RU2118714C1 - Компрессор - Google Patents

Компрессор Download PDF

Info

Publication number
RU2118714C1
RU2118714C1 RU95109152A RU95109152A RU2118714C1 RU 2118714 C1 RU2118714 C1 RU 2118714C1 RU 95109152 A RU95109152 A RU 95109152A RU 95109152 A RU95109152 A RU 95109152A RU 2118714 C1 RU2118714 C1 RU 2118714C1
Authority
RU
Russia
Prior art keywords
shaft
impellers
compressor according
compressor
stages
Prior art date
Application number
RU95109152A
Other languages
English (en)
Other versions
RU95109152A (ru
Inventor
Ричард Гоздава
Original Assignee
Уэлш Инновейшнз Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Уэлш Инновейшнз Лимитед filed Critical Уэлш Инновейшнз Лимитед
Publication of RU95109152A publication Critical patent/RU95109152A/ru
Application granted granted Critical
Publication of RU2118714C1 publication Critical patent/RU2118714C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger

Abstract

Компрессор предназначен для подачи сжатого (чистого) воздуха без присутствия в нем масла и может быть использован при обработке пищевых фармацевтических и других чувствительных материалов. Между ступенями компрессора с рабочими колесами подсоединен промежуточный охладитель, а вал установлен на опорных средствах. Опорные средства содержат два опорных подшипника и по меньшей мере один упорный подшипник с воздушной или газовой смазкой и самоустанавливающимися поворотными сегментными опорами, которые снабжены керамическими опорными поверхностями. Один из опорных подшипников расположен между соответствующим концом электродвигателя и соответствующей степенью с рабочим колесом. Данная конструкция позволяет использовать компактный компрессор и при этом достигнуть конечное высокое давление в сочетании с относительно низким массовым расходом. 9 з.п. ф-лы, 2 ил.

