RU2126717C1 - Способ изготовления каталитического блока для нейтрализации газовых выбросов - Google Patents
Способ изготовления каталитического блока для нейтрализации газовых выбросов Download PDFInfo
- Publication number
- RU2126717C1 RU2126717C1 RU95103275A RU95103275A RU2126717C1 RU 2126717 C1 RU2126717 C1 RU 2126717C1 RU 95103275 A RU95103275 A RU 95103275A RU 95103275 A RU95103275 A RU 95103275A RU 2126717 C1 RU2126717 C1 RU 2126717C1
- Authority
- RU
- Russia
- Prior art keywords
- catalytic
- layer
- aluminum
- catalytic unit
- plasma
- Prior art date
Links
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000006386 neutralization reaction Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 37
- 239000007789 gas Substances 0.000 claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000003054 catalyst Substances 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 238000007750 plasma spraying Methods 0.000 claims abstract description 7
- 238000005470 impregnation Methods 0.000 claims abstract description 6
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 3
- 239000000956 alloy Substances 0.000 claims abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 3
- 239000001301 oxygen Substances 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 230000003472 neutralizing effect Effects 0.000 claims description 5
- 229910000510 noble metal Inorganic materials 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 4
- 238000006555 catalytic reaction Methods 0.000 abstract description 2
- 238000004140 cleaning Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 238000011089 mechanical engineering Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 17
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 238000005507 spraying Methods 0.000 description 4
- 229910001679 gibbsite Inorganic materials 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001785 cerium compounds Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- WMWXXXSCZVGQAR-UHFFFAOYSA-N dialuminum;oxygen(2-);hydrate Chemical class O.[O-2].[O-2].[O-2].[Al+3].[Al+3] WMWXXXSCZVGQAR-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- -1 nickel-chromium-aluminum Chemical compound 0.000 description 1
- 238000004157 plasmatron Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
Изобретение относится к области машиностроения, точнее автомобилестроения, а именно к способам изготовления выхлопных устройств, снабженных средствами каталитической очистки выхлопных газов. Способ заключается в формировании на поверхности ленты из сплава с высоким электросопротивлением каталитического слоя, состоящего в основе из модифицированного оксида алюминия. Слой формируют методом плазменного напыления порошков алюминия - 0,5-5 мас. % и гидроксида алюминия с естественными сопутствующими примесями - остальное. В качестве плазмообразующего газа используют воздух или иную кислородосодержащую смесь. Ленту с полученным слоем перфорируют, складывают, сворачивают или иным образом формируют объемную конструкцию каталитического блока со сквозными каналами. Затем блок термообрабатывают и наносят катализаторы методом пропитки. Преимуществом способа является изготовление каталитического блока, в котором функции нагрева и катализа были объединены. При этом способ обеспечивает изготовление каталитического блока с высоким электросопротивлением, развитой каталитической поверхностью, он технологичен и гарантирует высокую степень адгезии каталитического слоя на поверхности резистивного нагревателя. 6 з.п. ф-лы.
Description
Изобретение относится к области машиностроения, точнее автомобилестроения, а именно к способам изготовления выхлопных устройств, снабженных средствами каталитической очистки выхлопных газов.
Предшествующий уровень техники характеризуют следующие способы.
Известен способ получения катализатора для очистки выхлопных газов (JP, B 3-34367, опубл. 22.05.91). Согласно этому способу для нанесения покрытия получают жидкий состав из порошка активированного оксида алюминия, порошкообразного оксида церия и циркония. Полученный состав наносят на поверхность монолитной основы носителя, после чего наносят каталитический компонент из благородного металла.
Известен способ получения катализатора для очистки выхлопных газов (JP, A, 2-17943, опубл. 22.01.92). Согласно этому способу приготавливают суспензию из порошкообразной смеси оксида ванадия и оксида алюминия в заданном соотношении по заданной технологии. Затем в приготовленную суспензию погружают носитель, высушивают и прокаливают его с целью формирования на нем оксидного поверхностного слоя, после чего на покрытый носитель осаждают каталитически активный металл - платину, родий и/или палладий.
Известен также способ изготовления каталитических блоков для нейтрализации вредных газов (EP,A 0203525, 22.05.1986). Согласно этому способу на монолитный сотовый носитель методом осаждения наносят каталитический состав, содержащий оксид алюминия и оксид церия. Состав получают путем пропитывания нерастворимого в воде соединения церия по крайней мере одним представителем из группы, состоящей из растворимых в воде соединений алюминия и гидратов оксида алюминия и прокаливания продукта пропитки, с последующим нанесением по крайней мере одного драгоценного металла из группы, состоящей из платины, палладия, родия. Указанный способ принят за прототип.
