RU2124988C1 - Способ нанесения на предмет подповерхностной маркировки - Google Patents

Способ нанесения на предмет подповерхностной маркировки Download PDF

Info

Publication number
RU2124988C1
RU2124988C1 RU96105906A RU96105906A RU2124988C1 RU 2124988 C1 RU2124988 C1 RU 2124988C1 RU 96105906 A RU96105906 A RU 96105906A RU 96105906 A RU96105906 A RU 96105906A RU 2124988 C1 RU2124988 C1 RU 2124988C1
Authority
RU
Russia
Prior art keywords
marking
localized
marked
spot
laser
Prior art date
Application number
RU96105906A
Other languages
English (en)
Other versions
RU96105906A (ru
Inventor
Камерон Аллан
Виолет Стокдэйл Мэри
Марк Клемент Роберт
Ричард Леджер Невилл
Эдвард Джеффри Кристофер
Original Assignee
Юнайтед Дистиллерс ПЛС
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юнайтед Дистиллерс ПЛС filed Critical Юнайтед Дистиллерс ПЛС
Publication of RU96105906A publication Critical patent/RU96105906A/ru
Application granted granted Critical
Publication of RU2124988C1 publication Critical patent/RU2124988C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/262Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used recording or marking of inorganic surfaces or materials, e.g. glass, metal, or ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/267Marking of plastic artifacts, e.g. with laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing

Abstract

Способ нанесения на предмет (14) подповерхностной маркировки включает этапы направления на поверхность предмета (14) луча лазерного излучения (12), для которого материал, из которого изготовлен предмет (14), по существу непрозрачен, причем энергия луча, поглощаемая поверхностью предмета, достаточна для образования локализованных напряжений в предмете (14) в точках, отстоящих от указанной поверхности, без образования каких-либо заметных изменений на указанной поверхности, а локализованные напряжения, образованные таким образом, обычно невидимы невооруженным глазом, но могут становиться видимыми в поляризованном освещении. Описанный способ обеспечит проблематичность обнаружения нанесенной маркировки потенциальным нарушителем, а также в подделке и удалении этой маркировки. 3 с. и 20 з.пп.ф-лы, 6 ил.

