зону обжига и изменения температуры в зоне обжига. Во вращающейся печи, где проход материала от входа в обжиговую печь, где измеряют Sцик., к зоне обжига может занять относительно много времени, в отношении измерения Sпеч.газ., которое происходит почти мгновенно, нужно использовать временную задержку τ; это означает, что
Figure 00000003

Можно утверждать, что в любой конкретный момент времени количество серы, идущее вниз в обжиговую печь по 5, в грубом приближении равно сумме количества серы, которые входят по 7 (Sподачи), по 2 (Sпечн.газ) и по 3 (Sвтор.топ.), но за вычетом количества серы, которое выходит по 4 (Sвых.г.). Однако в большинстве систем обжиговых печей содержание серы в последнем упомянутом потоке, S вых.газ, будет равно 0:
Sцик. = Sподачи (t)+ Sпеч.газ (t) + Sвтор.топ. (t)
или
Sпеч.газ=Sцик. (t) -Sвтор.топ. (t).
Это приводит к тому, что E (t) можно рассчитать как путем измерения содержания серы в выходящем из обжиговой печи газе, так и путем измерения содержания серы в материале, подаваемом в обжиговую печь
(А)
Figure 00000004

или (Б)
Figure 00000005

Эти два выражения будут справедливы только, когда обжиговая печь является вращающейся печью, однако можно вывести подобные выражения для других обжиговых печей, например, стационарных обжиговых печей.
Как правило, нет смысла устанавливать измеритель SO2 в трубопроводе для выходящего газа из вращающейся печи. Это происходит потому, что выделение этого вредного газового компонента из системы обжиговой печи в атмосферу никоим образом не связано с измеряемой величиной Sпеч.газ вследствие почти 100% эффективности абсорбции SO2 на стадии нижнего подогревателя или в декарбонизаторе, где существует относительно большой избыток воздуха.
Обычно на основе текущих анализов и дозировки при подаче сырья несложно оценить доли, которые вносят в количество серы исходные материалы и топливо.
Таким образом, E (t) можно рассчитать либо по (А), основанному на измерениях содержания SO2 в выходящем из обжиговой печи газе, Sпеч.газ, либо по (Б), если содержание серы измеряют в потоке, который проходит от циклонного сепаратора после декарбонизатора вниз в обжиговую печь, Sцикл.
Поскольку SO2 является единственным серосодержащим компонентом при высокой температуре и избытке воздуха, самый простой способ измерения Sпеч.газ заключается в том, чтобы установить на выходе обжиговой печи измеритель SO2, в котором непрерывно анализируется выходящий из обжиговой печи газ.
Основной источник ошибок, связанных с данным способом, состоит в том, что прокаленная сырьевая смесь завихряется вверх в выходящем газе так, что двуокись серы химически соединяется путем реакции:
(В) SO2+1/2 O2 + CaO ---> CaO4.
Если пробу выходящего газа очищают и охлаждают водой, что является основным рабочим принципом в определенных системах, то часть объема SO2 может также быть связана водой, которая является щелочной из-за CaO. В результате этого сигнал газоанализатора будет слишком слабым.
Однако, если обратить должное внимание этим источникам ошибок, то часто будет возможным принять, что исчезает постоянная доля объема SО2, и соответственно сигнал все же можно использовать для контроля температуры, так как реальное количество перешедшей в пар SO2 пропорционально измеренному количеству SO2, Sпеч.газ,изм = константа • Sпеч.газ..
Способ нельзя использовать для целей контроля, если поток SO2 из обжиговой печи (например, из-за обводного трубопровода, установленного для снижения SO2 и циркуляции хлорида в системе обжиговой печи) имеет размер, который ограничен так, что примерно весь объем SO2 абсорбируется взвихренным CaO. В случае присутствия здесь SO2 это скорее всего является выражением дефицита воздуха в обжиговой печи, ср. с уравнением (В), а не высокой температуры в зоне обжига.
Количество серы, подаваемой во вращающуюся печь, можно определить несколькими известными способами. Например, с помощью рентгеновского анализатора Отокумпо, который способен непрерывно определять содержание элементов Fe, Ca и S в материале в циклоне. С этой целью вспомогательный поток сырьевой смеси извлекают из циклона, охлаждают и уплотняют перед подачей его в анализатор. Сигнал, получаемый для содержания S или отношения S/Ca, обеспечивает точную индикацию количества серы, которое проходит вниз во вращающуюся печь.

