RU2112065C1 - Способ рафинирования алюминия и сплавов на его основе - Google Patents

Способ рафинирования алюминия и сплавов на его основе Download PDF

Info

Publication number
RU2112065C1
RU2112065C1 RU97105498/02A RU97105498A RU2112065C1 RU 2112065 C1 RU2112065 C1 RU 2112065C1 RU 97105498/02 A RU97105498/02 A RU 97105498/02A RU 97105498 A RU97105498 A RU 97105498A RU 2112065 C1 RU2112065 C1 RU 2112065C1
Authority
RU
Russia
Prior art keywords
melt
refining
flux
mixer
aluminum
Prior art date
Application number
RU97105498/02A
Other languages
English (en)
Other versions
RU97105498A (ru
Inventor
М.П. Кононов
Л.П. Липинский
С.В. Шустеров
А.И. Паленко
Г.Ф. Шеметев
В.А. Васильев
А.П. Оскольских
С.С. Кузнецов
Т.А. Чупалова
Original Assignee
Акционерное общество открытого типа "Волгоградский алюминий"
Акционерное общество открытого типа "Всероссийский алюминиево-магниевый институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество открытого типа "Волгоградский алюминий", Акционерное общество открытого типа "Всероссийский алюминиево-магниевый институт" filed Critical Акционерное общество открытого типа "Волгоградский алюминий"
Priority to RU97105498/02A priority Critical patent/RU2112065C1/ru
Application granted granted Critical
Publication of RU2112065C1 publication Critical patent/RU2112065C1/ru
Publication of RU97105498A publication Critical patent/RU97105498A/ru

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к рафинированию алюминиевых расплавов от примесей, например, щелочных металлов, водорода и неметаллических включений. Техническим результатом является повышение производительности процесса, снижение потерь металла и расхода флюса за счет его введения на стадии разливки и повышение качества готового сплава за счет достижения дополнительного эффекта - модифицирования. Это решено тем, что при обработке непрерывного потока расплава флюсами, содержащими хлориды и фториды щелочных металлов, при одновременном его перемешивании мешалкой и отделении металлов от продуктов реакций в состав флюсов вводят фторсоли титана и бора в соотношении к хлоридам и фторидам щелочных металлов (7 - 9):(3 - 1), при этом расплав перемешивают со скоростью в 20-30 раз больше скорости потока расплава, а флюс вводят в вихревую воронку, образованную мешалкой, при ее глубине, равной 0,3-0,4 глубины погружения мешалки в расплав. Степень рафинирования расплава повышается в среднем: по оксидным включениям - на 50%, по водороду - почти на 60%, по натрию - практически на уровне ближайшего аналога. Более чем на порядок уменьшается размер макрозерна, что позволяет прогнозировать повышение физико-механических свойств сплава. Расход флюса снижается. При этом увеличивается производительность процесса в целом, поскольку не требуется дополнительных затрат времени на рафинирующую обработку. 1 ил., 1 табл.