Description

Изобретение относится к способу нанесения на предметы подповерхностной маркировки, невидимой невооруженным глазом, но считываемой при поляризованном освещении.
Многие продукты упаковываются в контейнеры из стекла или пластмасс, и в течение многих лет существовала необходимость в создании способа маркировки контейнеров таким образом, чтобы после нанесения отметки она не могла быть удалена. Понятно, что такой способ нанесения маркировки может иметь широкий диапазон применения, в том числе и для борьбы с "теневой" торговлей.
В прошлом для нанесения несмываемой маркировки производитель мог полагаться почти исключительно на нанесение отметок на поверхность предметов. Однако такой тип маркировки вызывает проблему, заключающуюся в том, что отметки могут быть уничтожены при удалении части поверхности, на которую нанесена маркировка, или они могут быть подделаны нанесением идентичной маркировки на подмененный контейнер.
Чтобы преодолеть эти проблемы заявитель разработал способ и устройство для снабжения предмета подповерхностной маркировкой, описанные в международной публикации N 92/03297 B 41 M 5/24. Описанный способ включает этапы направления на поверхность предмета луча с высокой плотностью энергии, для которого материал данного предмета является прозрачным, и фокусирование луча в точке, находящейся на некотором расстоянии от поверхности внутри этого предмета так, чтобы вызвать локализованную ионизацию материала и создать отметку в форме области повышенной непрозрачности для электромагнитного излучения без каких-либо заметных изменений на поверхности. Это обеспечивает получение преимущества, заключающегося в том, что полученную маркировку как трудно подделать, так и почти невозможно удалить.
Для создания способа маркировки, имеющего дополнительные преимущества, было бы желательно наносить маркировку, невидимую невооруженным глазом. Таким образом, потенциальный нарушитель не только будет иметь трудности с удалением и подделкой маркировки, но также для него проблематично обнаружить нанесенную маркировку.
Наиболее близким к заявленному способу по совокупности существенных признаков и достигаемому техническому результату является способ нанесения на предмет подповерхностной маркировки, известный из патента США N 3657085, B 01 J 1/10, 08.04.72.
Известный способ описывает нанесение подповерхностной маркировки с использованием электронного луча, при этом указывается на возможность использования в качестве альтернативы лазерного луча. Задачей этого патента США является создание способа маркировки изделий, таких как линзы очков, так, что обычно эта маркировка не видна, но становится видимой при необходимости. Для этого электронный или лазерный луч направляется на маску, помещенную на линзу очков так, что часть луча проникает сквозь прорези в маске и попадает на материал линзы очков. Луч рассеивается от столкновения с молекулами материала линзы, в результате чего кинетическая энергия луча поглощается в виде выделяемого тепла, образующего непрерывные области напряжения в линзе. Эти области напряжения невидимы невооруженным глазом, но могут становиться видимыми при двойном преломлении в поляризованном свете.
В патенте США N 3657085 делается ссылка на возможность применения лазерного луча в связи с маркировкой предметов с окрашенной массой, например, предметов, содержащих в своей массе хромофор, а не предметов, просто имеющих на поверхности окрашенный слой. Имеется в виду хромофор, который поглощает лазерное излучение и при этом вырабатывает достаточное локализованное нагревание для образования постоянных областей напряжения в веществе. Поскольку готовая отметка находится на некотором расстоянии от поверхности вещества, оно должно быть по меньшей мере частично прозрачным для лазерного излучения и позволять лазерному излучению проникать в вещество на необходимую глубину.
В основу изобретения положена задача создать способ нанесения на предмет подповерхностной маркировки, благодаря которому последняя не видима невооруженным глазом.
Поставленная задача решается тем, что в способе нанесения на предмет подповерхностной маркировки, включающем этапы направления на поверхность предмета луча лазерного излучения, при этом локализованные напряжения, сформированы таким образом, что невидимы невооруженным глазом, но могут наблюдаться в поляризованном освещении, согласно изобретению, материал, из которого изготовлен предмет, по существу, непрозрачен, причем энергия луча, поглощаемая поверхностью предмета достаточна для создания локализованных напряжений в предмете в точках, отстоящих от указанной поверхности, без образования каких-либо заметных изменений на указанной поверхности, причем локализованные напряжения, созданные таким образом, обычно невидимым невооруженным глазом, но становится видимым при поляризованном освещении.
Такая реализация способа, согласно изобретению, обеспечивает проблематичность обнаружения нанесенной маркировки потенциальным нарушителем, а также в подделке и удалении этой маркировки.
Предпочтительно, чтобы тело предмета содержало материал, имеющий удельную теплопроводность, приблизительно равную удельной теплопроводности стекла.
Преимущественно, образованная локализованными напряжениями маркировка может представлять собой одну или более цифр, букв или символов или их комбинацию.
Рекомендуется луч лазерного излучения концентрировать для образования освещенного пятна на поверхности предмета, причем пятно может перемещаться относительно маркируемой поверхности, таким образом обеспечивая создание маркировки, образуемой локализованными напряжениями, имеющей заранее определенную конфигурацию.
Предпочтительно, пятно может перемещаться относительно маркируемой поверхности так, чтобы сформировать удлиненную область локализованных напряжений, которая при наблюдении в поляризованном освещении имеет вид линии.
В альтернативном варианте пятно может перемещаться относительно маркируемого предмета для формирования ряда отстоящих друг от друга областей локализованных напряжений, которые при наблюдении в поляризованном освещении имеют вид ряда точек.
В частности, ряд отстоящих друг от друга областей локализованных напряжений может формироваться путем перемещения пятна с постоянной скоростью относительно маркирующего предмета и периодическим изменением плотности мощности луча.
В альтернативном варианте, ряд отстоящих друг от друга областей локализованных напряжений формируют при поддержании плотности мощности луча по существу на постоянном уровне и изменении времени, в течение которого пятно освещает расположенные последовательно точки поверхности.
При этом пятно перемещают относительно маркируемого предмета со скоростью, которая периодически изменяется от 0 до 3 м/с, поддерживая среднюю скорость в пределах от 2 до 3 м/с.
Предпочтительно, когда энергию луча, поглощаемую последовательными точками поверхности, плавно изменяют от одной точки к другой.
Предпочтительно, когда лазерное излучение имеет плотность мощности в пятне до 10 кВт/см2.
Рекомендуется лучом лазерного излучения облучать маску, помещенную перед маркируемым предметом, причем маска имеет одну или более прорезей для формирования маркировки, образованной локализованными напряжениями и имеющей предварительно определенную конфигурацию.
Предпочтительно, когда луч лазерного излучения генерируют с помощью CO2-лазера.
Нужно, чтобы материал, из которого изготовлен маркируемый предмет, был бы прозрачным для электромагнитного излучения с длиной волн в пределах видимого диапазона.
В альтернативном варианте материал, из которого изготовлен маркируемый предмет, может быть непрозрачным для электромагнитного излучения с длиной волн в пределах видимого диапазона, при этом локализованные напряжения наблюдают с помощью оптических приборов с соответствующей длиной волны электромагнитного спектра.
В соответствии со вторым аспектом настоящего изобретения заявлено тело, выполненное из материала, имеющего удельную теплопроводность, приблизительно равную удельной теплопроводности стекла, а также имеющее участок локализованных напряжений, находящийся на расстоянии некоторого промежутка от поверхности, и без какого-либо обнаруживаемого изменения на указанной поверхности, причем локализованные напряжения проходят от одного края линзообразной маркировки, по существу, выпуклого поперечного сечения.
Преимущественно, когда тело предмета является прозрачным для электромагнитного излучения с длиной волн в видимом диапазоне.
В частности, тело предмета может быть выполнено из стекла или пластмассы.
В альтернативном варианте, тело предмета является непрозрачным для электромагнитного излучения с длиной волн в видимом диапазоне, при этом локализованные напряжения могут наблюдаться только при помощи оптических приборов с соответствующей длиной волны в электромагнитном спектре.
Преимущественно, когда маркировка, образованная локализованными напряжениями, представляет собой одну или более цифр, букв или символов или их комбинацию.
Предпочтительно, когда тело предмета представляет собой контейнер.
Ряд вариантов осуществления настоящего изобретения будет теперь описан на примерах со ссылками на прилагаемые чертежи:
фиг. 1 - схема устройства, способного осуществлять описываемый способ;
фиг. 2 - схема распространения электрической энергии через устройство по фиг. 1;
фиг. 3 - схематичное представление взаимодействия лазерного луча с материалом конкретного предмета;
фиг. 4 - схематичное представление профиля удельной мощности лазерного луча, обеспечивающего формирование ряда отметок в форме матрицы точек;
фиг. 5 - пример подповерхностной отметки, сформированной способом, соответствующим настоящему изобретению;
фиг. 6 - схема устройства для считывания отметок, формируемых способом, соответствующим настоящему изобретению.
Устройство, предназначенное для осуществления способа маркировки, соответствующего настоящему изобретению, показано на фиг. 1. Устройство содержит излучатель 10, регулирующий лазерный луч 12, направленный на предмет 14, который в настоящем примере представляет собой бутылку. Поскольку подповерхностная маркировка в обычных условиях не должна быть видимой невооруженным глазом, но может становиться видимой в поляризованном освещении, для бутылки 14 избран такой материал, как стекло или пластмасса, прозрачные для электромагнитного излучения в видимом диапазоне электромагнитного спектра. Кроме того, излучатель 10 выбран таким образом, что материал из которого изготовлена бутылка 14, по существу непрозрачен для лазерного луча, формируемого излучателем.
В конкретном примере осуществления изобретения, показанном на фиг. 1, излучатель 10 содержит CO2-лазер непрерывного излучения с высокочастотной накачкой, излучающий лазерный луч 12 с длиной волны 10,6 мкм, который, следовательно, невидим невооруженным глазом. Излученный CO2-лазером лазерный луч 12 падает на первую отражающую поверхность 16, которая направляет луч 12 через расширитель луча 18 и объединитель лучей 20 на вторую отражающую поверхность 22. Второй источник лазерного излучения, представляющий собой низкоэнергетический гелий-неоновый лазер 24, расположен рядом с CO2-лазером 10 и излучает вторичный луч видимого лазерного излучения 26 с длиной волны 632,9 нм. Вторичный луч 26 наталкивается на объединитель лучей 20, который отражает его в направлении второй отражающей поверхности 22 совместно с лазерным лучом 12 CO2-лазера 10. При этом необходимым свойством объединителя лучей 20 является то, что он пропускает электромагнитное излучение с длиной волны 10,6 мкм, в то же время отражая электромагнитное излучение с длиной волны 632,9 нм. Таким образом, луч 26 гелий-неонового (He-Ne) лазера образует видимый компонент объединенного луча 12,26 CO2-лазера и He-Ne-лазера.
Совмещенные лучи 12,26 отражаются от второй отражающей поверхности 22 к третьей отражающей поверхности 28 и от третьей отражающей поверхности 28 - далее к четвертой отражающей поверхности 30. От четвертой отражающей поверхности 30 объединенный луч 12,26 вновь отражается в направлении головки 32, откуда объединенный луч 12,26 наконец направляется на бутылку 14. Для облегчения маркировки на разной высоте от основания бутылки 14, третья и четвертая отражающие поверхности 28 и 30 установлены как единое целое с головкой 32 так, что они могут регулироваться в вертикальной плоскости под воздействием шагового двигателя 34 (не показан).
В головке 32 объединенный луч 12,26 CO2-лазера и He-Ne-лазера последовательно падает на два подвижных зеркала 36 и 38. Первое зеркало 36 расположено так, что оно наклонено относительно объединенного луча 12,26, который падает на него, отразившись от четвертой отражающей поверхности 30, и может перемещаться таким образом, чтобы, отражая луч, перемещать его в вертикальной плоскости. Второе зеркало 38 наклонено подобным образом, но так, чтобы принимать объединенный луч 12,26, отраженный от первого зеркала 36, и перемещается таким образом, чтобы отражая луч 12,26, перемещать его в горизонтальной плоскости. Таким образом, специалистам, знакомым с известными устройствами, будет понятно, что луч 12,26, исходящий из головки 32, может перемещаться в любом необходимом направлении при помощи одновременного движения первого и второго зеркал 36 и 38. Для облегчения этого движения два подвижных зеркала 36 и 38 установлены на соответственно первом и втором гальванометрах 40 и 42. Ясно, что могут быть использованы любые пригодные средства для управления зеркалами 36 и 38, однако принятый подход сочетает быстроту реагирования с легкостью управления, что предоставляет очевидное преимущество над альтернативными средствами управления.
Выйдя из головки 32, объединенный луч 12,26 концентрируется, проходя сквозь блок линз 44, который может включать одну или более линз. Первая линза 46 фокусирует луч 12,26 на избранной точке поверхности бутылки 14. Как хорошо известно, максимальная плотность мощности луча 12,26 обратно пропорциональна квадрату радиуса луча 12,26 в его фокусе, который, в свою очередь, обратно пропорционален радиусу луча 12,26, подающему на фокусирующую линзу 46. Таким образом, для луча 12,26 электромагнитного излучения с длиной волны λ и радиусом R, падающего на линзу с фокусным расстоянием f, удельная мощность E в фокусе в первом приближении выражается формулой
Figure 00000002