Claims (11)

1. Способ контроля температуры в обжиговой печи для производства цементного клинкера по косвенному сигналу, отличающийся тем, что измеряют содержание серы на входе или выходе обжиговой печи по отношению к времени, рассчитывают фактор ее испарения, по которому получают величину текущей температуры в зоне обжига, после чего регулируют подачу топлива в обжиговую печь так, что для серы, которую подают в обжиговую печь, поддерживается требуемый фактор испарения.
2. Способ по п.1, отличающийся тем, что содержание серы Sпеч.газ(t) измеряют в газе, выходящем из обжиговой печи.
3. Способ по п.1, отличающийся тем, что содержание серы Sцик.(t) измеряют в потоке поступающего в обжиговую печь материала.
4. Способ по п.1, или 2, или 3, отличающийся тем, что температура в зоне обжига обжиговой печи находится в диапазоне 1100 - 1500oC.
5. Способ по п.1, или 2, или 3, отличающийся тем, что температура в зоне обжига обжиговой печи находится в диапазоне 1100 - 1350oC.
6. Способ по п.1, или 2, или 3, отличающийся тем, что температура в зоне обжига обжиговой печи находится в диапазоне 1275 - 1325oC.
7. Устройство для производства цементного клинкера, содержащее подогреватель, через который вначале проходит сырьевая смесь, и обжиговую печь ее обжига, температурные условия в которой регулируют путем изменения скорости подачи топлива, отличающееся тем, что оно снабжено измерителем содержания серы на входе или выходе обжиговой печи, скорость подачи топлива в которую изменяют как функцию измеренного количества серы-фактора ее испарения.
8. Устройство по п.7, отличающееся тем, что сырьевая смесь проходит через декарбонизатор, после которого она обжигается в обжиговой печи.
9. Устройство по п.7, отличающееся тем, что измеритель содержания серы расположен между обжиговой печью и подогревателем.
10. Устройство по п.7, отличающееся тем, что измеритель содержания серы расположен на трубопроводе выходящего газа обжиговой печи.
11. Устройство по п.7, отличающееся тем, что измеритель содержания серы расположен в трубопроводе для потока сырья к обжиговой печи.
RU96122789A 1994-04-21 1995-04-18 Способ контроля температуры в обжиговой печи и устройство для производства цементного клинкера RU2136622C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DK459/94 1994-04-21
DK045994A DK172272B1 (da) 1994-04-21 1994-04-21 Fremgangsmåde til styring af temperaturen i en ovn, samt et anlæg til udøvelse af fremgangsmåden.
PCT/DK1995/000160 WO1995029138A1 (en) 1994-04-21 1995-04-18 Method for controlling the temperature in a kiln

Publications (2)

Publication Number Publication Date
RU96122789A RU96122789A (ru) 1999-02-20
RU2136622C1 true RU2136622C1 (ru) 1999-09-10

Family

ID=8093795

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96122789A RU2136622C1 (ru) 1994-04-21 1995-04-18 Способ контроля температуры в обжиговой печи и устройство для производства цементного клинкера

Country Status (17)

Country Link
US (1) US5707444A (ru)
EP (1) EP0756584B1 (ru)
JP (1) JP3839048B2 (ru)
KR (1) KR100356597B1 (ru)
CN (1) CN1104389C (ru)
AU (1) AU686377B2 (ru)
BR (1) BR9507483A (ru)
CA (1) CA2182903C (ru)
CZ (1) CZ290835B6 (ru)
DE (1) DE69510665T2 (ru)
DK (1) DK172272B1 (ru)
ES (1) ES2133765T3 (ru)
GR (1) GR3031441T3 (ru)
PL (1) PL180489B1 (ru)
RU (1) RU2136622C1 (ru)
UA (1) UA47400C2 (ru)
WO (1) WO1995029138A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498181C2 (ru) * 2008-08-01 2013-11-10 Фив Фсб Способ получения цементного клинкера и установка для производства цементного клинкера
RU2498182C2 (ru) * 2008-08-01 2013-11-10 Фив Фсб Способ получения цементного клинкера и установка для производства цементного клинкера

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA01007229A (es) 2001-07-13 2003-08-19 Cemex Trademarks Worldwide Ltd Metodo para producir clinker de cemento utilizando coque de alto contenido de azufre.
EP1760418A1 (en) * 2005-09-02 2007-03-07 ABB Research Ltd Model for a cement kiln process
JP4645441B2 (ja) * 2005-12-27 2011-03-09 三菱マテリアル株式会社 セメントキルンの運転制御方法およびセメントの製造方法
CN100443843C (zh) * 2007-02-15 2008-12-17 缪建通 节能环保水泥熟料煅烧窑自动化控制方法
DE202011102227U1 (de) 2011-06-22 2011-09-07 tcsb Silke Böhner e.K. Unterhose für Inkontinenzkranke
NL2015080B1 (en) * 2015-07-02 2017-01-30 Subcoal Int B V Process for producing cement using a secondary fuel.
JP6494469B2 (ja) * 2015-08-07 2019-04-03 太平洋セメント株式会社 セメント焼成装置の運転方法
ES2908114B2 (es) * 2020-10-26 2022-12-02 Univ Sevilla Herramienta para gestionar la incorporacion eficiente de combustibles alternativos en plantas de cemento