Известные способы позволяют получить носитель с большой свободной поверхностью: более 100 м2/г, что обеспечивает высокую каталитическую активность таких носителей.
Новым шагом в развитии данного вида техники является создание каталитических блоков, нагреваемых электрическим током, в которых нагревательный элемент разделен с каталитическим блоком. Наиболее перспективным, по мнению авторов, является создание каталитического блока, а соответственно, способа его изготовления, в котором нагревательный и каталитический элементы были бы конструктивно объединены. Такой блок может быть выполнен в виде носителя, подвергающегося резистивному нагреву, с развитой поверхностью, на которую нанесен каталитический слой. Такой элемент, подвергающийся термоциклическим нагрузкам, изготовленный традиционными способами, например, осаждением из суспензий (как в прототипе) или общеизвестным процессом плазменного напыления, не обеспечивает требуемого ресурса ввиду отслоения и/или осыпания каталитического покрытия.
В основу изобретения положена задача создать способ изготовления каталитического блока, в котором функции нагрева и катализа были бы объединены. При этом способ должен обеспечивать изготовление каталитического блока с высоким электросопротивлением, развитой каталитической поверхностью, быть технологичным и гарантировать высокую степень адгезии каталитического слоя на поверхности резистивного нагревателя.
Поставленная задача решается тем, что в способе изготовления каталитического блока для нейтрализации газовых выбросов, заключающeмся в формировании на поверхности носителя каталитического слоя, состоящего в основе из оксида алюминия с последующим нанесением на него катализаторов, согласно изобретению в качестве носителя используют ленту из сплава с высоким электросопротивлением. Каталитический слой формируют методом плазменного напыления порошков алюминия - 0,5-5 мас.% и гидроксида алюминия с естественными сопутствующими примесями - остальное. В качестве плазмообразующего газа используют воздух или иную кислородосодержащую смесь. Предпочтительно в процессе плазменного напыления поддерживать регламентированные энергетические режимы, время нахождения напыляемых частиц в плазменной струе и другие параметры, обеспечивающие расплавление частиц порошка алюминия, но исключающие термическое разложение гидроксида алюминия. Оптимальные режимы определяются экспериментальным путем и достижимы специалисту в данном виде техники. Указанный прием позволяет получить на поверхности металлического ленточного носителя тонкий композиционный слой с высокой адгезионной прочностью. Высокая прочность сцепления обеспечивается за счет того, что в процессе напыления в результате сепарации порошков в плазменной струе на поверхности ленты образуется подслой из алюминия, на котором формируется основной слой из гидроксида алюминия. Подслой из алюминия характеризуется высокой адгезией за счет протекания процессов нестационарной диффузии на подложке непосредственно в процессе напыления.
Затем ленту с напыленным слоем перфорируют, что позволяет увеличить электросопротивление блока в целом, максимально сохраняя суммарную площадь его каталитической поверхности.
Для повышения эффективности дальнейшей работы блока его формируют в виде объемной конструкции со сквозными каналами путем складывания иди сворачивания перфорированной ленты. Возможен другой прием формирования объемной конструкции блока путем набора отрезков перфорированной ленты с напыленным слоем.
После создания объемной конструкции осуществляют термообработку, в процессе которой обеспечивают разложение гидроксида алюминия напыленного слоя до оксида алюминия гамма- и/или дельта-модификации. Наилучшего результата добиваются при выдержке ленты с напыленным слоем при температуре 550-650oC. в течение 3-6 ч.
После термообработки на керамический слой оксида алюминия наносят катализатор общеизвестными методами. Наиболее простым является пропитка из растворов солей благородных металлов и/или металлов переходной группы.
Предлагаемый способ был реализован следующим образом. В качестве ленточного металлического носителя использовалась лента толщиной 40 мкм из никель-хром-алюминиевого сплава. Напыление на обе стороны ленты осуществляли на воздухе с использованием плазмотрона марки ПВН -1B (фирма "Полиплазма").
Напыление проводилось на следующих режимах:
рабочий ток 240-280 A,
расход плазмообразующего газа (воздуха) 1,0-1,2 м3/мин,
расстояние от среза сопла плазмотрона до подложки (ленты) 100-160 мм.
рабочий ток 240-280 A,
расход плазмообразующего газа (воздуха) 1,0-1,2 м3/мин,
расстояние от среза сопла плазмотрона до подложки (ленты) 100-160 мм.
Для совместного напыления использовали порошки алюминия дисперсностью менее 40 мкм и гидроксида алюминия (гиббсита) дисперсностью менее 10 мкм. При этом гидроксид алюминия (гиббсит) не требует химической очистки, а используется с естественными (технологическими) примесями - натрий, калий, кальций, кремний и др., - которые являются в данном случае термостабилизирующими элементами и обеспечивают дополнительное повышение термической стабильности каталитического покрытия.