где
P - это мощность, вырабатываемая лазером.
Из этого выражения становятся очевидными значение и цель применения расширителя луча 18, который, увеличивая радиус луча R, служит увеличению плотности мощности E в фокусе. Кроме того, линза 46 - это обычно короткофокусная линза, имеющая фокусное расстояние в пределах 70-80 мм, таким образом, в фокусе луча 12,26 легко может быть достигнута удельная мощность, равная 6 кВт/см2.
Вторая линза 48 может располагаться последовательно с фокусирующей линзой 46 для компенсации кривизны поверхности бутылки 14. Ясно, что такой корректирующей линзы не потребуется, если маркируемый предмет 14 является по существу плоским для падающего на него луча. Кроме того, необходимость в такой линзе отпадает, если первый элемент 46 имеет изменяемое фокусное расстояние и включает, например, линзу с плоским полом. Однако нужно заметить, что применение одного или более оптических элементов, это особенно простой и изящный способ обеспечения фокусирования луча 12,26 на поверхности предмета 14 независимо от любой ее кривизны.
В интересах безопасности два лазера 10 и 24 и, соответственно, их лучи заключены в камеру безопасности 52, как показано на фиг. 2, причем объединенный луч 12,26 исходит из камеры 52 только после прохождения через блок линз 44. Доступ к двум лазерам 10 и 24 и различным оптическим элементам, расположенным на пути соответствующих лучей 12,26, осуществляется через дверь 54, оснащенную блокировкой 56, предотвращающей работу CO2-лазера 10 и He-Ne-лазера 24 при открытой двери 54.
Однофазный источник электроэнергии под напряжением 240 В подводится через блокировку 56 двери к электрораспределительному щитку 58, расположенному под камерой 52 и изолированному от нее для предотвращения электрических помех работе лазеров 10 и 24. От электрораспределительного щитка 58 электроэнергии подается к CO2-лазеру 10 и He-Ne-лазеру 24, а также к холодильной установке 60, предназначенной для охлаждения CO2-лазера 10. Кроме того, электроэнергия также подается к шаговому двигателю 34 и к компьютеру 62. Три выпрямителя и объединенные с ними регуляторы напряжения обеспечивают подачу постоянного напряжения 12 В, ±10 В и ± 28 В соответственно на He-Ne-лазер 24 для обеспечения механизма его накачки и на головку 32, где, в частности напряжение ± 28 В применяется для питания первого и второго гальванометров 40 и 42, а напряжение ±10 В подается к гальванометру для осуществления заранее определенного перемещения первого и второго зеркал 36 и 38. Таким образом, с использованием компьютера 62 для модуляции напряжения ± 10 В, по его программе осуществляются различные перемещения первого и второго зеркал 36 и 38.
При использовании, лазерный луч 12, излучаемый CO2-лазером 10, формирует световое пятно на поверхности маркируемой бутылки 14. Это пятно может перемещаться по поверхности бутылки в результате перемещения одного или обоих зеркал 36 и 38.
Хорошо известно, что стекло и некоторые другие вещества, прозрачные для электромагнитного излучения в видимом диапазоне электромагнитного спектра, непрозрачны для электромагнитного излучения, имеющего длину волны 10,6 мкм, и что CO2-лазер формирует излучение именно с такой длиной волны. При этом заявителем было обнаружено, что с использованием CO2-лазера можно произвести маркировку прозрачного материала, такого как стекло.
Для понимания данного способа маркировки важно помнить, что поглощение лазерного луча материалом, это поступательный или статистический процесс, и что энергия луча всегда поглощается в объеме взаимодействия луча с материалом, имеющим конечные размеры. Таким образом, в этом контексте объем взаимодействия луча с материалом может быть определен как объем, в котором поглощается произвольно установленная значительная составляющая, например 95%, энергии падающего луча. Для электромагнитного получения в видимом диапазоне электромагнитного спектра и предмета из стекла, прозрачного для излучения с такой длиной волны, объем взаимодействия луча с материалом может быть очень большим по сравнению с размером самого предмета. В противоположность этому, при электромагнитном излучении, имеющем длину волны 10,6 мкм, как показали эксперименты с аналогичным предметом из стекла, объем взаимодействия луча с материалом имеет глубину в направлении распространения луча в пределах 8,0-16,0 мкм, для луча с плотностью мощности в пределах от 6 до 10 кВт/см2. Таким образом, в то время как для большинства практических случаев может считаться, что лазерный луч 12 поглощается "на поверхности" маркируемого предмета 14, фактически глубина даже 8,0 мкм обеспечивает легкое считывание маркировки с применением средств электронной микроскопии, что необходимо в дальнейшем для определения что должно пониматься под термином "непрозрачность". Таким образом, для устранения сомнений в данном контексте термин "непрозрачность" при его использовании в связи с маркируемым веществом, подразумевает вещество, способное поглощать 95% энергии падающего на него лазерного луча в пределах расстояния, меньшего, чем расстояние от поверхности, на котором находится подповерхностная отметка.
Несмотря на то, что 95% энергии лазерного излучения поглощается в пределах объема взаимодействия луча с материалом, воздействие луча на маркируемый материал не ограничивается этой областью поверхности. Например, тепловой эффект, производимый лучом, может ощущаться вне объема взаимодействия луча с материалом, поскольку стекло обладает значительным коэффициентом теплопроводности. Также, окончательная карта напряжений может выходить за пределы области стекла, на которую непосредственно воздействует лазерный луч, подобно тому, как напряжение распространяется далее конца трещины в оконном стекле. Таким образом, следует иметь в виду, что в принципе физические последствия обучения могут наблюдаться в местах, удаленных от места расположения объема взаимодействия луча с материалом.
Эта ситуация в обобщенном виде представлена на фиг. 3, где изображено тело из материала, характеризуемого объемом взаимодействия луча с материалом, в котором произвольная доля энергии падающего луча передается материалу. Объем взаимодействия луча с материалом (BIV) окружает теплопроводящая зона CHZ, граница которой как и для объема BIV, также может определяться в произвольных пределах. Вне теплопроводящей зоны находится напряженная зона, в которой имеют место напряжения, формируемые в результате изменения физических свойств вещества, вызванного тепловыми изменениями в объеме BIV и во всей зоне CHZ или в ее части. Изменение величины этих напряжений как функция радиального расстояния от места падения луча, обозначено кривой 66, которая показывает, что пики напряжений 68 могут выходить на небольшое расстояние за пределы границы между объемом BIV и зоной CHZ.
Было обнаружено, что при использовании CO2-лазера, имеющего удельную мощность в пределах 6-10 кВт/см2, можно создать отметку в стекле на глубине от 40 до 50 мкм за глубиной, на которую проникает лазерное излучение. Эта отметка, которая в сечении имеет очертания выпуклой линзы, обычно имеет глубину (то есть размер по направлению луча) 10,8 мкм и диаметр 125 мкм и является результатом теплового взаимодействия в стекле.
В этом контексте нужно отметить, что возможные типы взаимодействия между лазерным излучением и материалом предмета можно разделить на три категории в зависимости от плотности мощности используемого лазерного излучения. С точки зрения увеличения плотности мощности это следующие категории:
1. Фотохимические взаимодействия, включая фотоиндукцию и фоточувствительность.