Description

Данное изобретение относится к компрессору.
При обработке пищевых, фармацевтических и других чувствительных материалов желательно, чтобы подаваемый сжатый воздух или другой рабочий газ был абсолютно чистым или "сухим" без какого-либо присутствия в нем масла или другой подшипниковой смазки.
Известно немало попыток изготовить компрессоры, в которых не предусмотрено использование масел, но эти конструкции, такие как сухой винтовой компрессор, являются громоздкими, дорогостоящими и малоэффективными, а также потребляют большое количество энергии.
Существует некоторое количество областей производительности, (отличающихся сочетанием рабочих диапазонов давления нагнетания и массового расхода) воздушных компрессоров, пользующихся спросом на рынке.
Одна из таких областей, для работы в которой согласно рыночной потребности нужен сухой воздушный компрессор, характеризуется давлением нагнетания около 8,5 бар (8,5•105 Па) в сочетании с массовым расходом 0,27 кг/с. Обеспечение подобного давления в настоящее время не вызывает затруднений, однако массовый расход обычных турбокомпрессоров подобного типа намного больше требуемого.
Кроме того, турбокомпрессоры, установленные на известных шариковых или роликовых подшипниковых опорах с масляной смазкой, не могут эффективно работать при больших скоростях вращения вала (обычно от 50000 до 100000 об/мин), необходимых для достижения требуемой производительности. Таким образом, известные турбокомпрессоры, работающие в этой области, были бы чрезмерно дорогими, громоздкими и малоэффективными.
В патенте ФРГ 3304845, F 04 D 25/06, 1984г. описан компрессор, содержащий вал, установленный с возможностью вращения, привод, содержащий электродвигатель, ротор которого установлен на валу, по меньшей мере две ступени с рабочими колесами, установленными на валу с отделяющим их друг от друга продольным промежутком, в котором расположен электродвигатель, средства промежуточного охлаждения между ступенями с рабочими колесами и опорные средства вала, выполненные в виде подшипников качения.
Использование подшипников качения не позволяет известному компрессору работать при больших скоростях вала, необходимых для достижения требуемой производительности, как указано выше. Кроме того, не исключена возможность попадания смазочного масла подшипников в проточную часть компрессора, что может привести к загрязнению рабочей среды.
Задачей настоящего изобретения является создание стерильного компрессора с высоким коэффициентом полезного действия, в котором не предусмотрено использование масел и который работает с очень высокими скоростями вращения вала (до 100000 об/мин) при необходимых величинах давления и расхода рабочей среды, в качестве которой используется газ с требуемой степенью чистоты.
Решение поставленной задачи обеспечивается тем, что в компрессоре, содержащем вал, установленный с возможностью вращения, привод, содержащий электродвигатель, ротор которого установлен на валу, по меньшей мере две ступени с рабочими колесами, установленными на валу с отделяющим их друг от друга продольным промежутком, в котором расположен электродвигатель, средства промежуточного охлаждения между ступенями с рабочими колесами и опорные средства вала, последние выполнены в виде двух опорных подшипников, один из которых расположен между соответствующим концом электродвигателя и соответствующей ступенью с рабочим колесом, и по меньшей мере одного упорного подшипника, причем опорные и упорный подшипники выполнены с воздушной или газовой смазкой и имеют поворотные сегментные опоры, снабженные керамическими опорными поверхностями.
Использование подшипников с поворотными сегментными опорами, снабженными керамическими опорными поверхностями, обеспечивает работу компрессора с очень высокими скоростями вращения вала при необходимых величинах давления и расхода рабочей среды, в качестве которой используется газ, имеющий требуемую степень чистоты, поскольку выполнение этих поверхностей керамическими существенно снижает потери на трение в подшипниках и позволяет обеспечить малую величину зазора между опорой и валом, необходимую для работы подшипника с газовой смазкой, несмотря на высокую температуру, возникающую при вращении вала компрессора с очень высокой скоростью, благодаря низкому коэффициенту температурного расширения керамики.
Подшипниковые опоры могут быть однородными, целиком выполненными из керамики.
Поверхности участков вала (или упорного буртика, выполненного на нем), взаимодействующие с керамическими опорными поверхностями соответствующих поворотных сегментных опор, могут быть предпочтительно упрочнены или выполнены из керамики, при этом желательно, чтобы опорные подшипники поддерживали отделенные друг от друга некоторым промежутком участки вала, расположенные вблизи противоположных концов электродвигателя.
Упорный подшипник может быть выполнен с возможностью восприятия осевого усилия вала во взаимно противоположных направлениях вдоль оси.
Ступени с рабочими колесами могут быть навешены на противоположных концах вала. В предпочтительном варианте каждая ступень содержит компрессорное рабочее колесо и средства промежуточного охлаждения, подсоединенные коммуникационным каналам между ступенями с рабочими колесами.
Компрессор может содержать более двух ступеней с рабочими колесами, при этом желательно, чтобы три рабочих колеса были выполнены таким образом, чтобы компрессор имел три ступени сжатия.
Между последовательными ступенями с рабочими колесами может быть присоединен соответствующий промежуточный охладитель, что способствует повышению эффективности компрессора. Целесообразно, чтобы поток рабочего газа на входе в каждое рабочее колесо был осевым и желательно направленным в сторону электродвигателя.
Кроме того, по меньшей мере две ступени с рабочими колесами могут быть установлены противоположно друг к другу, так чтобы соответствующие потоки рабочего газа имели противоположные направления, предпочтительно навстречу друг другу. Этим достигается компенсация осевого усилия, действующего на вал со стороны соответствующих ступеней с рабочими колесами и, следовательно, уменьшение осевой нагрузки на упорный подшипник.
