RU2601718C1 - Способ плавки и литья магниево-циркониевых сплавов - Google Patents
Способ плавки и литья магниево-циркониевых сплавов Download PDFInfo
- Publication number
- RU2601718C1 RU2601718C1 RU2015115687/02A RU2015115687A RU2601718C1 RU 2601718 C1 RU2601718 C1 RU 2601718C1 RU 2015115687/02 A RU2015115687/02 A RU 2015115687/02A RU 2015115687 A RU2015115687 A RU 2015115687A RU 2601718 C1 RU2601718 C1 RU 2601718C1
- Authority
- RU
- Russia
- Prior art keywords
- melt
- casting
- zirconium
- flux
- alloys
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к области металлургии сплавов и может быть использовано при производстве жаропрочных, высокопрочных и специальных магниевых сплавов, содержащих редкоземельные металлы (РЗМ), цинк, цирконий и др. Способ получения литых магниево-циркониевых сплавов, содержащих РЗМ, включает расплавление шихты в защитной газовой среде в бесфлюсовом режиме, легирование, рафинирование и заливку расплава в форму, при этом после легирования проводят обработку расплава фтористыми соединениями углерода из расчета 1-4 г углерода на 100 кг расплава при температуре 770-850°C в течение 3-10 минут, причем при обработке расплава осуществляют его дегазацию, а перед заливкой расплава в форму производят ее продувку гексафторидом серы. Изобретение позволяет уменьшить окисление расплава при плавке и литье, снизить потери РЗМ, повысить чистоту, механические свойства и коррозионную стойкость отливок. 2 з.п. ф-лы, 1 пр., 3 табл.
Description
Изобретение относится к области металлургии сплавов и может быть использовано при производстве жаропрочных, высокопрочных и специальных магниевых сплавов, содержащих редкоземельные металлы (РЗМ), цинк, цирконий и др.
Для получения магниевых сплавов, не загрязненных большим количеством устойчивых цирконидов, несущих на себе хлористые включения, эти сплавы обрабатывают специальными тяжелыми флюсами (Эмли Е.Ф. «Основы технологического производства и обработки магниевых сплавов «М., «Металлургия», 1972, стр. 65-70). Для снижения потерь металла при плавке и литье, в том числе РЗМ, и для устранения флюсовых включений в литье проводили специальные поиски и делали многочисленные попытки: изменить составы флюсов, применить сетки для фильтрации, специальные ингибиторы при разливке и др. На практике остановились на применении тяжелых флюсов, содержащих галоидные соединения бария.
Известен способ плавки и литья металла, включающий получение расплава металла и его рафинирование (патент РФ 2209842 C2, МПК C22B 9/20, C22B 9/22, B22D 23/00, опубл. 10.08.2003 г.). Недостатком указанного способа является невозможность применения его для магниево-циркониевых сплавов.
Ближайшим по своей технической сути рассматриваемому в данном изобретении способу является известный способ выплавки магниевых сплавов, включающий расплавление шихты в защитной среде, легирование цинком, цирконием, редкоземельными металлами и рафинирование. Способ заключается в следующем: производят расплавление шихты под флюсом. При температуре 720°C вводят цинк, при 760-780°C вводят редкоземельные металлы и лигатуру магний-цирконий, после растворения расплав перемешивают 5-10 мин, отстаивают 5-10 мин, рафинируют 3-5 мин при 760-780°C флюсом в количестве 1,5-2% от веса шихты, затем отстаивают при технологически необходимой температуре и разливают (Альтман М.Б, Лебедев А.А. и др. Плавка и литье легких сплавов. М.: Металлургия, 1969, стр. 332-335).
Указанный способ имеет ряд недостатков: отливки часто содержат включения цирконидов, несущих на себе ионы хлора, что ведет к флюсовой коррозии, потери дорогостоящих РЗМ: неодима, иттрия и др. составляют от 10 до 35% в зависимости от применяемого флюса, способ не обеспечивает получения отливок с высокой коррозионной стойкостью, загрязнение неметаллическими включениями приводит к снижению прочностных характеристик материала отливок и снижению их плотности.
Существующий серийный способ литья магниевых расплавов в формы производят путем припыливания порошком молотой серы на открытую струю металла, что ухудшает экологическую обстановку на литейном участке.
В заявленном способе использование порошка молотой серы отсутствует, что положительно сказывается на экологической обстановке.