2. Тепловые взаимодействия, при которых падающее излучение поглощается в виде тепла.
3. Ионизирующие взаимодействия, включающие нетепловой фотораспад облучаемого вещества.
Разница между порогами этих трех взаимодействий ясно демонстрируется сравнением типичной плотности мощности 10-3 Вт/см2, требуемой для осуществления фотохимического взаимодействия и удельной мощности 10-12 Вт/см2, типичной для ионизирующего взаимодействия, такого как фоторазмывание и фотораспад.
Отметка, имеющая очертания линзы, не видимая невооруженным глазом, но наблюдаемая при помощи микроскопа при ярком освещении и при помещении между пересекающимися поляризующими фильтрами, имела четко ограниченную нижнюю кромку. Это наблюдение привело к предположению, что отметка представляет собой границы между атомами стекла, получившими энергию от падающего луча, достаточную для преодоления связи с соседними атомами, и атомами, не получившими достаточной для этого энергии. Как можно предполагать из приведенной модели, напряженная область простирается за нижнюю кромку отметки, имеющей очертания линзы в тело стекла. Напряженная область, которая может иметь протяженность по направлению хода луча до 60 мкм, также невидима невооруженным глазом, но может становиться видимой при поляризованном освещении.
Было обнаружено, что отметка, имеющая очертания линзы, и примыкающая напряженная область могут быть созданы только лучом CO2-лазера, имеющим плотность мощности, лежащую в узко ограниченном диапазоне. Если энергия, поглощаемая стеклом, слишком мала, создается тепловой градиент, недостаточный для образования наблюдаемой напряженной области. И наоборот, если поглощенная энергия слишком велика, поверхность стекла может расплавиться, или стекло может треснуть по линии пиков напряжений и отслаиваться. Это растрескивание стекла, известное как "прорыв", не только снимает напряжение в оставшемся стекле, но и делает отметку как видимой невооруженным глазом, так и поддающейся обнаружению поверхностным анализом.
В описываемом варианте осуществления изобретения лазерный луч 12 перемещается по поверхности бутылки 14 со средней скоростью от 2 до 3 м/с для формирования рисунка с использованием буквенно-цифровых изображений. Однако вместо того, чтобы перемещать луч от одного конца прямой линии к другому, предпочтительнее осуществлять дискретное сканирование, что служит повышению четкости и разрешения формируемых символов. В результате скорость перемещения луча изменяется примерно синусоидально от нуля, когда луч находится на любом из крайних положений сканирования с последовательными дискретными приращениями и практически неподвижен, до примерно 3 м/с в точке, находящейся между этими двумя концами. Следовательно, даже если плотность мощности луча сохраняется на постоянном уровне, различные точки на поверхности бутылки подвергаются различному воздействию энергии луча. Было обнаружено, что диапазон плотности мощности, необходимой для создания вышеупомянутой отметки, существенно узок, и отметки, имеющие форму линзы, и соответствующие напряжения наблюдаются только в точках, где луч был практически неподвижен. В результате этого, при поляризованном освещении напряжения, созданные при сканировании лазерным лучом по поверхности бутылки, появляются в виде ряда точек. Таким образом, путем управления перемещением зеркал 36 и 38 можно сканировать лазерным лучом по поверхности бутылки 14 и формировать любой нужный символ на бутылке в форме матрицы точек.
В альтернативном варианте осуществления изобретения аналогичная матрица точек может создаваться путем сканирования лучом по поверхности бутылки с постоянной скоростью, периодически изменяя его плотность мощности между двумя уровнями с любой из сторон от порога для формирования метки, имеющей очертания линзы, и соответствующих ей напряжений. Такой тип изменения плотности мощности может, например, получаться наложением синусоидальной пульсации 70 на прямоугольный импульс лазерного излучения 72, как схематично показано на фиг. 4. Допуская, что порог для формирования вышеупомянутой метки находится на уровне мощности, представленном пунктиром 74, можно рассчитывать на получение точечных областей напряжений в стекле, отстоящих друг от друга на расстояние, соответствующее тому, которое лазерный луч проходит между последовательными максимальными значениями 76 профиля плотности мощности 78.
В обоих предшествующих вариантах осуществления изобретения предлагалось, что постепенное увеличение энергии, поглощаемой стеклом в точках, близких к реально создаваемой метке, придает стеклу ограниченную способность к обжигу. Это характеризует отличия от устройства, в котором лазерный луч пульсирует, генерируя ряд меток в точках, находящихся друг от друга на произвольном расстоянии. Свойство самообжига, присущее предыдущим вариантам осуществления изобретения, обеспечивает маркировку предмета, прочность которого не ухудшается под воздействием процесса маркировки.
Рисунки из последовательных точек, создаваемые описанными способами, также образуются в результате локального изменения ориентации напряженных областей в стекле и, таким образом в плоскости поляризации любого света, проходящего сквозь него. Это облегчает обнаружение отметок и дает возможность создать "простроченный" рисунок, пример которого показан на фиг. 5.
В другом варианте осуществления изобретения вместо создания рисунка из точек, описанное устройство может обеспечивать создание меток, включающих одну или более непрерывных линий. В этом случае лазерный луч 12 может перемещаться по поверхности маркируемого предмета с постоянной скоростью, при этом плотность мощности луча поддерживается на постоянном уровне, немного большем порога формирования метки, имеющей очертания линзы, и соответствующего напряжения.
В еще одном варианте осуществления изобретения вместо сканирования лазерным лучом 12 поверхности маркируемого предмета 14, луч может применяться для облучения маски. При помощи помещения маски перед маркируемым предметом и при наличии в маске одной или более прорезей, выделенные части падающего луча могут падать на предмет и формировать метку предопределенной конфигурации.
Для наблюдения меток, созданных в соответствии с любым из описанных вариантов осуществления изобретения, маркированный предмет может помещаться между парой перекрещенных линейных поляризаторов и освещаться коллимированным световым пучком. В результате области напряжений становятся видимыми в форме ярких областей на фоне темного фона.
Пример устройства, используемого для считывания маркировки, сформированной в соответствии с любым из рассмотренных вариантов осуществления изобретения, показан на фиг. 6 и включает кожух 100, подобный используемому в качестве основы для установки подвесного прожектора, в котором помещена лампа 102. Кожух 100 имеет верхнюю рабочую поверхность из стекла 104, а между этой поверхностью и лампой 102 помещена линза Френеля 106, способная осуществлять направление основного луча. Скрещенные линейные поляризующие фильтры 108 помещены между рабочей поверхностью 104 и линзой Френеля 106, и для поддержания безопасной рабочей температуры в устройстве кожух 100 снабжен вентилятором 110, подобным используемому в компьютерных системах, и жалюзийным отверстием 112 для доступа воздуха. Для регулировки яркости лампы 102 может применяться выключатель с реостатом.
Для наблюдения напряженных областей в маркированном предмете 14 предмет помещается на рабочую поверхность 104 и осматривается при помощи 10-кратного увеличителя 114, снабженного соответствующим фильтром 116.

