RU2127865C1 - Устройство для измерения линейных перемещений (варианты) - Google Patents

Устройство для измерения линейных перемещений (варианты) Download PDF

Info

Publication number
RU2127865C1
RU2127865C1 RU97112278/28A RU97112278A RU2127865C1 RU 2127865 C1 RU2127865 C1 RU 2127865C1 RU 97112278/28 A RU97112278/28 A RU 97112278/28A RU 97112278 A RU97112278 A RU 97112278A RU 2127865 C1 RU2127865 C1 RU 2127865C1
Authority
RU
Russia
Prior art keywords
output
magnetic material
electrical conductivity
operational amplifier
additional winding
Prior art date
Application number
RU97112278/28A
Other languages
English (en)
Inventor
Ф.М. Медников
М.Л. Нечаевский
Original Assignee
Медников Феликс Матвеевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Медников Феликс Матвеевич filed Critical Медников Феликс Матвеевич
Priority to RU97112278/28A priority Critical patent/RU2127865C1/ru
Priority to DE19832854A priority patent/DE19832854C2/de
Priority to JP10209874A priority patent/JP2978157B2/ja
Priority to US09/123,051 priority patent/US6191575B1/en
Application granted granted Critical
Publication of RU2127865C1 publication Critical patent/RU2127865C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/202Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано в машиностроении при испытании конструкций, управлении технологическими процессами и т.д. Устройство содержит первичный преобразователь и три операционных усилителя. Первичный преобразователь состоит из подвижного элемента, двух коаксиальных сердечников, измерительной обмотки, расположенной на центральном сердечнике, и дополнительной обмотки. Дополнительная обмотка равномерно распределена по периметру одного из сердечников так, что ее витки охватывают его в продольном направлении, и выполнена двухсекционной. За счет соединения обмоток и операционных усилителей, которое эквивалентно включению измерительной обмотки одновременно по логометрической схеме с первой секцией дополнительной обмотки (компенсация мультипликативной составляющей погрешности измерений) и встречно с второй секцией дополнительной обмотки (компенсация аддитивной составляющей), повышается точность измерений. В устройство может быть введен четвертый операционный усилитель, выходной сигнал которого используется для компенсации температурной погрешности. 2 с. и 10 з.п. ф-лы, 5 ил.