Технической задачей заявленного изобретения является разработка способа плавки и литья магниево-циркониевых сплавов, при котором происходит удаление цирконидов, загрязняющих сплав хлором и неметаллическими включениями, повышение чистоты сплава и его пластичности и снижение потерь РЗМ и магния при плавке.
Техническим результатом заявленного изобретения является уменьшение окисления расплава при плавке и литье, снижение потерь РЗМ, повышение чистоты, механических свойств и коррозионной стойкости отливок.
Сущность заявленного способа заключается в том, что после расплавления шихты в защитной газовой среде в бесфлюсовом режиме, легирования, проводят обработку расплава одним из фтористых соединений углерода, (например фреоном, фторопластом и др.) при температуре 770-850°C в течение 3-10 мин из расчета 1,0-4,0 г углерода на 100 кг расплава, а дегазацию расплава проводят одним из инертных газов (аргоном или гелием), причем перед заливкой расплава в форму проводят продувку формы гексафторидом серы.
При приготовлении сплавов, содержащих РЗМ цирконий и иттрий, имеется ряд особенностей, которые следует учитывать.
При плавлении обычно теряется 10% РЗМ, т.е. 0,2-0,3%. При ведении плавки под флюсом, при взаимодействии неодима, иттрия, лантана и др. РЗМ с хлористым магнием, который входит в состав флюса, образуются хлористые соли, а также окислы РЗМ, что приводит к увеличению потерь дорогостоящих компонентов сплава. Эти потери при применении флюсов составляют: для неодима 10-15%, для лантана - 10%, для иттрия и гадолиния от 30 до 50%. При плавке без флюса, не содержащего хлористого магния, и обработке по предлагаемому способу потери РЗМ существенно снижаются: для неодима до 0,01-2%, для иттрия и гадолиния до 2-5% (таблица 2).
Таким образом, за счет отсутствия флюса достигается снижение угара РЗМ от 0,01 до 5%.
Высокая активность циркония при взаимодействии с примесями, материалами тиглей, газами (водородом, кислородом, хлором), содержащимися во флюсе, приводит к образованию в расплаве взвешенных нерастворимых соединений, богатых цирконием, загрязняющих сплав и трудноотделяемых при рафинировании флюсом. При этом ухудшается коррозионная стойкость и механические свойства сплава.
Цирконий является основным модификатором в магниевых сплавах систем Mg-Zn-Zr и Mg-P3M-Zr.
Такие элементы, как Al, Si, Sn, Ni, Fe, Co, Mn, O2 и H2, образуют с цирконием тугоплавкие соединения, практически нерастворимые в магниевых сплавах. В присутствии указанных элементов в расплаве эффект измельчения зерна теряется.
Продувка формы гексафторидом серы способствует получению заданного химического состава сплава, повышению его чистоты и улучшению технологических и механических свойств посредством снижения нежелательных неметаллических включений, загрязняющих сплав. Снижение обеспечивается, в первую очередь, образованием плотной защитной пленки при расплавлении шихты в среде газовой смеси, содержащей гексафторид серы взамен флюсов. Образовавшаяся пленка препятствует взаимодействию легирующих элементов и циркония (в том числе РЗМ) с составляющими флюса и воздуха (кислородом и водородом).
Фтористые соединения углерода (фреон, фторопласт) позволяют удалить циркониды ZrH2 и ZrOCl2, загрязняющие сплав и вызывающие флюсовую коррозию.
Обработка расплава инертными газами в течение 3-10 мин при температуре не ниже 760°C дегазирует расплав, снижет содержание водорода в 2-2,5 раза, повышая качество расплава
При повторном плавлении, рафинировании, переливе расплава происходят потери растворимого циркония и его необходимо подшихтовывать. Во избежание этого все магниевые отливки с цирконием необходимо получать из тигля, в котором предлагаемый способ имеет следующие преимущества: обработка фтористыми соединениями углерода при 770-830°C в течение 3-10 мин с последующей продувкой инертным газом дала эффект очистки сплава от цирконидов выше ожидаемого - цирконий, взаимодействуя с углеродом и фтором, образует комплексные соединения, тяжелые по своему удельному весу и легче отделяющиеся от основного сплава. Так, по данным химического анализа установлено, что, в донном сливе сплава МЛ10, выплавленного по заявляемому способу, содержание Zr=0,5%. При плавке по способу-прототипу содержание Zr в донном сливе составляет 2-4% и выше. Так как циркониды несут на себе хлор-йон и, замешиваясь в сплав, ухудшают его коррозионную стойкость и вызывают флюсовую коррозию, наличие которой недопустимо в отливках, то их удаление ведет к повышению коррозионной стойкости и устранению флюсовой коррозии.