Claims (23)

1. Способ нанесения на предмет подповерхностной маркировки, включающий этапы направления на поверхность предмета луча лазерного излучения, при этом локализованные напряжения сформированы так, что невидимы невооруженным глазом, но могут наблюдаться в поляризованном освещении, отличающийся тем, что материал, из которого изготовлен предмет, по существу, непрозрачен, причем энергия луча, поглощаемая поверхностью предмета, достаточна для создания локализованных напряжений в предмете в точках, отстоящих от указанной поверхности, без образования каких-либо заметных изменений на указанной поверхности, что обеспечит проблематичность обнаружения нанесенной маркировки потенциальным нарушителем, а также в подделке и удалении этой маркировки.
2. Способ по п.1, отличающийся тем, что тело предмета содержит материал, имеющий удельную теплопроводность, приблизительно равную удельной теплопроводности стекла.
3. Способ по п.1 или 2, отличающийся тем, что маркировка, образованная локализованными напряжениями, представлена одной или более цифрами, буквами или символами или их комбинацией.
4. Способ по любому из предыдущих пунктов, отличающийся тем, что луч лазерного излучения концентрируют для образования освещенного пятна на поверхности предмета, причем пятно может перемещаться относительно маркируемой поверхности, таким образом обеспечивая создание маркировки, образуемой локализованными напряжениями, имеющей заранее определенную конфигурацию.
5. Способ по п.4, отличающийся тем, что пятно перемещают относительно маркируемой поверхности так, чтобы сформировать удлиненную область локализованных напряжений, которая при наблюдении в поляризованном освещении имеет вид линии.
6. Способ по п.4, отличающийся тем, что пятно перемещают относительно маркируемого предмета для формирования ряда отстоящих друг от друга областей локализованных напряжений, которые при наблюдении в поляризованном освещении имеют вид ряда точек.
7. Способ по п.6, отличающийся тем, что ряд отстоящих друг от друга областей локализованных напряжений формируют путем перемещения пятна с постоянной скоростью относительно маркируемого предмета и периодического изменения плотности мощности луча.
8. Способ по п.6, отличающийся тем, что ряд отстоящих друг от друга областей локализованных напряжений формируют при поддержании плотности мощности луча, по существу, на постоянном уровне и изменении времени, в течение которого пятно освещает расположенные последовательно точки поверхности.
9. Способ по п.8, отличающийся тем, что пятно перемещают относительно маркируемого предмета со скоростью, которая периодически изменяется от 0 до 3 м/с.
10. Способ по п.9, отличающийся тем, что пятно перемещают относительно маркируемого предмета со средней скоростью в пределах 2 - 3 м/с.
11. Способ по любому из пп.6 - 10, отличающийся тем, что энергию луча, поглощаемую последовательными точками поверхности, плавно изменяют от одной точки к другой.
12. Способ по любому из пп.4 - 11, отличающийся тем, что лазерное излучение имеет плотность мощности в пятне до 10 кВт/см2.
13. Способ по любому из пп.1 - 3, отличающийся тем, что лучом лазерного излучения облучают маску, помещенную перед маркируемым предметом, причем маска имеет одну или более прорезей для формирования маркировки, образованной локализованными напряжениями, имеющей предварительно определенную конфигурацию.
14. Способ по любому из предыдущих пунктов, отличающийся тем, что луч лазерного излучения генерируют с помощью CO2-лазера.
15. Способ по любому из предыдущих пунктов, отличающийся тем, что материал, из которого изготовлен маркирующий предмет, является прозрачным для электромагнитного излучения с длиной волн в пределах видимого диапазона.
16. Способ по любому из пп.1 - 14, отличающийся тем, что материал, из которого изготовлен маркируемый предмет, является непрозрачным для электромагнитного излучения с длиной волн в пределах видимого диапазона, при этом локализованные напряжения наблюдают с помощью оптических приборов с соответствующей длиной волны электромагнитного спектра.
17. Тело предмета, выполненное из материала, имеющего удельную теплопроводность, приблизительно равную удельной теплопроводности стекла, и маркированное в соответствии с любым из пп.1 - 16 способа.
18. Тело предмета, выполненное из материала, имеющего удельную теплопроводность, приблизительно равную удельной теплопроводности стекла, и имеющее участок локализованных напряжений, находящийся на расстоянии некоторого промежутка от поверхности и без какого-либо обнаруживаемого изменения на указанной поверхности, причем локализованные напряжения проходят от одного края линзообразной маркировки, по существу, выпуклого поперечного сечения.
19. Тело по п.17 или 18, отличающееся тем, что оно является прозрачным для электромагнитного излучения с длиной волн в видимом диапазоне.
20. Тело по п.18, отличающееся тем, что оно выполнено из стекла или из пластмасс.
21. Маркированное тело предмета по п.17 или 18, отличающееся тем, что оно является непрозрачным для электромагнитного излучения с длиной волн в видимом диапазоне, при этом локализованные напряжения могут наблюдаться только при помощи оптических приборов с соответствующей длиной волны в электромагнитном спектре.
22. Тело по любому из пп.17 - 21, отличающееся тем, что маркировка, образованная локализованными напряжениями, представляет собой одну или более цифр, букв или символов или их комбинацию.
23. Тело по любому из пп.17 - 22, отличающееся тем, что оно представляет собой контейнер.
RU96105906A 1993-08-19 1994-08-19 Способ нанесения на предмет подповерхностной маркировки RU2124988C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9317270.8 1993-08-19
GB9317270A GB2281129B (en) 1993-08-19 1993-08-19 Method of marking a body of glass
PCT/GB1994/001819 WO1995005286A1 (en) 1993-08-19 1994-08-19 Method of marking a body of material