Description

Изобретение относится к цветной металлургии, конкретно к рафинированию алюминиевых расплавов от примесей, например, щелочных металлов, водорода, неметаллических включений.
Известен способ рафинирования алюминия, заключающийся во вдувании в расплав инертным газом флюсов различного состава (хлоридов натря и калия, четыреххлористого углерода, гексахлорэтана) (см. Курдюмов А.В., Инкин С.В., Чулков В.С., Шадрин Г.Г. Металлические примеси в алюминиевых сплавах. - М.: Металлургия, 1988, с. 132 - 136). Показано, что введение в расплав 2 кг на 1 т алюминия порошка гексахлорэтана в смеси с азотом позволяет снизить содержание натрия до 0,0004%. Установлено также, что наиболее высокие механические свойства имеют полуфабрикаты, полученные из металла, рафинированного смесью аргона с четыреххлористым углеродом. Флюсы эффективнее применять в сочетании с продувкой активными газами, которым принадлежит основная роль в очистке расплава от примесей: флюсы же преимущественно улавливают продукты взаимодействия газа с расплавом и неметаллические включения.
Основные недостатки этого способа состоят в том, что здесь процесс рафинирующей обработки расплава осуществляется в печи либо в ковше и требует заметных затрат времени, при этом достигнутые результаты рафинирования могут ощутимо быть снижены (особенно по водороду и неметаллическим включениям) из-за того, что в процессе разливки готового сплава металл способен как окисляться, так и загрязняться водородом и неметаллическими включениями. Кроме того, указанные составы используемых флюсов не способны оказывать модифицирующего воздействия на алюминий и его сплавы.
Наиболее близким по технической сущности заявляемому способу является способ рафинирования алюминия и его сплавов, состоящий в том, что на поверхность расплава в емкости загружают флюс, содержащий фториды и/или хлориды алюминия и щелочных металлов, осуществляют механическое перемешивание расплава в течение определенного времени, необходимого для снижения концентрации примесей до заметного уровня, съем шлака, при этом перемешивание ведут с числом оборотов, равным 1,0 - 1,2 от определяющего числа оборотов мешалки, а центр рабочей части мешалки находится от нижней границы расплава на расстоянии, равном 0,1 - 0,2 высоты расплава (авт.св. СССР N 1688595, кл. C 22 B 21/06, 9/10, 1995).
Главные недостатки этого способа заключаются в том, что рафинирование, как и в предыдущем способе, производится в стационарной емкости (ковше), что приводит к затратам времени и насыщению расплава водородом и оксидными включениями на последующих технологических стадиях процесса приготовления готового металла. Кроме того, используемые составы флюсов не содержат компонентов, которые в дальнейшем смогли бы оказать влияние на модифицирование структуры готового материала.
Техническая задача изобретения - повышение производительности процесса, снижение потерь металла и расхода флюса, повышение качества готового сплава за счет достижения дополнительного эффекта - модифицирования.
Техническая задача решается тем, что в известном способе рафинирования и его сплавов, включающем обработку непрерывного потока расплава флюсами, содержащими хлориды и фториды щелочных металлов, при одновременном его перемешивании мешалкой и отделении металла от продуктов реакций в состав флюсов вводят фторсоли титана и бора в соотношении (7 - 9) : (3 - 1), при этом расплав перемешивают со скоростью в 20 - 30 раз больше скорости потока металла, а флюс вводят в вихревую воронку, образованную мешалкой, при ее глубине равной 0,3 - 0,4 глубины погружения мешалки в расплав.
Сущность изобретения заключается в том, что при введении в алюминий в качестве флюса фторбората и фтортитаната калия протекает реакция, которая экзотермична и смещается вправо во всем интервале температур, в результате образуются модифицирующие титан- и борсодержащие интерметаллиды (TiB2 и Al3Ti) и газообразный фторид алюминия, активно удаляющий примеси щелочных металлов по прямой химической реакции с ними (например, AlF3 + Na ---> 3NaF + Al), а также взвешенные включения и водород соответственно за счет флотации и диффузии (Бондарев Б.И., Напалков В.И., Тарарышкин В.И. Модифицирование алюминиевых деформируемых сплавов. - М.: Металлургия, 1979).
Для описанного процесса интенсивное перемешивание является фактором необходимым, поскольку для эффективного протекания указанных реакций требуется постоянный массообмен между фазами. Интенсивность перемешивания расплава в реакционной зоне, усиливаемая тем, что процесс обработки осуществляется в потоке металла на стадии разливки, обеспечивается установленной скоростью перемешивания металла в зависимости от скорости потока и подачей флюса в определенный участок расплава.
Выбранные параметры лимитируются следующими факторами. Проведенными экспериментами установлено, что в случае, когда соотношение фторсолей титана и бора и хлоридов и фторидов щелочных металлов выбиралось ниже 7 : 3, обеспечивалась приемлемая степень рафинирования расплава от примесей, но не достигался необходимый модифицирующий эффект; в случае, когда это соотношение превышало 9 : 1, не было получено результатов с повышенным рафинирующемодифицирующим эффектом по сравнению с тем, что имел место при соотношении компонентов флюса (7 - 9) : (3 - 1).