На валу могут быть выполнены средства уплотнения, содержащие соответствующие лабиринтные уплотнения и препятствующие поступлению рабочего газа от ступеней с рабочими колесами к двигателю и опорным средствам, а сам электродвигатель, содержащий электромагниты или постоянные магниты, может быть выполнен с возможностью вращения вала со скоростью более 50000 об/мин (желательно более 70000 об/мин). Предпочтительно использование электродвигателя постоянного тока, управляемого посредством источника тока переменной частоты.
Электродвигатель также может быть выполнен с возможностью непосредственного привода вращения вала без какой-либо промежуточной зубчатой передачи.
Далее только для примера описан вариант выполнения изобретения, поясняемый прилагаемыми чертежами, на которых фиг. 1 схематично изображает предлагаемый компрессор, а фиг. 2 изображает в увеличенном масштабе часть компрессора, показанного на фиг. 1.
Компрессор 1 содержит установленный в корпусе 3 аксиальный вал 2 с установленными на нем алюминиевыми рабочими колесами 4, 5 и 6, изготовленными путем механической обработки.
Входное рабочее колесо 4 первой ступени навешено на одном конце вала, тогда как рабочие колеса 5 и 6 второй и третьей ступеней - соответственно на противоположном его конце. Между рабочими колесами 4 и 5 расположен бесщеточный двигатель постоянного тока, имеющий ротор 7 в виде постоянных магнитов, установленных на валу 2, и статор 23, установленный в корпусе. Твердотельный тиристорный инвертор-контроллер (не показан) используется для получения изменяемого тока высокой частоты от стандартного источника электрического питания напряжением 415 В и частотой 50 Гц. Высокочастотный ток вращает двигатель, а следовательно и непосредственно вал 2, с требуемой высокой скоростью (обычно от 50000 до 100000 об/мин), при этом отсутствует необходимость использования зубчатой передачи, вследствие чего потери мощности сведены к минимуму.
Вал 2 установлен в корпусе 3 на опорных подшипниках 8 и 9, расположенных у обоих концов электродвигателя вблизи рабочих колес 4 и 5 соответственно. В корпусе также установлен упорный подшипник 10, взаимодействующий с упорным буртиком 11 вала. Опорные подшипники 8 и 9 выполнены самоустанавливающимися с воздушной смазкой и поворотными сегментными опорами 12. Сегментные опоры 12 каждого опорного подшипника 8 и 9 установлены на гибких осях 24 и снабжены керамическими опорными поверхностями 13, которые предназначены для воздействия на непосредственно прилегающие опорные участки поверхности вала. Опорные участки поверхности вала для повышения их износостойкости имеют упрочненное покрытие.
Важной отличительной чертой данной конструкции является то, что в целях обеспечения максимальной эффективности компрессора потери трения сведены к минимуму. Обычно при использовании шариковых или роликовых опорных подшипников с жидкостной смазкой (например, маслом) в механизмах с высокими скоростями вращения потери трения в подшипниках составляют от 5 до 10% мощности привода. Использование подшипников с самоустанавливающимися поворотными сегментными опораными втулками с воздушной (или газовой) смазкой снижает потери трения примерно до 0,5% мощности привода. Однако по причине очень высокой скорости вращения вала (например, 80000 об/мин для повышения давления воздуха от 1 бар до 8,5 бар при массовом расходе 0,27 кг/с) в подшипниках возникают очень высокие температуры, и таким образом температурное расширение материалов вала и подшипника при необходимости обеспечения малого зазора между ними для функционирования воздушной или газовой смазки опорных подшипников с самоустанавливающимися сегментными опорами (обычно диаметральный зазор в подшипниках составляет 0,075 мм (0,003 дюйма)) может вызвать определенные проблемы. Их решение заключается в использовании керамических материалов для выполнения опорных поверхностей шарнирных втулок 12, а также в формировании упрочненного покрытия поверхностей опорных участков вала 2.
Упорный подшипник 10 снабжен поворотными сегментными упорными элементами 10a и 10b, имеющими керамические опорные поверхности. Элементы 10a предназначены для восприятия рабочей осевой нагрузки от вала 2, передаваемой через буртик 11, при нормальной работе компрессора. Элементы 10b взаимодействуют с противоположной стороной буртика 11 и воспринимают нагрузку в процессе разгона двигателя с валом до нормальной рабочей скорости.
Между рабочими колесами 4 и 5 первой и второй ступеней для повышения эффективности имеется промежуточный охладитель 15. Второй промежуточный охладитель 16 введен между рабочими колесами 5 и 6 второй ступени и последней (третьей) ступени. Важной отличительной особенностью данного компрессора является то, что направление потока рабочего газа на входе в рабочее колесо 4 первой ступени противоположно направлению потока газа на входе в рабочие колеса 5,6 второй и третьей ступеней. Тем самым осуществляется уравновешивание осевой нагрузки, воздействующей на вал, и уменьшение обычной осевой нагрузки на упорный подшипник 10. Таким образом, потери в упорном подшипнике уменьшаются до минимума.
При работе электродвигатель разгоняют до скорости вращения около 80000 об/мин. Рабочий газ в осевом направлении всасывается в рабочее колесо 4 первой ступени и нагнетается через канал 17 в промежуточный охладитель 15. Рабочий газ выходит из промежуточного охладителя 15 по каналу 18 и затем вдоль оси поступает в рабочее колесо 5. Газ из рабочего колеса 5 в радиальном направлении поступает через канал 19 во второй промежуточный охладитель 16. Промежуточные охладители 15 и 16 по существу идентичны, но расположены под углом 90 друг к другу (продольное измерение радиатора 16 направлено перпендикулярно плоскости чертежа (фиг. 1)).
Рабочий газ выходит из радиатора 16 через канал 20 и подается на вход рабочего колеса 6 третьей и последней ступени 6 вдоль оси. Рабочий газ выходит из рабочего колеса 6 последней ступени в радиальном направлении через канал 21, расположенный перпендикулярно плоскости чертежа (фиг. 1).
Благодаря использованию высокоскоростного вала с непосредственным приводом, уменьшению до минимума потерь в опорах и многоступенчатой компоновке с промежуточным охлаждением между ступенями предлагаемый компрессор имеет исключительно высокую эффективность.
Данный компрессор позволяет использовать компактную турбомашину там, где ранее использовались винтовые компрессоры, и достигать необычно высокого для турбокомпрессоров конечного давления (около 8,5 бар) в сочетании с относительно низким массовым расходом (около 0,27 кг/с для воздуха).