Publications (2)

Publication Number Publication Date
RU96105906A RU96105906A (ru) 1998-06-10
RU2124988C1 true RU2124988C1 (ru) 1999-01-20

Family

ID=10740742

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96105906A RU2124988C1 (ru) 1993-08-19 1994-08-19 Способ нанесения на предмет подповерхностной маркировки

Country Status (22)

Country Link
US (1) US5767483A (ru)
EP (1) EP0714353B1 (ru)
JP (1) JP3502636B2 (ru)
AT (1) ATE179124T1 (ru)
AU (1) AU684535B2 (ru)
BG (1) BG62603B1 (ru)
CA (1) CA2168974C (ru)
CZ (1) CZ46196A3 (ru)
DE (1) DE69418048T2 (ru)
DK (1) DK0714353T3 (ru)
ES (1) ES2130441T3 (ru)
FI (1) FI110853B (ru)
GB (1) GB2281129B (ru)
GR (1) GR3030045T3 (ru)
HK (1) HK1011005A1 (ru)
HU (1) HUT75798A (ru)
NO (1) NO310337B1 (ru)
PL (1) PL177475B1 (ru)
RO (1) RO119997B1 (ru)
RU (1) RU2124988C1 (ru)
SK (1) SK21796A3 (ru)
WO (1) WO1995005286A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494035C2 (ru) * 2007-09-13 2013-09-27 Эдванст Трэк Энд Трэйс Способ и устройство для маркировки поверхности контролируемыми периодическими наноструктурами
RU2540062C1 (ru) * 2013-06-06 2015-01-27 Мария Александровна Мельникова Способ нанесения маркировки внутри изделия