Для краткости изложения введем следующие обозначения:
V2 = (20 - 30)V1 и h = (0,3 - 0,4)H,
где
V1 - скорость потока металла в разливочном желобе, м/с;
V2 - скорость перемешивания потоков металла в рабочей зоне мешалки, м/с;
h - углубление центральной вихревой воронки, м;
H - глубина погружения мешалки в металл, м.
Установлено, что при выборе V2<20V1 часть флюса не успевает использоваться по назначению (т. е. отреагировать с алюминием), вследствие чего не обеспечивается достижение необходимой степени удаления примесей и ожидаемого модифицирующего эффекта. Когда же V2>30V1, не происходит улучшения качественных показателей, которые достигаются при условии V2 = (20 - 30)V1.
При выборе h<0,3H имеют место непроизводительные потери флюса из-за частичной возгонки, вызываемой снижением скорости его замешивания в расплав, что в дальнейшем снижает и модифицирующий эффект из-за потерь потенциальных центров кристаллизации в них титан- и борсодержащих интерметаллидов; когда же h>0,4H, то может произойти обнажение рабочей части мешалки, вследствие чего увеличиваются потери металла на окисление, а также дополнительное загрязнение расплава водородом и оксидными включениями.
При выборе значения скорости течения металла в разливочном желобе (V1) при литье слитков из алюминия и его сплавов использованы известные рекомендации (Плавка и литье алюминиевых сплавов. /Справочное руководство под редакцией В.И. Добаткина. - М.: Металлургия, 1970, с. 176 - 224). Скорость перемешивания металла V2 (скорость движения потоков в рабочей зоне мешалки) определяли по известной методике (Шустеров В.С. Исследование и разработка способа интенсификации процессов приготовления сплавов на основе алюминия-сырца, диссертация на соиск. уч. степени к.т.н., Л., 1981, с. 46 - 57).
Способ испытан в промышленных условиях и осуществляется следующим образом.
На чертеже показан разрез печи в зоне летки с установкой для рафинирования.
Из газовой отражательной печи 1 вместимостью 25000 кг жидкий алюминий марки A6 выпускается в разливочный желоб 2 (где V1 = 0,0015 м/с), на котором смонтирована установка для рафинирования, представляющая футерованную емкость 3 с внутренними размерами 50 (длина) • 20 (ширина) • 30 (глубина) см вместимостью 70 кг, разделенную перегородкой 5 на две камеры; попадая в первую из них (ее вместимость составляет 2/3 объема емкости 3, т.е. 46 кг), расплав подвергается флюсовой рафинирующей обработке, заключающейся в том, что в расплав погружается мешалка 4, приводимая в движение приводом 6 до получения скорости перемешивания V2 = 0,030 м/с (V2 = 20V1), а в углубление образующейся центральной вихревой воронки, равное 0,3 глубины погружения мешалки (при H = 12 см обычно эта величина составляет приблизительно 0,2 - 0,4 глубины расплава h = 0,3 • 12 = 3,6 см), с помощью шнекового механизма 7 вводится флюс, состоящий из смеси (KBF4 + K2TiF6) и (NaCl + NaF) в соотношении 7 : 3; обработанный металл перетекает во вторую камеру (вместимостью 24 кг), после заполнения которой с помощью "коромысла" 8 и стопора 9 он подается в литейный желоб 10 и далее в кристаллизатор 11.
Исходное содержание примесей в алюминиевом расплаве и характеристика макроструктуры (размер зерна) в пробах, отобранных до камеры рафинирования:
Неметаллических включений (Al2O3) по химическому анализу - 0,020%
Водорода - 0,22 см3/100 г
Натрия - 0,0025%
Размер зерна в отливке, определяемый методом секущих - 3,5 мм
(Бондарев Б.И. и др. Модифицирование алюминиевых деформируемых сплавов, с. 181).
Содержание примесей и размер зерна в пробах, отобранных после рафинирующей обработки:
Неметаллических включений - 0,004%
Водорода - 0,06 см3/100 г
Натрия - 0,0001%
Размер зерна - 0,3 мм
Из приведенных данных видно, что достигается весьма высокая степень рафинирования расплава от примесей (определяемая по формуле
Figure 00000002
где C0 и C - исходное и конечное содержание примесей в расплаве соответственно): по неметаллическим включениям - около 73%, по натрию 92%. При этом размер макрозерна уменьшился более чем в 10 раз, а его величина позволяет отнеси это зерно к мелким равноосным кристаллам (Там же, с. 181).
Заявляемый способ исследовался также с запредельными и предельными значениями выбранных параметров. Исследовался и известный способ (прототип).
Результаты исследований приведены в таблице.
Из данных таблицы следует, что наиболее высокие показатели процесса рафинирования достигаются при использовании заявляемого способа и соблюдении выбранных параметров процесса. Так, степень рафинирования расплава в сравнении со способом-прототипом повысилась в среднем: по оксидным включениям - на 50%; по водороду - почти на 60%; по натрию - практически на уровне прототипа. При этом более чем на порядок уменьшился размер макрозерна, что позволяет прогнозировать повышение физико-механических свойств сплава. Расход флюса снизился на 25%. Кроме того, при использовании заявляемого способа повышается производительность процесса в целом, поскольку здесь не требуется дополнительных затрат времени на рафинирующую обработку (она осуществляется во время разливки металла), а в способе-прототипе - это отдельная (внепечная) операция. Следствием этого является также снижение безвозвратных потерь компонентов расплава.