Таким образом, заявленный способ обеспечивает получение плотных отливок высокой чистоты при минимальных потерях РЗМ.
Пример осуществления.
О количестве удаленных цирконидов свидетельствует повышение общей коррозионной стойкости сплава и отсутствие флюсовой коррозии в отливках. Коррозионная стойкость сплавов, выплавленных под защитой SF6 и обработанных фтористыми соединениями углерода, выше коррозионной стойкости сплавов, выплавленных под флюсом и обработанных флюсом, приведена в таблице 1.
Как показали эксперименты, оптимальным режимом обработки расплава фтористыми соединениями углерода является режим с температурой введения 770-830°C, временем обработки газообразными веществами (фреоном 13, 14, 114 и др.) или твердыми веществами - фторопластом в течение 3-10 мин, в количестве 0,001-0,004% углерода в расплаве. В случае нарушения хотя бы одного из названных параметров эффект очистки расплава от цирконидов снижается. Например, при снижении температуры введения с 770°C до 760°C с сохранением остальных параметров скорость коррозии сплава МЛ10, T6 повышается и составляет по выделению водорода за 48 ч 0,86 см3/см2 против 0,56 см3/см2 (таблица 1). В изломах отливки появляются черные точки. Увеличение времени обработки с 3-10 мин до 12-15 мин при снижении температуры до 760°C нежелательно из-за появления дополнительных очагов загорания и увеличения расхода защитного газа. Превышение температуры выше 830°C ведет к тому же.
Увеличение содержания углерода в расплаве выше 0,001-0,004% может вывести из расплава большое количество циркония (выше желаемого) и огрубить зерно.
Испытания отливок различной конфигурации из сплава МЛ10, полученных предлагаемым способом, в камере повышенной влажности (температура 40°C, влажность 96%) в течение 48 ч на выявление флюсовой коррозии показали, что флюсовая коррозия на поверхности и в изломах отсутствует.
При плавке без флюса и обработке по предлагаемому способу потери неодима и иттрия существенно снижаются (для неодима до 0,1-2%, для иттрия и гадолиния до 2-5% (таблица 3).
Claims (3)
1. Способ получения литых магниево-циркониевых сплавов, содержащих РЗМ, включающий расплавление шихты в защитной газовой среде в бесфлюсовом режиме, легирование, рафинирование и заливку расплава в форму, отличающийся тем, что после легирования проводят обработку расплава фтористыми соединениями углерода из расчета 1-4 г углерода на 100 кг расплава при температуре 770-850°C в течение 3-10 минут, причем при обработке расплава осуществляют его дегазацию, а перед заливкой расплава в форму производят ее продувку гексафторидом серы.
2. Способ по п. 1, отличающийся тем, что обработку расплава фтористыми соединениями углерода проводят при температуре 770-830°C.