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2308457A (en) * 1995-08-03 1997-06-25 Sls Biophile Limited Monitoring of covert marks
EP0833755B1 (en) * 1995-08-03 2000-02-02 Sls Biophile Limited Monitoring of covert marks
DE29514319U1 (de) * 1995-09-07 1997-01-16 Sator Alexander Paul Vorrichtung zum Beschriften von Gegenständen
GB2324985A (en) * 1997-03-13 1998-11-11 United Distillers Plc Applying a sub-surface mark to a glassy thermoplastic polymeric material using laser radiation
FR2762425B1 (fr) * 1997-04-18 1999-06-04 Chevillot Sa Procede de marquage infalsifiable, indelebile et contraste d'objets et notamment etiquettes
US6075223A (en) * 1997-09-08 2000-06-13 Thermark, Llc High contrast surface marking
US6852948B1 (en) 1997-09-08 2005-02-08 Thermark, Llc High contrast surface marking using irradiation of electrostatically applied marking materials
US6392683B1 (en) 1997-09-26 2002-05-21 Sumitomo Heavy Industries, Ltd. Method for making marks in a transparent material by using a laser
US6238847B1 (en) * 1997-10-16 2001-05-29 Dmc Degussa Metals Catalysts Cerdec Ag Laser marking method and apparatus
JP3178524B2 (ja) * 1998-11-26 2001-06-18 住友重機械工業株式会社 レーザマーキング方法と装置及びマーキングされた部材
US6261077B1 (en) * 1999-02-08 2001-07-17 3D Systems, Inc. Rapid prototyping apparatus with enhanced thermal and/or vibrational stability for production of three dimensional objects
AU5752800A (en) 1999-06-22 2001-01-09 Omg Ag & Co. Kg Laser marking compositions and method
EP1226038B1 (de) * 1999-08-21 2003-05-21 Deutsche Rockwool Mineralwoll GmbH & Co. OHG Verfahren zur herstellung eines dämmstoffes
US6469729B1 (en) * 1999-10-15 2002-10-22 Videojet Technologies Inc. Laser marking device and method for marking arcuate surfaces
DE10066480B3 (de) * 2000-02-10 2016-09-01 Rockwool International A/S Verfahren zur Herstellung eines Dämmstoffes
US6791592B2 (en) * 2000-04-18 2004-09-14 Laserink Printing a code on a product
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
US6503316B1 (en) 2000-09-22 2003-01-07 Dmc2 Degussa Metals Catalysts Cerdec Ag Bismuth-containing laser markable compositions and methods of making and using same
US6905725B2 (en) * 2001-04-26 2005-06-14 Valinmark Inc. Method for creating and visualizing an optically invisible mark
DE10122335C1 (de) * 2001-05-08 2002-07-25 Schott Glas Verfahren und Vorrichtung zum Markieren von Glas mit einem Laser
US6670570B2 (en) * 2001-06-15 2003-12-30 L'air Liquide - Societe Anonyme A Directoire Et Couseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Methods and apparatus for localized heating of metallic and non-metallic surfaces
JP2003089553A (ja) 2001-09-13 2003-03-28 Shin Etsu Chem Co Ltd 内部マーキングされた石英ガラス、光学部材用石英ガラス基板及びマーキング方法
USRE47092E1 (en) 2002-02-22 2018-10-23 Oxygenator Water Technologies, Inc. Flow-through oxygenator
US7396441B2 (en) 2002-02-22 2008-07-08 Aqua Innovations, Inc. Flow-through oxygenator
TWI326626B (en) * 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
ATE362653T1 (de) 2002-03-12 2007-06-15 Hamamatsu Photonics Kk Methode zur trennung von substraten
JP4606741B2 (ja) 2002-03-12 2011-01-05 浜松ホトニクス株式会社 加工対象物切断方法
WO2003082583A1 (en) * 2002-03-22 2003-10-09 Ap Technoglass Laser marking system
US7238396B2 (en) * 2002-08-02 2007-07-03 Rieck Albert S Methods for vitrescent marking
TWI520269B (zh) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
FR2852250B1 (fr) * 2003-03-11 2009-07-24 Jean Luc Jouvin Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau
EP1609559B1 (en) * 2003-03-12 2007-08-08 Hamamatsu Photonics K. K. Laser beam machining method
US20050088510A1 (en) * 2003-10-24 2005-04-28 Shlomo Assa Low angle optics and reversed optics
US7046267B2 (en) * 2003-12-19 2006-05-16 Markem Corporation Striping and clipping correction
US7610872B2 (en) * 2005-04-07 2009-11-03 Roman Coppola Tasting glasses having revealable indicators there on and method of conducting blind taste test
US20060235564A1 (en) * 2005-04-18 2006-10-19 Igor Troitski Method and multifunctional system for producing laser-induced images on the surfaces of various materials and inside transparent materials
FR2885071B1 (fr) * 2005-04-28 2010-02-12 Becton Dickinson France Procede d'identification d'un contenant et/ou d'un article fini obtenu a partir dudit contenant, en particulier a usage medical
US7728859B2 (en) * 2005-09-26 2010-06-01 Hewlett-Packard Development Company, L.P. Optical printhead
US8629610B2 (en) * 2006-01-12 2014-01-14 Ppg Industries Ohio, Inc. Display panel
US8547008B2 (en) * 2006-01-12 2013-10-01 Ppg Industries Ohio, Inc. Material having laser induced light redirecting features
GEP20135732B (en) * 2007-10-09 2013-01-25 Sicpa Holding Sa Security marking authentication device
EP2147799A1 (fr) * 2008-07-21 2010-01-27 Gemplus Sécurisation d'une image imprimée au moyen d'un faisceau laser
DE102008056136A1 (de) 2008-10-29 2010-05-20 3D-Micromac Ag Lasermarkierverfahren, Lasermarkiervorrichtung und Optikelement
KR20170012603A (ko) * 2008-11-05 2017-02-02 엑사테크 엘.엘.씨. 코팅된 플라스틱 기판의 부품 마킹
US20100119808A1 (en) * 2008-11-10 2010-05-13 Xinghua Li Method of making subsurface marks in glass
DE102010037273A1 (de) 2010-09-02 2012-03-08 Schott Ag Verfahren und Vorrichtung zum Markieren von Glas
US8967839B2 (en) 2012-05-23 2015-03-03 Continental Automotive Systems, Inc. Instrument cluster illuminated display element
US10213871B2 (en) 2012-10-22 2019-02-26 Electro Scientific Industries, Inc. Method and apparatus for marking an article
FR3007678B1 (fr) * 2013-06-28 2015-07-31 Essilor Int Procede de fabrication d'une lentille ophtalmique comportant une etape de marquage laser pour realiser des gravures permanentes sur une surface de ladite lentille ophtalmique
US9594937B2 (en) 2014-02-28 2017-03-14 Electro Scientific Industries, Inc. Optical mark reader
US9269035B2 (en) 2014-02-28 2016-02-23 Electro Scientific Industries, Inc. Modified two-dimensional codes, and laser systems and methods for producing such codes
US9744559B2 (en) 2014-05-27 2017-08-29 Paul W Harrison High contrast surface marking using nanoparticle materials
GB2527553B (en) 2014-06-25 2017-08-23 Fianium Ltd Laser processing
CN109219526A (zh) 2016-05-31 2019-01-15 康宁股份有限公司 玻璃制品的防伪措施
US10583668B2 (en) 2018-08-07 2020-03-10 Markem-Imaje Corporation Symbol grouping and striping for wide field matrix laser marking
GB2578889A (en) 2018-11-12 2020-06-03 Univ Of West Bohemia Method of invisible marking