Claims (1)

  1. Способ рафинирования алюминия и сплавов на его основе, включающий обработку непрерывного потока расплава флюсами, содержащими хлориды и фториды щелочных металлов, при одновременном его перемешивании мешалкой и отделение металла от продуктов реакций, отличающийся тем, что в состав флюса вводят фторсоли титана и бора в соотношении к хлоридам и фторидам щелочных металлов 7 - 9 : 3 - 1, при этом расплав перемешивают со скоростью в 20 - 30 раз больше скорости потока металла, а флюс вводят в вихревую воронку, образованную мешалкой, при ее глубине, равной 0,3 - 0,4 глубины погружения мешалки в расплав.
RU97105498/02A 1997-04-04 1997-04-04 Способ рафинирования алюминия и сплавов на его основе RU2112065C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97105498/02A RU2112065C1 (ru) 1997-04-04 1997-04-04 Способ рафинирования алюминия и сплавов на его основе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97105498/02A RU2112065C1 (ru) 1997-04-04 1997-04-04 Способ рафинирования алюминия и сплавов на его основе

Publications (2)

Publication Number Publication Date
RU2112065C1 true RU2112065C1 (ru) 1998-05-27
RU97105498A RU97105498A (ru) 1998-10-10

Family

ID=20191662

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97105498/02A RU2112065C1 (ru) 1997-04-04 1997-04-04 Способ рафинирования алюминия и сплавов на его основе

Country Status (1)

Country Link
RU (1) RU2112065C1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531023B2 (en) 2004-03-19 2009-05-12 Aleris Switzerland Gmbh Method for the purification of a molten metal
US7537639B2 (en) 2003-11-19 2009-05-26 Aleris Switzerland Gmbh Method of cooling molten metal during fractional crystallisation
US7648559B2 (en) 2002-07-05 2010-01-19 Aleris Switzerland Gmbh C/O K+P Treuhangesellschaft Method for fractional crystallisation of a metal
US7892318B2 (en) 2006-06-28 2011-02-22 Aleris Switzerland Gmbh C/O K+P Treuhandgesellschaft Crystallisation method for the purification of a molten metal, in particular recycled aluminium
US7955414B2 (en) 2006-07-07 2011-06-07 Aleris Switzerland Gmbh Method and device for metal purification and separation of purified metal from metal mother liquid such as aluminium
US8313554B2 (en) 2006-06-22 2012-11-20 Aleris Switzerland Gmbh Method for the separation of molten aluminium and solid inclusions
RU2483128C2 (ru) * 2011-04-06 2013-05-27 Алексей Иванович Гончаров Способ очистки отходов алюминия от примесей и печь для осуществления способа