Description

Изобретение относится к измерительной технике и может быть использовано в машиностроении (при испытании конструкций, управлении технологическими процессами и т.д.).
Известно устройство для индикации линейных перемещений по а.с. N 237643 (СССР), кл. G 08 С 9/04, содержащее индикаторную и две дополнительные (бифилярные) обмотки, равномерно распределенные на одном каркасе, включенные в плечи измерительного и компенсирующего мостов, выходные напряжения которых суммируются, а также ферромагнитный сердечник, перемещающийся внутри обмоток.
Недостатками этого устройства являются малый рабочий диапазон перемещений, обусловленный нелинейностью статической характеристики при сравнительно сложной конструкции.
Наиболее близким к предлагаемому является устройство для измерения линейных перемещений, описанное в книге Агейкин Д.И. и др. Датчики контроля и регулирования. -М. : Машиностроение, 1965, с. 126, 67 - 73, содержащее магнитопровод из двух коаксиальных цилиндрических сердечников, измерительную обмотку, равномерно распределенную вдоль центрального сердечника, и подвижный элемент в виде металлической немагнитной трубки, охватывающей центральный сердечник магнитопровода и размещенной внутри измерительной обмотки, включенной совместно с дополнительной обмоткой (дросселем) в мостовую схему, питаемую переменным напряжением звуковой частоты, выходы которой соединены с входами тензометрического усилителя.
Недостатком данного устройства являются погрешности от влияния внешних факторов (температуры и др.), обусловленные тем, что измерительная обмотка и остальная часть схемы находятся в разных физических условиях, в результате чего не происходит компенсация дополнительных погрешностей. Кроме того, описанная конструкция первичного преобразователя перемещений ограничивает его функциональные возможности, адаптацию к условиям эксплуатации (например, стыковки с объектом), препятствует уменьшению поперечных размеров преобразователя.
Предлагаемое изобретение позволяет в значительной степени устранить указанные недостатки. С этой целью устройство содержит четыре операционных усилителя и первичный преобразователь перемещений, состоящий из подвижного элемента, двух коаксиальных цилиндрических сердечников, измерительной обмотки и дополнительной обмотки с двумя секциями. На фиг.1 показана блок-схема устройства, на фиг.2 - 5- варианты конструкции первичного преобразователя.
Выход операционного усилителя 1 соединен с инвертирующим входом операционного усилителя 4, работающим в режиме интегратора, и с суммирующей точкой операционного усилителя 3, к которой подключен также выход операционного усилителя 2 и второй вывод секции 5 дополнительной обмотки. Первый вывод секции 5 соединен с инвертирующим входом операционного усилителя 2 и вторым выводом первой секции 6 дополнительной обмотки, первый вывод которой подключен к инвертирующему входу операционного усилителя 4 и одному из выводов измерительной обмотки 7, другой вывод которой соединен с выходом операционного усилителя 4. Переменное напряжение подается с противоположными знаками (в противофазе) на неинвертирующие входы операционных усилителей 1 и 2, выходом устройства является выход операционного усилителя 3, а выход операционного усилителя 4 используется для коррекции результатов измерения с учетом изменения температурных условий первичного преобразователя.
Первичный преобразователь линейных перемещений состоит из подвижного элемента 8, двух коаксиальных цилиндрических сердечников - центрального 9 и внешнего 10 -, измерительной обмотки 7, равномерно распределенной вдоль центрального сердечника 9, и дополнительной обмотки из двух секций 5 и 6, равномерно распределенных по периметру одного из сердечников так, что их витки пронизывают его вдоль оси и охватывают в продольном направлении.
Первичный преобразователь может иметь следующие конструктивные варианты:
1) фиг.2 подвижный элемент выполнен в виде проводящей трубки, охватывающей внешний цилиндрический сердечник, изготовленный из немагнитного материала с электропроводностью, значительно меньшей электропроводности подвижного элемента, а дополнительная обмотка бескаркасно расположена на центральном сердечнике из магнитного материала с малой электропроводностью:
2) фиг. 3; подвижный элемент выполнен в виде проводящей трубки, размещенной между центральным и внешним сердечником; в остальном конструкция соответствует варианту 1);
3) фиг. 4; оба сердечника изготовлены из магнитного материала с малой электропроводностью, дополнительная обмотка расположена на внешнем сердечнике, а центральный сердечник охватывает подвижный элемент в виде проводящей трубки или прутка;
4) фиг. 5; дополнительная обмотка расположена на внешнем сердечнике из магнитного материала с малой электропроводностью, а подвижный элемент в виде магнитной трубки помещен между внешним и центральным сердечниками, последний из которых изготовлен из немагнитного материала с малой электропроводностью.
5) фиг. 4; дополнительная обмотка расположена на внешнем сердечнике из магнитного материала с малой электропроводностью, а центральный сердечник из немагнитного материала с малой электропроводностью охватывает подвижный элемент в виде магнитной трубки или прутка.
В конструкциях вариантов 2) - 4) внешний сердечник выполняет роль первичного преобразователя, а в варианте 1) он может служить направляющей для подвижного элемента.
Описанные варианты конструктивного выполнения первичного преобразователя значительно расширяют функциональные возможности устройства, позволяя выбирать подвижный элемент в соответствии с условиями эксплуатации и характером объекта измерения, а также при необходимости сократить до минимума поперечные размеры преобразователя перемещений.
Устройство работает следующим образом. При подаче на неинвертирующие входы операционных усилителей 1 и 2 переменного напряжения со стабилизированной амплитудой U на выходах операционных усилителей 1 и 2 возникают напряжения соответственно
Figure 00000002

Figure 00000003

где Zu - комплексное сопротивление измерительной обмотки, Z1 и Z2 - сопротивления секций дополнительной обмотки.
Поскольку сигналы на входах операционных усилителей 1 и 2 находятся в противофазе, то напряжение Uвых на выходе операционного усилителя 3 - выходе устройства
Uвых = k1U1 - k2U2, (3)
где k1 и k2 - коэффициенты усиления по входу операционного усилителя 3, соединенному с операционными усилителями 1 и 2 соответственно. Полагая k1 = 1, получаем с учетом (1) и (2)
Figure 00000004

Комплексное сопротивление Zu измерительной обмотки можно представить как Zu = Z0 + ΔZ, где Z0 - начальное сопротивление обмотки в одном из крайних положений подвижного элемента (например, когда он полностью выведен из первичного преобразователя), ΔZ - сопротивление измерительной обмотки, обусловленное изменением положения подвижного элемента. Число витков и сечение провода дополнительной обмотки подбирается так, чтобы ее секции обладали той же добротностью, что и измерительная обмотка в начальном состоянии, т.е.
Figure 00000005

где R0, X0 и R2, X2 - активное и реактивное сопротивления соответственно измерительной обмотки и второй секции дополнительной обмотки.
Выбрав k2 = q, имеем из (5):
R0 = k2R2, X0 = k2X2, Z0 = k2Z2. (6)
В силу (6) выходные напряжение
Figure 00000006