Claims (10)

1. Компрессор, содержащий вал, установленный с возможностью вращения, привод, содержащий электродвигатель, ротор которого установлен на валу, по меньшей мере две ступени с рабочими колесами, установленными на валу с отделяющим их друг от друга продольным промежутком, в котором расположен электродвигатель, средства промежуточного охлаждения между ступенями с рабочими колесами и опорные средства вала, отличающийся тем, что опорные средства вала выполнены в виде двух опорных подшипников, один из которых расположен между соответствующим концом электродвигателя и соответствующей ступенью с рабочим колесом, и по меньшей мере одного упорного подшипника, причем опорные и упорный подшипники выполнены с воздушной или газовой смазкой и имеют поворотные сегментные опоры, снабженные керамическими опорными поверхностями.
2. Компрессор по п.1, отличающийся тем, что поверхности участков вала, взаимодействующие с керамическими опорными поверхностями соответствующих поворотных сегментных опор, предпочтительно упрочнены или выполнены из керамики.
3. Компрессор по п.1 или 2, отличающийся тем, что упорный подшипник выполнен с возможностью восприятия осевого усилия вала во взаимно противоположных направлениях вдоль оси.
4. Компрессор по любому из пп.1 - 3, отличающийся тем, что ступени с рабочими колесами навешены на противоположных концах вала.
5. Компрессор по любому из пп.1 - 4, отличающийся тем, что он содержит более двух ступеней с рабочими колесами.
6. Компрессор по п.4, отличающийся тем, что между последовательными ступенями с рабочими колесами присоединен соответствующий промежуточный охладитель.
7. Компрессор по любому из пп.1 - 6, отличающийся тем, что по меньшей мере две ступени с рабочими колесами установлены противоположно друг к другу так, чтобы соответствующие потоки рабочего газа имели противоположные направления.
8. Компрессор по любому из пп.1 - 7, отличающийся тем, что на валу выполнены средства уплотнения, препятствующие поступлению рабочего газа от ступеней с рабочими колесами к двигателю и опорным средствам.
9. Компрессор по любому из пп.1 - 8, отличающийся тем, что электродвигатель выполнен с возможностью вращения вала со скоростью более 50000 об. /мин.
10. Компрессор по любому из пп.1 - 9, отличающийся тем, что электродвигатель выполнен с возможностью непосредственного привода вращения вала без какой-либо промежуточной зубчатой передачи.
RU95109152A 1992-09-10 1993-09-08 Компрессор RU2118714C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9219167.5 1992-09-10
GB929219167A GB9219167D0 (en) 1992-09-10 1992-09-10 Compressor

