RU2099432C1 - Способ биоокисления минерального сырья - Google Patents
Способ биоокисления минерального сырья Download PDFInfo
- Publication number
- RU2099432C1 RU2099432C1 SU915010167A SU5010167A RU2099432C1 RU 2099432 C1 RU2099432 C1 RU 2099432C1 SU 915010167 A SU915010167 A SU 915010167A SU 5010167 A SU5010167 A SU 5010167A RU 2099432 C1 RU2099432 C1 RU 2099432C1
- Authority
- RU
- Russia
- Prior art keywords
- raw materials
- mineral raw
- biooxidation
- mineral
- microorganisms
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P3/00—Preparation of elements or inorganic compounds except carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/18—Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Genetics & Genomics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
Abstract
Назначение: изобретение относится к биотехнологии, а именно к способам биотехнологической обработки минеральных концентратов, угля или бедных руд. Сущность изобретения: способ включает обработку сырья кислотным реагентом и культурой микроорганизмов - биоокислителей, культивирование микроорганизмов на минеральном сырье, осушение минерального сырья и отделения продуктов биоокисления. 7 з.п. ф-лы.
Description
Изобретение относится к биотехнологии, а именно к способу, при котором минеральные соединения, содержащиеся в минеральных рудах или концентратах и представляющие собой субстраты для микроорганизмов, подвергают биоокислению для обеспечения возможности растворения и отделения указанных соединений.
К настоящему времени доказано, что при помощи бактериальной обработки имеется возможность окисления следующих сульфидов пирита и марказита, пирротита, халькопирита, борнита, ковеллита, халькоцита, тетрагидрита, энаргита, молибденита, сфалерита, арсенопирита, реальгара, аурипигмента, кобальтита, пентландита, виоларита, бравоита, миллерита, плидимита, антимонита, марматита, галенита, геокронита.
Известно (патент США 4729778, кл.C 22 B 3/00, 1988), что микробные культуры окисляют нерастворимые сульфаты либо прямо, либо косвенно. В случае прямого окисления разрушение кристаллической структуры сульфидного минерала происходит за счет ферментативных систем из живых микроорганизмов. Косвенное окисление сульфидных минералов связано с действием иона железа /Fe3+/, который в свою очередь является продуктом микробного (бактериального) окисления соединения двухвалентного железа и железосодержащих сульфидных минералов.
В настоящее время микробное выщелачивание металлов происходит в виде различных процессов, которые зависят от масштаба и свойств используемого минерала.
В данном случае микробное выщелачивание можно рассматривать как специализированную систему для подземной экстракции, заключающуюся в микробиологически усиленном растворении ценных металлов из разрабатываемых руд с сортами, находящимися в диапазоне от сверхкускового сорта до так называемого субмаргинального и субизмельченного сортов. Выщелачивающие растворы инжектируют в массу горной породы и фильтруют сквозь нее. По достижении растворения требуемых ценных металлов растворы собирают и перекачивают в установку для измельчения металлов.
Следует отметить, что хотя различные способы выщелачивания, разработанные и внедренные в практику, обладают отличительными свойствами, все имеют один общий признак: руды или концентраты суспендируют, заливают и/или подвергают перколяции водным растворами таким образом, что микроорганизмы ограничивают водной окружающей обстановкой.
Уголь содержит элементарную серу в различных количествах, главным образом в виде пирита. Сжигание угля приводит к превращению существующей серы в диоксид серы, который загрязняет атмосферу, вызывая кислотные дожди с последующим повреждением растительности и здоровья животных и человека. Для поддержания соответствующих уровней двуокиси серы в атмосфере в местах, где уголь сжигают в крупных масштабах, необходимо разрабатывать угли с низким содержанием серы в основном с общим содержанием серы ниже 1-1,5%
Микробное выщелачивание сернистых соединений из угля до настоящего времени осуществлялось на практике вместе с аналогичными направлениями и с учетом критерия, принятого для микробного выщелачивания металлов, то есть микроорганизмы должны действовать в водной окружающей среде.
Микробное выщелачивание сернистых соединений из угля до настоящего времени осуществлялось на практике вместе с аналогичными направлениями и с учетом критерия, принятого для микробного выщелачивания металлов, то есть микроорганизмы должны действовать в водной окружающей среде.
Было доказано, что согласно известной технологии при десульфуризации угля эффективны несколько микроорганизмов. Однако при таких условиях этот процесс нельзя осуществить на практике в промышленном масштабе из-за продолжительного времени обработки и больших объемов обработки как сульфат низкой микробной активности.
В настоящее время известно, что концентраты, содержащие пирит, арсенопирит и тонко диспергированное золото, в результате биовыщелачивания перед цианидированием растворяют большую часть сульфидных минералов и выход золота существенно увеличивается в результате последующего цианидирования.