т. е. не зависит от начального сопротивления измерительной обмотки, что равносильно компенсации аддитивной составляющей погрешности измерения. Измерительная и дополнительная обмотки находятся в одинаковых физических условиях, изменение которых в равной степени сказывается на их сопротивлениях, поэтому соотношения (6) и (7) будут оставаться в силе и при изменении внешних условий (например, температуры).
Отношение
Figure 00000007
в (7), обусловленное логометрической схемой включения измерительной обмотки и первой секции дополнительной обмотки, позволяет в значительной степени компенсировать также мультипликативную составляющую погрешности измерения.
Температурную погрешность можно практически полностью скомпенсировать, зная температуру измерительной обмотки, информацию о которой несет ее собственное активное сопротивление (сопротивление провода) в силу известного соотношения
R = R0(1 + αt), (8)
где α - температурный коэффициент сопротивления материала провода и R0 - его начальное активное сопротивление, определенное при одной и той же температуре (например, при 20oC).
Для того, чтобы одновременно с измерением перемещений определять сопротивление измерительной обмотки R, питание устройства осуществляется однополярными импульсами. Постоянная составляющая U0 напряжения на измерительной обмотке, пропорциональная значению R в данный момент, выделяется с помощью операционного усилителя-интегратора 4. Так как величины R0 и α заранее известны, то по выходному сигналу операционного усилителя 2 легко определить температуру из (8). Эта информация используется затем для коррекции результатов измерения перемещений. Данную операцию можно автоматизировать, например, с помощью программируемого микропроцессора, в память которого заносится температурная характеристика первичного преобразователя.

Claims (12)