Publications (2)

Publication Number Publication Date
RU95109152A RU95109152A (ru) 1997-02-20
RU2118714C1 true RU2118714C1 (ru) 1998-09-10

Family

ID=10721708

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95109152A RU2118714C1 (ru) 1992-09-10 1993-09-08 Компрессор

Country Status (13)

Country Link
EP (1) EP0667934B1 (ru)
JP (1) JPH08501367A (ru)
CN (1) CN1086587A (ru)
AT (1) ATE164662T1 (ru)
AU (1) AU682318B2 (ru)
CA (1) CA2144181A1 (ru)
DE (1) DE69317791T2 (ru)
GB (1) GB9219167D0 (ru)
IL (1) IL106924A (ru)
MY (1) MY109678A (ru)
RU (1) RU2118714C1 (ru)
WO (1) WO1994005913A1 (ru)
ZA (1) ZA936403B (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049296A1 (en) * 1999-02-18 2000-08-24 Nauchno-Issledovatelsky Institut Nizkikh Temperatur Pri Mai (Moskovskom Aviatsionnom Institute-Technicheskom Universitete) Centrifugal compressor aggregate and electric motor
RU2317421C2 (ru) * 2002-04-12 2008-02-20 Абб Турбо Системс Аг Турбонагнетатель и средство для осевой фиксации вала
RU2529070C1 (ru) * 2013-03-12 2014-09-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Упорный подшипниковый узел
RU2533948C2 (ru) * 2013-03-12 2014-11-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Упорный подшипниковый узел
RU2542806C1 (ru) * 2013-08-08 2015-02-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Упорный подшипниковый узел

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9404436D0 (en) * 1994-03-08 1994-04-20 Welsh Innovations Ltd Compressor
US5795138A (en) * 1992-09-10 1998-08-18 Gozdawa; Richard Compressor
FI103296B1 (fi) 1997-12-03 1999-05-31 High Speed Tech Ltd Oy Menetelmä ylipaineisen kaasun tuottamiseksi
JPH11294879A (ja) * 1998-02-16 1999-10-29 Daikin Ind Ltd 冷凍装置
AU2001232765A1 (en) 2000-01-11 2001-07-24 Gsi Lumonics Inc. Rotary device with matched expansion ceramic bearings
EP1321680A3 (de) 2001-12-22 2003-12-10 Miscel Oy Stömungsmaschinen-Aggregat
DE10163950A1 (de) * 2001-12-22 2003-07-03 Miscel Oy Ltd Gas-Kompressor
GB2384274A (en) * 2002-01-16 2003-07-23 Corac Group Plc Downhole compressor with electric motor and gas bearings
CA2373905A1 (en) * 2002-02-28 2003-08-28 Ronald David Conry Twin centrifugal compressor
CN102151852B (zh) * 2011-04-27 2012-06-27 天津大学 一种动静压陶瓷主轴装置
WO2015157434A1 (en) * 2014-04-08 2015-10-15 Caire Inc. Rotary systemes lubricated by fluid being processed
CN104967253B (zh) * 2015-07-16 2018-03-30 莱克电气股份有限公司 高速无霍尔三相吸尘器电机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933416A (en) * 1945-05-01 1976-01-20 Donelian Khatchik O Hermatically sealed motor blower unit with stator inside hollow armature
US4125345A (en) * 1974-09-20 1978-11-14 Hitachi, Ltd. Turbo-fluid device
GB1512381A (en) * 1975-05-06 1978-06-01 Nat Res Dev Gas compression apparatus including an axial thrust bearing
CH663644A5 (de) * 1982-02-22 1987-12-31 Bbc Brown Boveri & Cie Turboverdichter.
FR2528127A1 (fr) * 1982-06-04 1983-12-09 Creusot Loire Moto-compresseur centrifuge electrique integre a grande vitesse
EP0297691A1 (fr) * 1987-06-11 1989-01-04 Acec Energie S.A. Ensemble moteur-compresseur
DE3729486C1 (de) * 1987-09-03 1988-12-15 Gutehoffnungshuette Man Kompressoreinheit
JPH03121306A (ja) * 1989-10-02 1991-05-23 Toshiba Corp ティルティングパッド形動圧気体軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Герасименко С.С. и др. Подшипники герметичных насосов. - Минск, Наука и техника, 1989, с.123. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049296A1 (en) * 1999-02-18 2000-08-24 Nauchno-Issledovatelsky Institut Nizkikh Temperatur Pri Mai (Moskovskom Aviatsionnom Institute-Technicheskom Universitete) Centrifugal compressor aggregate and electric motor
RU2317421C2 (ru) * 2002-04-12 2008-02-20 Абб Турбо Системс Аг Турбонагнетатель и средство для осевой фиксации вала
RU2529070C1 (ru) * 2013-03-12 2014-09-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Упорный подшипниковый узел
RU2533948C2 (ru) * 2013-03-12 2014-11-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Упорный подшипниковый узел
RU2542806C1 (ru) * 2013-08-08 2015-02-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Упорный подшипниковый узел