В результате напыления на обеих сторонах ленты был получен плотный слой толщиной 25-30 мкм, состоящий в основном из гидроксидов алюминия (гиббсита, бемита), свободного алюминия и в небольших количествах оксидов алюминия гамма- и альфа-модификации.
Перфорацию ленты проводили на штампе холодной вырубки, степень перфорации (отношение удаленной поверхности к первоначальной) составляла 8%. В процессе перфорации сколов и отслоений покрытия не наблюдалось, что свидетельствует о высокой адгезии напыленного слоя к подложке. После перфорации лента была свернута с образованием объемной цилиндрической конструкции со сквозными каналами. После этого полученный блок был подвергнут термической обработке (отжигу) в термической печи при температуре 600±20oC в течение 4 ч с последующим охлаждением на воздухе. В результате получен слой каталитического носителя с развитой поверхностью (свыше 80 м2/г) и состоящий по преимуществу из оксида алюминия гамма- и дельта-модификации.
Затем блок был многократно подвергнут пропитке в растворах солей благородных металлов (платина, палладий, родий), сушке и термообработке для термического разложения солей.
Заявляемый способ позволяет изготавливать каталитический блок, обладающий высоким электросопротивлением и развитой каталитической поверхностью. Получение каталитического слоя методом плазменного напыления с использованием специфических приемов позволяет получить покрытие, равномерное по химическому составу и толщине, тогда как при использовании известных способов каталитический слой осаждается на поверхности носителя неравномерно по толщине и химическому составу. При этом в известных способах весьма трудно получить слой необходимой толщины: пропитка носителя погружением иди в раствор, сушка, снова погружение и так до 20-30 повторных операций, что нетехнологично, приводит к увеличению трудозатрат, а следовательно, к удорожанию способа.
Повышенная адгезионная прочность каталитического покрытия позволяет использовать блок для нейтрализации газовых выбросов при температуре до 900oC, а также в условиях ударов, термоударов, вибрации, интенсивной газовой эрозии и коррозии.
В результате проведения испытаний установлено, что изготовленный по предлагаемому способу блок обеспечивает высокую эффективность нейтрализации выхлопных газов двигателя внутреннего сгорания в условиях жестких термических циклов, связанных с быстрым нагревом каталитического блока электрическим током и резким охлаждением, имитирующими работу системы нейтрализации в зимних условиях eвропейского Севера.
Изобретение может найти применение в автомобилестроении при проектировании двигателей внутреннего сгорания, включая дизельные, а именно для систем нейтрализации вредных компонентов газовых выбросов.
Claims (7)
1. Способ изготовления каталитического блока для нейтрализации газовых выбросов, заключающийся в формировании на поверхности носителя каталитического слоя, состоящего в основе из оксида алюминия, с последующим нанесением на него катализаторов, отличающийся тем, что в качестве носителя используют ленту из сплава с высоким электросопротивлением, каталитический слой формируют методом плазменного напыления порошков алюминия - 0,5 - 5 мас.% и гидроксида алюминия с естественными сопутствующими примесями - остальное, в качестве плазмообразующего газа используют воздух или иную кислородосодержащую смесь, перфорируют ленту с полученным слоем, формируют каталитический блок, термообрабатывают и наносят катализаторы.
2. Способ по п.1, отличающийся тем, что каталитический блок формируют путем складывания или сворачивания перфорированной ленты с напыленным слоем с образованием объемной конструкции со сквозными каналами.
3. Способ по п.1, отличающийся тем, что каталитический блок формируют в виде объемной конструкции путем набора отрезков перфорированной ленты с напыленным слоем.
4. Способ по п. 1, отличающийся тем, что катализаторы наносят методом пропитки из растворов солей благородных металлов и/или металлов переходной группы.
5. Способ по п.1, отличающийся тем, что в процессе плазменного напыления поддерживают режимы, обеспечивающие расплавление частиц порошка алюминия в плазменной струе и исключающие термическое разложение гидроксида алюминия в плазменной струе.
6. Способ по п.5, отличающийся тем, что в процессе термообработки обеспечивают термическое разложение гидроксида алюминия до оксида алюминия гамма и/или дельта модификации.