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Курдюмов А.В., Инкин С.В. и др. Металлические примеси в алюминиевых сплавах. - Металлургия, 1988, с.132 - 136. 2. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648559B2 (en) 2002-07-05 2010-01-19 Aleris Switzerland Gmbh C/O K+P Treuhangesellschaft Method for fractional crystallisation of a metal
US7537639B2 (en) 2003-11-19 2009-05-26 Aleris Switzerland Gmbh Method of cooling molten metal during fractional crystallisation
US7531023B2 (en) 2004-03-19 2009-05-12 Aleris Switzerland Gmbh Method for the purification of a molten metal
US8313554B2 (en) 2006-06-22 2012-11-20 Aleris Switzerland Gmbh Method for the separation of molten aluminium and solid inclusions
US7892318B2 (en) 2006-06-28 2011-02-22 Aleris Switzerland Gmbh C/O K+P Treuhandgesellschaft Crystallisation method for the purification of a molten metal, in particular recycled aluminium
US7955414B2 (en) 2006-07-07 2011-06-07 Aleris Switzerland Gmbh Method and device for metal purification and separation of purified metal from metal mother liquid such as aluminium
RU2483128C2 (ru) * 2011-04-06 2013-05-27 Алексей Иванович Гончаров Способ очистки отходов алюминия от примесей и печь для осуществления способа

Similar Documents

Publication Publication Date Title
EP0214220A1 (en) PROCESS FOR PRODUCING AN ALLOY CONTAINING TITANIUM CARBIDE PARTICLES.
CA2626580C (en) In-line salt refining of molten aluminium alloys
US10988830B2 (en) Scandium master alloy production
CA1303860C (en) Method of alloying aluminium
RU2112065C1 (ru) Способ рафинирования алюминия и сплавов на его основе
CA1331519C (en) Production of an aluminum grain refiner
US4652299A (en) Process for treating metals and alloys for the purpose of refining them
RU2620206C2 (ru) Способ графитизирующего модифицирования чугуна
Lofstrom Solid Salt Fluxing of Molten Aluminum
RU97105498A (ru) Способ рафинирования алюминия и сплавов на его основе
RU2082561C1 (ru) Способ получения интерметаллида титан - алюминий в форме порошка
RU2122599C1 (ru) Способ приготовления вторичных алюминиевых сплавов
RU2002134993A (ru) Способ переработки гальваношламов
SU1792991A1 (ru) Cпocoб oбpaбotkи aлюmиhиebo-kpemhиebыx cплabob
RU2601718C1 (ru) Способ плавки и литья магниево-циркониевых сплавов
JP2002097529A (ja) アルミニウム合金溶湯の脱ガス方法
SU834141A1 (ru) Способ получени чугуна с шаровиднымгРАфиТОМ
SU986948A1 (ru) Флюс дл обработки алюминиевых сплавов
SU1071655A1 (ru) Способ приготовлени алюминиевомагниевых сплавов
SU1168622A1 (ru) Способ модифицировани сплава алюминий-титан и состав дл модифицировани сплава алюминий-титан
RU2680330C1 (ru) Способ получения лигатуры на основе алюминия
SU1705384A1 (ru) Способ обработки алюминиевых сплавов
RU2094514C1 (ru) Способ модифицирования силуминов
RU2068017C1 (ru) Способ рафинирования алюминия от натрия и кальция
RU2094515C1 (ru) Способ получения силуминов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060405