Also Published As

Publication number Publication date
ATE164662T1 (de) 1998-04-15
ZA936403B (en) 1994-08-08
AU682318B2 (en) 1997-10-02
EP0667934B1 (en) 1998-04-01
GB9219167D0 (en) 1992-10-28
JPH08501367A (ja) 1996-02-13
IL106924A (en) 1996-10-16
DE69317791D1 (de) 1998-05-07
IL106924A0 (en) 1993-12-28
WO1994005913A1 (en) 1994-03-17
RU95109152A (ru) 1997-02-20
CN1086587A (zh) 1994-05-11
DE69317791T2 (de) 1998-12-10
MY109678A (en) 1997-04-30
EP0667934A1 (en) 1995-08-23
AU4976793A (en) 1994-03-29
CA2144181A1 (en) 1994-03-17

Similar Documents

Publication Publication Date Title
RU2118714C1 (ru) Компрессор
US5795138A (en) Compressor
EP0749533B1 (en) Compressor
US6997686B2 (en) Motor driven two-stage centrifugal air-conditioning compressor
US6616421B2 (en) Direct drive compressor assembly
US6296441B1 (en) Compressors
KR980003031A (ko) 용적형 진공 펌프
US20070212238A1 (en) Rotodynamic Fluid Machine
CN109424375B (zh) 具有磁轴承冷却的涡轮机系统和方法
KR102508011B1 (ko) 베어링 냉각 수로를 포함하는 터보 압축기
US4806075A (en) Turbomolecular pump with improved bearing assembly
US4767265A (en) Turbomolecular pump with improved bearing assembly
US5451147A (en) Turbo vacuum pump
US4674952A (en) Turbo molecular pump with improved bearing assembly
EP0883749B1 (en) Compressor
JPH01267392A (ja) ターボ真空ポンプ
JP4282809B2 (ja) 複軸真空ポンプ
KR20220132388A (ko) 방폭 기능을 구비하는 터보 압축기
KR20030010524A (ko) 무유식 압축기
WO2020134504A1 (zh) 电机转子、压缩机和空调设备
JPH0356048A (ja) 回転電機の冷却装置
JP2022552208A (ja) アキシャル磁気軸受及び気体フォイルラジアル軸受を備える真空ポンプ
JPH08200237A (ja) 内接式歯車ポンプの軸受構造
JPH02202335A (ja) ガス軸受式モータ
KR20000019042A (ko) 로터리 압축기의 열전달 방지구조