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1696714B1 (de) * 1968-03-13 1970-12-03 Zeiss Carl Fa Verfahren zur Herstellung eines Kennzeichens auf durchsichtigen Werkstoffen
US3715734A (en) * 1970-11-12 1973-02-06 J Fajans Memory storage device and method of making the same
US4092518A (en) * 1976-12-07 1978-05-30 Laser Technique S.A. Method of decorating a transparent plastics material article by means of a laser beam
DE3411797A1 (de) * 1984-03-30 1985-10-10 Bayer Ag, 5090 Leverkusen Verfahren zur kennzeichnung von kunststoffteilen
US4744647A (en) * 1984-12-04 1988-05-17 Lens Plus Co. Semi-opaque corneal contact lens or intraoccular lens and method of formation
CH676644A5 (ru) * 1988-08-09 1991-02-15 Elpatronic Ag
DE4126626C2 (de) * 1990-08-15 1994-08-04 United Distillers Plc Markierter Materialkörper und Verfahren zu dessen Herstellung
JPH04110944A (ja) * 1990-08-31 1992-04-13 Nippon Sekiei Glass Kk 透明材料のマーキング方法
DE69219370T2 (de) * 1991-01-17 1997-11-06 United Distillers Plc Dynamische Lasermarkierung
GB9115225D0 (en) * 1991-01-17 1991-08-28 Shanning Laser Systems Ltd Laser marking
WO1994014567A1 (en) * 1992-12-18 1994-07-07 Firebird Traders Ltd. Process and apparatus for etching an image within a solid article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494035C2 (ru) * 2007-09-13 2013-09-27 Эдванст Трэк Энд Трэйс Способ и устройство для маркировки поверхности контролируемыми периодическими наноструктурами
RU2540062C1 (ru) * 2013-06-06 2015-01-27 Мария Александровна Мельникова Способ нанесения маркировки внутри изделия

Also Published As

Publication number Publication date
BG100358A (bg) 1996-10-31
WO1995005286A1 (en) 1995-02-23
GB9317270D0 (en) 1993-10-06
BG62603B1 (bg) 2000-03-31
EP0714353B1 (en) 1999-04-21
CZ46196A3 (en) 1996-09-11
PL313076A1 (en) 1996-05-27
NO960635D0 (no) 1996-02-16
ES2130441T3 (es) 1999-07-01
GB2281129A (en) 1995-02-22
GB2281129B (en) 1997-04-09
RO119997B1 (ro) 2005-07-29
FI960563A (fi) 1996-03-27
NO960635L (no) 1996-04-16
AU7464394A (en) 1995-03-14
DE69418048T2 (de) 1999-08-19
CA2168974C (en) 2004-04-27
SK21796A3 (en) 1997-01-08
ATE179124T1 (de) 1999-05-15
HK1011005A1 (en) 1999-07-02
DE69418048D1 (de) 1999-05-27
NO310337B1 (no) 2001-06-25
AU684535B2 (en) 1997-12-18
EP0714353A1 (en) 1996-06-05
CA2168974A1 (en) 1995-02-23
HU9600308D0 (en) 1996-04-29
JP3502636B2 (ja) 2004-03-02
DK0714353T3 (da) 1999-10-25
FI110853B (fi) 2003-04-15
HUT75798A (en) 1997-05-28
PL177475B1 (pl) 1999-11-30
JPH09501877A (ja) 1997-02-25
FI960563A0 (fi) 1996-02-07
US5767483A (en) 1998-06-16
GR3030045T3 (en) 1999-07-30

Similar Documents

Publication Publication Date Title
RU2124988C1 (ru) Способ нанесения на предмет подповерхностной маркировки
JP3029045B2 (ja) 潜面マーキング
BG98040A (bg) Метод и устройство за лазерно маркиране на последователно движещите се по предварително избрана траектория тела
US6100967A (en) Monitoring of covert marks
US5369273A (en) Method for labeling an object using laser radiation
WO1998040224A1 (en) Method of marking glassy thermoplastic polymeric materials
WO2003010763A1 (fr) Appareil et procede d'effacement par prechauffage d'un support d'enregistrement optique et support d'enregistrement optique
RU2096149C1 (ru) Способ маркировки движущегося материального тела и устройство для его осуществления
KR910008376A (ko) 렌즈의 표면질 측정방법
LT3356B (en) A method for dynamic laser marking and a device for carrying out the method
MXPA98000910A (en) Monitoring of brands disimula

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090820