1. Устройство для измерения линейных перемещений, содержащее первичный преобразователь, состоящий из подвижного элемента, двух коаксиальных цилиндрических сердечников, измерительной обмотки, равномерно распределенной вдоль центрального сердечника, и дополнительной обмотки, отличающееся тем, что содержит три операционных усилителя, дополнительная обмотка равномерно распределена по периметру одного из сердечников так, что ее витки охватывают его в продольном направлении, и выполнена в виде двух секций, причем один вывод первой секции соединен с инвертирующим входом первого операционного усилителя и выводом измерительной обмотки, второй вывод которой соединен с выходом первого операционного усилителя, а другой вывод первой секции соединен с инвертирующим входом второго операционного усилителя и выводом второй секции, другой вывод которой соединен с выходом второго операционного усилителя, подключенным к суммирующей точке третьего операционного усилителя, соединенной также с выходом первого операционного усилителя; на неинвертирующие входы первого и второго операционных усилителей в противофазе переменное напряжение, а выходом устройства является выход третьего операционного усилителя.
2. Устройство по п.1, отличающееся тем, что подвижный элемент выполнен в виде проводящей трубки, охватывающей внешний сердечник из немагнитного материала с электропроводностью, значительно меньшей электропроводности подвижного элемента, а дополнительная обмотка расположена на центральном сердечнике из магнитного материала с малой электропроводностью.
3. Устройство по п.1, отличающееся тем, что подвижный элемент выполнен в виде проводящей трубки, размещенной между внешним сердечником из немагнитного материала с электропроводностью, значительно меньше электропроводности подвижного элемента, и центральным сердечником, охватывая последний, а дополнительная обмотка расположена на центральном сердечнике из магнитного материала с малой электропроводностью.
4. Устройство по п.1, отличающееся тем, что оба сердечника изготовлены из магнитного материала с малой электропроводностью, дополнительная обмотка расположена на внешнем сердечнике, а центральный сердечник охватывает подвижный элемент в виде проводящей трубки или прутка.
5. Устройство по п.1, отличающееся тем, что дополнительная обмотка расположена на внешнем сердечнике, изготовленном из магнитного материала с малой электропроводностью, а подвижный элемент в виде магнитной трубки помещен между внешним и центральным сердечниками, последний из которых изготовлен из немагнитного материала с малой электропроводностью.
6. Устройство по п.1, отличающееся тем, что дополнительная обмотка расположена на внешнем сердечнике из немагнитного материала с малой электропроводностью, а центральный сердечник из немагнитного материала с малой электропроводностью охватывает подвижный элемент в виде магнитной трубки или прутка.
7. Устройство для измерения линейных перемещений, содержащее первичный преобразователь, состоящий из подвижного элемента, двух коаксиальных цилиндрических сердечников, измерительной обмотки, равномерно распределенной вдоль центрального сердечника, и дополнительной обмотки, отличающееся тем, что содержит четыре операционных усилителя, дополнительная обмотка равномерно распределена по периметру одного из сердечников так, что ее витки охватывают его в продольном направлении, и выполнена в виде двух секций, причем один вывод первой секции соединен с инвертирующим входом операционного усилителя и выводом измерительной обмотки, второй вывод которой соединен с выходом первого операционного усилителя, а другой вывод первой секции соединен с инвертирующим входом второго операционного усилителя и выводом второй секции, другой вывод которой соединен с выходом второго операционного усилителя, подключенным к суммирующей точке третьего операционного усилителя, соединенной также с выходом первого операционного усилителя и инвертирующим входом четвертого усилителя-интегратора; на неинвертирующие входы первого и второго операционных усилителей подаются в противофазе однополярные импульсы напряжений, выходом устройства является выход третьего операционного усилителя, а выходной сигнал четвертого операционного усилителя служит для компенсации температурной погрешности.
8. Устройство по п.7, отличающееся тем, что подвижный элемент выполнен в виде проводящей трубки, охватывающей внешний сердечник из немагнитного материала с электропроводностью, значительно меньшей электропроводности подвижного элемента, а дополнительная обмотка расположена на центральном сердечнике из магнитного материала с малой электропроводностью.
9. Устройство по п.7, отличающееся тем, что подвижный элемент выполнен в виде проводящей трубки, размещенной между внешним сердечником из немагнитного материала с электропроводностью, значительно меньшей электропроводности подвижного элемента, и центральным сердечником, охватывая последний, а дополнительная обмотка расположена на центральном сердечнике из магнитного материала с малой электропроводностью.
10. Устройство по п.17, отличающееся тем, что оба сердечника изготовлены из магнитного материала с малой электропроводностью, дополнительная обмотка расположена на внешнем сердечнике, а центральный сердечник охватывает подвижный элемент в виде проводящей трубки или прутка.
11. Устройство по п.7, отличающееся тем, что дополнительная обмотка расположена на внешнем сердечнике, изготовленном из магнитного материала с малой электропроводностью, а подвижный элемент в виде магнитной трубки помещен между внешним и центральным сердечниками, последний из которых изготовлен из немагнитного материала с малой электропроводностью.
12. Устройство по п.7, отличающееся тем, что дополнительная обмотка расположена на внешнем сердечнике из немагнитного материала с малой электропроводностью, а центральный сердечник из немагнитного материала с малой электропроводностью охватывает подвижный элемент в виде магнитной трубки или прутка.
RU97112278/28A 1997-07-24 1997-07-24 Устройство для измерения линейных перемещений (варианты) RU2127865C1 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU97112278/28A RU2127865C1 (ru) 1997-07-24 1997-07-24 Устройство для измерения линейных перемещений (варианты)
DE19832854A DE19832854C2 (de) 1997-07-24 1998-07-21 Einrichtung zum Messen linearer Verschiebungen
JP10209874A JP2978157B2 (ja) 1997-07-24 1998-07-24 直線状変位測定装置
US09/123,051 US6191575B1 (en) 1997-07-24 1998-07-27 Device for measuring linear displacements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97112278/28A RU2127865C1 (ru) 1997-07-24 1997-07-24 Устройство для измерения линейных перемещений (варианты)

Publications (1)

Publication Number Publication Date
RU2127865C1 true RU2127865C1 (ru) 1999-03-20

Family

ID=20195419

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97112278/28A RU2127865C1 (ru) 1997-07-24 1997-07-24 Устройство для измерения линейных перемещений (варианты)

Country Status (4)

Country Link
US (1) US6191575B1 (ru)
JP (1) JP2978157B2 (ru)
DE (1) DE19832854C2 (ru)
RU (1) RU2127865C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555200C2 (ru) * 2013-08-06 2015-07-10 Феликс Матвеевич Медников Способ температурной компенсации индуктивного датчика положения и устройство для его реализации