Предлагаемый способ включает сортировку минеральной руды или концентрата посредством количества кислоты, которое заранее определено как наиболее удобное для нейтрализации минеральной руды или концентрата, предотвращения уплотнения и обеспечения надлежащей кислотности для микроорганизмов, причем это количество кислоты предпочтительно содержится в минимально возможном объеме раствора (или концентрирование минеральной руды или концентрата в виде кислотных паров) с тем, чтобы гомогенно подкислить субстрат с одновременным введением минимально возможного количества воды в систему. Способ также включает добавление микробного прививочного материала, способного к окислению соответствующего минерального соединения (или обогащение собственной микробной флоры минеральной руды либо одновременно, либо независимо), предоставление возможности для спонтанной или вынужденной потери воды, которая может присутствовать в системе в результате испарения или сушки проходящим воздухом до тех пор, пока термодинамически доступная вода достаточно неблагоприятна для получения продуктов биоокисления в твердом состоянии, которые в свою очередь состоят из микробных колоний, и разделение продуктов биоокисления.
Первая стадия взаимодействия биовыщелачивающих микроорганизмов с твердым минеральным субстратом (питательной средой) состоит в их соединении с поверхностью, после чего окисляемый субстрат подвергают биохимическому воздействию. Сцепление является характерным для минеральных соединений, которые представляют собой источник энергии, но такое сцепление не является частным и не всегда происходит в системах, пока еще используемых. Условия, которые позволяют или облегчают стабильное и эффективное сцепление, позволяют бактериям трансформировать субстрат и быстро размножаться, до этого не были объяснены.
Из условий физиологических характеристик и развития, описанных ниже, ясно, что эти микроорганизмы обладают определенным гидрофобным характером. Другими словами, вода или по меньшей мере уровни содержания воды в обычных системах делают затруднительным стабильное соединение клеток к субстратам.
Явления, которые имеют место при взаимодействии клеток и поверхности минеральных соединений или механизм разрушения решетки сульфидного минерала, не ясны. Хотя существуют различные теории, обычно полагают, что в этом взаимодействии действуют ферментативные механизмы. В таком случае препятствующие ферменты не следует разбавлять или смывать с реакционной поверхности.
Способ реализуется следующим образом.
Взвешенное и стерильное количество каждого имеющего отношения концентрата было помещено на чашки Петри и равномерно распределено по всей поверхности. После этого субстрат подвергли увлажнению раствором серной кислоты, наиболее подходящие объем и концентрация которого были определены для каждого конкретного случая, с принятием в расчет следующего критерия.
Наиболее подходящий объем на единицу массы субстрата при рассмотрении представляет собой минимальный объем, который обеспечивает полное и гомогенное подкисление субстрата.
Этот объем будет зависеть от физических и химических свойств каждого конкретного субстрата, а в случае пористых минералов может быть обеспечено подкисление через поры. Тем не менее объем должен быть как можно меньшим с тем, чтобы снизить потери времени, присущие дальнейшему обезвоживанию субстрата.
Наиболее подходящая концентрация кислоты отвечает количеству кислоты, которое в наиболее подходящем объеме обеспечивает нейтрализацию минерала, предотвращает уплотнение, обеспечивает количество кислоты для эффективного размножения бактерий и предполагает возможные потери кислоты в результате испарения.
Посевы были подвергнуты затравке штаммами и затем подвергнуты выдерживанию в термостате таким образом, чтобы облегчить быструю потерю за счет испарения воды, введенной в процессе подкисления. Во всех случаях, когда субстрат достигает сухого состояния по внешнему виду, размножение микробов, связанное с соответствующим биоокисленным твердым продуктом, было достигнуто в течение нескольких часов.
Примеры I и 2 иллюстрируют количественные отличия биологической активности окисления металлического соединения в жидкой среде и в условиях низкого содержания воды.
Пример I. Образец из натурального пирита с высокой степенью чистоты, содержащий, железо 43,5; сера 49,67; примеси 6,83 измельчали до размера частиц 100 меш и подвергали стерилизации в течение трех последующих дней с помощью пропускания водяного пара с использованием в качестве субстрата питательной среды.
Был использован прививочный материал, соответствующий СМ штамму, предварительно приспособленный для размножения в пирите. Во всех случаях одновременно проводились соответствующие стерильные контроли.
Биологическое окисление было исследовано в обычной жидкой смеси с добавлением аммиака или без его добавления в системе с низким содержанием воды в соответствии с основами данного изобретения.
Биологическую активность определяли путем измерения содержания растворимого железа путем абсорбционной спектрофотометрии. Количество клеток было определено путем пересчета в посеве в агаризованной железистой среде.