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578299A (en) * 1969-09-26 1971-05-11 Gen Electric Method and apparatus for cement kiln control
DE2039308C3 (de) * 1970-08-07 1978-12-14 Polysius Ag, 4723 Neubeckum Verfahren zur Wärmebehandlung von calciumhaltigen Rohmaterialien, die Schwefelverbindungen aufweisen
FR2353848A1 (fr) * 1975-02-18 1977-12-30 Raffinage Cie Francaise Procede de detection quantitative specifique des composes soufres et dispositifs pour la mise en oeuvre de ce procede
JPS52121633A (en) * 1976-04-06 1977-10-13 Ishikawajima Harima Heavy Ind Method of controlling apparatus for previously heating and baking raw materials for cement by using materials containing combustible substances
SU586141A1 (ru) * 1976-04-22 1977-12-30 Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт По Автоматизации Предприятий Промышленности Строительных Материалов Способ автоматического управлени процессом обжига сырьевой смеси во вращающейс печи
US4738147A (en) * 1986-12-16 1988-04-19 Sampling Technology, Inc. Low flow sampling and analysis system
US5596154A (en) * 1995-09-21 1997-01-21 Enviroplan, Inc. Dilution control method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БУТТ Ю.М. Технология вяжущих веществ. - М.: Высшая школа, 1965, с. 282 и 283. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498181C2 (ru) * 2008-08-01 2013-11-10 Фив Фсб Способ получения цементного клинкера и установка для производства цементного клинкера
RU2498182C2 (ru) * 2008-08-01 2013-11-10 Фив Фсб Способ получения цементного клинкера и установка для производства цементного клинкера

Also Published As

Publication number Publication date
DK45994A (da) 1995-10-22
CN1146190A (zh) 1997-03-26
PL180489B1 (pl) 2001-02-28
UA47400C2 (ru) 2002-07-15
EP0756584B1 (en) 1999-07-07
PL316734A1 (en) 1997-02-03
MX9603888A (es) 1997-09-30
ES2133765T3 (es) 1999-09-16
EP0756584A1 (en) 1997-02-05
AU686377B2 (en) 1998-02-05
WO1995029138A1 (en) 1995-11-02
DE69510665T2 (de) 1999-10-21
CZ290835B6 (cs) 2002-10-16
JPH09511984A (ja) 1997-12-02
CA2182903C (en) 2004-03-30
DK172272B1 (da) 1998-02-16
CN1104389C (zh) 2003-04-02
US5707444A (en) 1998-01-13
GR3031441T3 (en) 2000-01-31
DE69510665D1 (de) 1999-08-12
BR9507483A (pt) 1997-08-12
JP3839048B2 (ja) 2006-11-01
CZ298496A3 (en) 1997-01-15
AU2342895A (en) 1995-11-16
KR100356597B1 (ko) 2003-01-24
CA2182903A1 (en) 1995-11-02

Similar Documents

Publication Publication Date Title
EA002093B1 (ru) Управление производством цементного клинкера с помощью анализа содержания серы в конечном продукте
US6142771A (en) Control of cement clinker production using high sulfur fuel in a Lelep-Lepol travelling grate rotary kiln by analysis of sulfur in the end product
RU2136622C1 (ru) Способ контроля температуры в обжиговой печи и устройство для производства цементного клинкера
US6491751B1 (en) Method for manufacturing cement using a raw material mix including finely ground steel slag
US3469828A (en) Method and apparatus for cement kiln control
US9714196B2 (en) Method for controlling NOx concentration in exhaust gas in combustion facility using pulverized coal
EA022252B1 (ru) Способ и устройство для обогащения частиц золы уноса путем мгновенного сжигания
US3437325A (en) Heat balance control of a rotary kiln
US6383283B1 (en) Control of cement clinker production by analysis of sulfur in the end product
CA2392193A1 (en) Method to produce cement clinker using coke with a high content of sulfur
RU2503630C2 (ru) Установка для получения цемента и способ эксплуатации такой установки
US3519254A (en) Method and apparatus for the control of burner heat distribution
US6183244B1 (en) Control of cement clinker production in a wet process rotary kiln by analysis of sulfur in the end product
US4498930A (en) Method and device for regulating the burning process of a cement burning system
MXPA96003888A (en) Method for controlling temperature in a ho
JPH06159640A (ja) 塩基度調整装置及びその調整方法
Emami et al. Development of Cooling Performance of Clinker Cooler Process Based on Energy Audit
SU887910A1 (ru) Способ автоматического регулировани процесса обжига сырьевой смеси во вращающейс печи
Hansen Changing process priorities when firing alternate fuels
SU932774A1 (ru) Способ автоматического регулировани расхода топлива при обжиге карбонатсодержащей сырьевой смеси в печном агрегате из вращающейс обжиговой печи и декарбонизатора
SU1122882A1 (ru) Способ автоматического регулировани работы запечного теплообменника вращающейс печи
SU948936A1 (ru) Способ регулировани расхода топлива при обжиге карбонатсодержащей сырьевой смеси
MXPA00005421A (es) Control de produccion de clinker de cemento mediante el analisis del contenido de azufre en el producto final
Filla Cement Kiln Modelling: Some Selected Issues

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070419