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4420800A (en) 1999-04-23 2000-11-10 Scientific Generics Limited Position sensor
DE20011223U1 (de) * 2000-06-26 2000-10-05 Kindler Ulrich Vorrichtung zur berührungslosen Wegmessung, insbesondere zur Stellungs- und Bewegungserfassung
DE10354375A1 (de) 2003-11-20 2005-06-30 Micro-Epsilon Messtechnik Gmbh & Co Kg Berührungslos arbeitendes Wegmesssystem
GB2435518B (en) * 2006-02-28 2009-11-18 Alexy Davison Karenowska Position sensor
JP4960767B2 (ja) * 2007-05-25 2012-06-27 パナソニック株式会社 変位センサ
WO2009149426A2 (en) * 2008-06-05 2009-12-10 Qualcomm Incorporated Ferrite antennas for wireless power transfer
DE202011000405U1 (de) * 2011-02-22 2012-05-23 Rollax Gmbh & Co. Kg Induktive Wegmesseinrichtung
DE202011000401U1 (de) * 2011-02-22 2012-05-23 Rollax Gmbh & Co. Kg Induktive Wegmesseinrichtung
US8692541B2 (en) * 2011-10-05 2014-04-08 David Scott Nyce Position sensing head with redundancy
US9274176B2 (en) 2012-07-20 2016-03-01 Pratt & Whitney Canada Corp. Solenoid transient variable resistance feedback for effecter position detection
RU2618625C1 (ru) * 2016-04-18 2017-05-10 Александр Николаевич Фадеев Датчик линейных перемещений и вибраций
US11828628B2 (en) 2019-06-04 2023-11-28 Lrt Sensors Llc Position sensing apparatus with remote electronics for harsh environments

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723446A (en) * 1985-04-04 1988-02-09 Kanto Seiki Co., Ltd. Device for measuring displacement
GB8809575D0 (en) * 1988-04-22 1988-05-25 Penny & Giles Potentiometers L Linear displacement transducers
JPH02116712A (ja) 1988-10-27 1990-05-01 Makome Kenkyusho:Kk 変位測定装置
US5210490A (en) 1989-01-11 1993-05-11 Nartron Corporation Linear position sensor having coaxial or parallel primary and secondary windings
US5216364A (en) 1989-01-11 1993-06-01 Nartron Corporation Variable transformer position sensor
DE3929681A1 (de) * 1989-09-07 1991-03-14 Bosch Gmbh Robert Messeinrichtung zur erfassung eines wegs oder eines drehwinkels
US5331277A (en) * 1992-08-07 1994-07-19 Eldec Corporation Inductive divider position sensor with fixed and variable impedance inductors
DE69410076T2 (de) * 1994-03-21 1998-12-10 Tesa Brown & Sharpe Sa Röhrenförmige Spuleneinheit eines Verschiebungsmessaufnehmers
US5854553A (en) * 1996-06-19 1998-12-29 Skf Condition Monitoring Digitally linearizing eddy current probe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Агейкин Д.И. и др. Датчики контроля и регулирования. Справочные материалы. 2-е перераб. и доп. Изд. - М.: Машиностроение, 1965, с.126. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555200C2 (ru) * 2013-08-06 2015-07-10 Феликс Матвеевич Медников Способ температурной компенсации индуктивного датчика положения и устройство для его реализации

Also Published As

Publication number Publication date
JP2978157B2 (ja) 1999-11-15
DE19832854A1 (de) 1999-01-28
JPH1194508A (ja) 1999-04-09
US6191575B1 (en) 2001-02-20
DE19832854C2 (de) 2001-01-25

Similar Documents

Publication Publication Date Title
RU2127865C1 (ru) Устройство для измерения линейных перемещений (варианты)
US3961243A (en) Inductive displacement transducer using a bridge circuit having a stable voltage phase in the diagonal of the bridge
US5170566A (en) Means for reducing interference among magnetometer array elements
US4169243A (en) Remote sensing apparatus
KR20010050315A (ko) 스트로크 센서
ITBO980606A1 (it) Trasduttori lineari induttivi .
JP3081751B2 (ja) 電気量測定装置
EP0174328A1 (en) Measurement using electrical transducers
US2869071A (en) Apparatus for measuring electrical conductivity of fluids
US3229524A (en) Pressure measuring transducer
US2992373A (en) Electrical displacement measuring servosystem
KR200447498Y1 (ko) 피드백 코일이 부가된 변위측정센서
RU220169U1 (ru) Индуктивный датчик с температурной компенсацией
DE3329515A1 (de) Elektrische schaltanordnung fuer einen magnetisch-induktiven messwertgeber
US3122688A (en) Temperature insensitive servo system
US3882731A (en) Torquer scale factor temperature correction means
SU894771A1 (ru) Трансформаторный преобразователь линейных перемещений
SU834542A1 (ru) Многооборотный бесконтактный потен-циОМЕТР
SU508734A1 (ru) Вихретоковый накладной преобразователь
SU1337821A1 (ru) Кондуктометр
SU1553932A1 (ru) Устройство дл контрол ферромагнитных колец
Hunter Precision temperature measuring equipment
RU1768931C (ru) Способ настройки дифференциального преобразовател линейных перемещений
SU580469A2 (ru) Трансформаторный датчик давлени
SU1236362A1 (ru) Устройство дл измерени защемленности стержн в конструкции

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050725