7. Способ по п.6, отличающийся тем, что термообработку осуществляют при температуре 550 - 650oC в течение 3 - 6 ч.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU95103275A RU2126717C1 (ru) | 1995-03-06 | 1995-03-06 | Способ изготовления каталитического блока для нейтрализации газовых выбросов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU95103275A RU2126717C1 (ru) | 1995-03-06 | 1995-03-06 | Способ изготовления каталитического блока для нейтрализации газовых выбросов |
Publications (2)
Publication Number | Publication Date |
---|---|
RU95103275A RU95103275A (ru) | 1997-02-20 |
RU2126717C1 true RU2126717C1 (ru) | 1999-02-27 |
Family
ID=20165419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU95103275A RU2126717C1 (ru) | 1995-03-06 | 1995-03-06 | Способ изготовления каталитического блока для нейтрализации газовых выбросов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2126717C1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002063061A3 (en) * | 2000-12-20 | 2003-02-20 | Honda Motor Co Ltd | Method for enhancing the surface of a substrate and catalyst products produced thereby |
WO2006041273A1 (fr) * | 2004-10-15 | 2006-04-20 | Uab 'norta' | Procede de fabrication d'un element catalytique multifonctions |
WO2008063038A1 (fr) * | 2006-11-23 | 2008-05-29 | Uab 'norta' | Procédé de projection thermique |
WO2016053070A1 (ru) * | 2014-10-03 | 2016-04-07 | Уаб "Вердиго" | Способ изготовления металлокерамического гибкого носителя с нанокристаллическим поверхностным слоем |
-
1995
- 1995-03-06 RU RU95103275A patent/RU2126717C1/ru active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002063061A3 (en) * | 2000-12-20 | 2003-02-20 | Honda Motor Co Ltd | Method for enhancing the surface of a substrate and catalyst products produced thereby |
WO2006041273A1 (fr) * | 2004-10-15 | 2006-04-20 | Uab 'norta' | Procede de fabrication d'un element catalytique multifonctions |
WO2008063038A1 (fr) * | 2006-11-23 | 2008-05-29 | Uab 'norta' | Procédé de projection thermique |
WO2016053070A1 (ru) * | 2014-10-03 | 2016-04-07 | Уаб "Вердиго" | Способ изготовления металлокерамического гибкого носителя с нанокристаллическим поверхностным слоем |
Also Published As
Publication number | Publication date |
---|---|
RU95103275A (ru) | 1997-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20020047154A (ko) | 일산화탄소의 선택적 산화용 촉매 및 그의 제조 방법 | |
SE445807B (sv) | Komposition samt anvendning av kompositionen som dieselavgaskatalysator | |
JP2001327818A (ja) | セラミックフィルター及びフィルター装置 | |
RU2515727C2 (ru) | Способ получения наноструктурных каталитических покрытий на керамических носителях для нейтрализации отработавших газов двигателей внутреннего сгорания | |
US5680503A (en) | Honeycomb heater having a portion that is locally quickly heated | |
RU2126717C1 (ru) | Способ изготовления каталитического блока для нейтрализации газовых выбросов | |
EP0193701B1 (en) | Method of carrying gamma-alumina by porous ceramic structure | |
KR20000048815A (ko) | 촉매 어셈블리에 사용하기 위한 영구적 열 팽창이 감소된 금속호일 및 그의 제조 방법 | |
EP0741236A1 (en) | Device for removing solid particles from exhaust gases, design of a unit for neutralising harmful waste gases and a method of manufacturing said unit | |
JP2006291779A (ja) | 排ガス浄化方法及び排ガス浄化装置 | |
KR910011326A (ko) | 배기가스의 정화방법 및 그 장치 | |
JPH02172538A (ja) | 排気ガス浄化触媒体 | |
EP1405670B1 (en) | Direct application of catalysts to surfaces of vehicle heat exchanger via a thermal spray process for treatment of the atmosphere | |
JPS63107751A (ja) | 触媒担体のコ−テイング方法 | |
RU2080179C1 (ru) | Способ изготовления каталитического блока для нейтрализации вредных газовых выбросов | |
RU2005538C1 (ru) | Способ приготовления катализатора для очистки выхлопных газов двигателей внутреннего сгорания | |
JPH08196906A (ja) | 触媒部材 | |
JPH05301048A (ja) | 排ガス浄化用金属ハニカム触媒担体および触媒 | |
JPH02172539A (ja) | 排ガス浄化用触媒担体の製造法 | |
JPH05293388A (ja) | 排ガス浄化用金属ハニカム触媒担体の製法 | |
JPH02129302A (ja) | Al系多孔質焼結体を基体とする担体の製造方法 | |
KR20000042383A (ko) | 금속박판의 표면처리 방법 및 표면처리액 제조방법 | |
EP4355485A1 (en) | A catalytically active product and a method of producing such a catalytically active product | |
JPS63111945A (ja) | 窒素酸化物除去用板状触媒の製造方法 | |
JPS6147575B2 (ru) |