3. Способ по п. 1, отличающийся тем, что дегазацию расплава осуществляют аргоном или гелием.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015115687/02A RU2601718C1 (ru) | 2015-04-27 | 2015-04-27 | Способ плавки и литья магниево-циркониевых сплавов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015115687/02A RU2601718C1 (ru) | 2015-04-27 | 2015-04-27 | Способ плавки и литья магниево-циркониевых сплавов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2601718C1 true RU2601718C1 (ru) | 2016-11-10 |
Family
ID=57278036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015115687/02A RU2601718C1 (ru) | 2015-04-27 | 2015-04-27 | Способ плавки и литья магниево-циркониевых сплавов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2601718C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2675709C1 (ru) * | 2018-02-19 | 2018-12-24 | федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" | Способ получения лигатуры магний-цинк-литий |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2184789C1 (ru) * | 2001-03-21 | 2002-07-10 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Способ приготовления магниевого сплава для фасонного литья |
RU2215057C2 (ru) * | 2001-08-23 | 2003-10-27 | Алуминиум Аллойз И Металлургикал Просессиз Лимитед | Сплав на основе магния и способ его обработки в жидком, твердожидком и твердом состояниях для получения изделий с однородной мелкозернистой структурой |
CN101760683A (zh) * | 2008-12-24 | 2010-06-30 | 沈阳铸造研究所 | 一种高强度铸造镁合金及其熔制方法 |
CN101787473A (zh) * | 2010-03-22 | 2010-07-28 | 北京工业大学 | 一种强韧阻燃镁合金及其制备方法 |
CN104313437A (zh) * | 2014-09-28 | 2015-01-28 | 洛阳镁鑫合金制品有限公司 | 一种zk61m镁合金扁锭制造工艺 |
-
2015
- 2015-04-27 RU RU2015115687/02A patent/RU2601718C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2184789C1 (ru) * | 2001-03-21 | 2002-07-10 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Способ приготовления магниевого сплава для фасонного литья |
RU2215057C2 (ru) * | 2001-08-23 | 2003-10-27 | Алуминиум Аллойз И Металлургикал Просессиз Лимитед | Сплав на основе магния и способ его обработки в жидком, твердожидком и твердом состояниях для получения изделий с однородной мелкозернистой структурой |
CN101760683A (zh) * | 2008-12-24 | 2010-06-30 | 沈阳铸造研究所 | 一种高强度铸造镁合金及其熔制方法 |
CN101787473A (zh) * | 2010-03-22 | 2010-07-28 | 北京工业大学 | 一种强韧阻燃镁合金及其制备方法 |
CN104313437A (zh) * | 2014-09-28 | 2015-01-28 | 洛阳镁鑫合金制品有限公司 | 一种zk61m镁合金扁锭制造工艺 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2675709C1 (ru) * | 2018-02-19 | 2018-12-24 | федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" | Способ получения лигатуры магний-цинк-литий |
RU2675709C9 (ru) * | 2018-02-19 | 2019-04-23 | федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" | Способ получения лигатуры магний-цинк-иттрий |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4504914B2 (ja) | アルミニウム鋳塊の製造方法、アルミニウム鋳塊、およびアルミニウム鋳塊の製造用保護ガス | |
ES2751656T3 (es) | Procedimientos para la producción de aleaciones basadas en níquel que contienen cromo y cromo más niobio de bajo contenido de nitrógeno y esencialmente libres de nitruro | |
RU2572117C1 (ru) | Способ получения суперсплавов на основе никеля, легированных редкоземельными металлами | |
RU2335564C2 (ru) | Высокотитановый ферросплав, получаемый двухстадийным восстановлением из ильменита | |
US4121924A (en) | Alloy for rare earth treatment of molten metals and method | |
RU2601718C1 (ru) | Способ плавки и литья магниево-циркониевых сплавов | |
CN103468864A (zh) | 一种1Cr21Ni5Ti钢冶炼方法 | |
US20160160320A1 (en) | Method of producing aluminium alloys containing lithium | |
RU2533263C1 (ru) | Способ производства низкокремнистой стали | |
JP7412197B2 (ja) | Ti-Al系合金の製造方法 | |
RU2618040C2 (ru) | Защитная газовая смесь для обработки магниевых сплавов | |
JP2009114532A (ja) | マグネシウム合金材の製造方法 | |
US20040159188A1 (en) | Strontium for melt oxidation reduction of magnesium and a method for adding stronium to magnesium | |
RU2569621C1 (ru) | Способ производства ниобийсодержащей стали | |
JP2002097529A (ja) | アルミニウム合金溶湯の脱ガス方法 | |
RU2734220C1 (ru) | Способ изготовления лигатур в вакуумной дуговой печи с нерасходуемым электродом | |
RU2562015C2 (ru) | Карбонатная смесь для рафинирования алюминиевых сплавов с модифицирующим эффектом | |
CN103409638B (zh) | 一种降低电渣锭氮含量的方法 | |
RU2070228C1 (ru) | Способ выплавки высокохромистого никелевого сплава | |
Pekguleryuz | Melting, alloying and refining | |
RU2637735C2 (ru) | Способ получения низкоуглеродистой кипящей стали | |
SU1726546A1 (ru) | Способ рафинировани алюминиевых сплавов от железа | |
JPH04120225A (ja) | Ti―Al系合金の製造方法 | |
SU1122721A1 (ru) | Флюс дл рафинировани цинковых сплавов | |
RU2255997C1 (ru) | Способ получения алюминиево-литиевых сплавов |