В жидкой среде опыт проводили в колбах Эрленмейера емкостью 300 мл, содержащих 5 г пирита, 95 мл раствора серной кислоты, с добавлением или без добавления 0,3 сульфата аммония, доведенного до pH 1,7. Содержимое подвергли затравке с помощью 5 мл культуры СМ штамма, содержащей 2•108 клеток/мл. В стерильных контрольных опытах вместо 95 мл добавили 100 мл раствора. Колбы Эрленмейера подвергали выдержке при 30oC в вибраторе.
Кинетика растворения железа сменялась периодическими определениями концентрации растворимого железа в аликвотах, взятых из выщелачивающего раствора.
Скорость извлечения железа была оценена по линейной части графической зависимости, представляющей полное биологически растворенное количество железа как функцию времени и относящей это значение к каждой подвергнутой затравке клетке и системе.
Скорость растворения железа была выражена в виде миллиграммов растворенного в 1 ч железа на одну затравленную клетку. В опыте без аммиачного азота не было в основном никакого различия со стерильным контрольным опытом.
Для опыта в обезвоженной твердой среде были предварительно определены наиболее подходящие объем и концентрация кислоты. Наилучшим объемом был объем, соответствующий весовому отношению пирита в граммах к объему раствора кислоты в миллилитрах, равному 1oC1. Наиболее подходящей концентрацией кислоты была 0,45 N.
Для того, чтобы довести до конца кинетический механизм по отношению к растворимому железу, были использованы чашки Петри из полистирола диаметром 5,5 см, в каждой из которых содержалось 0,5 г пирита и 0,5 микролитра 0,45N раствора серной кислоты. За счет вращательных движений тонкая пленка была распределена по всей поверхности. Каждая чашка Петри была подвергнута затравке с помощью 360 клеток СМ штамма, содержащихся в 20 микролитрах 0,06N раствора серной кислоты. Число клеток было определено путем подсчета колоний в чашке в агаризованной железистой среде и соответствовало с погрешностью ±7% с числом колоний, которые можно подсчитать в пиритных чашках Петри. 20 мл стерильного 0,06N раствора серной кислоты добавили к соответствующим стерильным контрольным пробам. Все чашки Петри были подвергнуты выдерживанию в термостате при 30oC.
Периодически одну стерильную и одну подвергнутую затравке чашку Петри подвергли определению содержания растворимого железа путем абсорбционной спектрофотометрии.
Через 22 ч, когда чашки Петри приняли сухой внешний вид, было начато биологическое окисление. Начиная с 26 ч и в течение периода 8 ч было достигнуто наивысшее биологическое окисление, которое составило 8,79•10-4 мг/ч на клетку.
Сравнение этого значения с значением, полученным из жидкой среды с аммиаком, приводит к различию в пять порядков величины.
Пример 2. В качестве субстрата был использован искусственный CuS. Он был подвергнут затравке BA1-штаммом.
Аналогично примеру 1 биологическое окисление в обычной жидкой среде было проведено с аммиачным заполнителем и без него, а также в обезвоженной твердой среде в соответствии с описанным критерием. Во всех случаях одновременно были проведены соответствующие стерильные контрольные опыты. Содержание растворимой меди было определено путем абсорбционной спектрофотометрии. Биологическое окисление было определено в каждом случае как разность в содержании растворенной меди между затравленной системой и соответствующей стерильной контрольной пробой.
Жидкое выщелачивание было проведено в колбах Эрленмейера, содержащих 5 г CuS и 95 мл раствора серной кислоты, с добавлением 0,3 г сульфата аммония и без него. pH раствора был доведен до 2. Он был подвергнут затравке с помощью 5 мл активной культуры из ВА-штамма, содержащей 2•108 клеток/мл. В стерильных контрольных опытах вместо 95 мл были добавлены 100 мл раствора кислоты. Колбы Эрленмейера были выдержаны в вибраторе при 30oC.
Кинетический механизм растворения меди был сменен периодическими определениями содержания растворимой меди в аликвотах, взятых из выщелачивающего раствора. Была определена скорость биологического растворения меди, характеризующая биологически растворенную медь как функцию времени. Она была выражена в миллиграммах растворенной меди в части на одну затравленную клетку. В опыте с аммиачным азотом это значение составило 5,1•10-9 мг/ч на клетку. В опыте без аммиачного азота не наблюдалось в основном никакого различия со стерильным контрольным опытом.
Для опыта в обезвоженной твердой среде чашки Петри диаметром 9 см были приготовлены путем введения в каждую из них 2 г CuS и 2 мл H2O. Была получена суспензия и в результате вращательных движений она вся была равномерно распределена по поверхности чашки. Чашки Петри были высушены в вытяжном шкафу с ламинарным потоком до тех пор, пока не был достигнут постоянный вес. В каждую чашку Петри добавили 0,5 мл стерильного 0,3N раствора серной кислоты, распределяя его капля по капле до равносерного подкисления. Каждую чашку Петри подвергали затравке с использованием приблизительно 40 клеток ВА-штамма, содержащихся в 20 микролитрах 0,06N раствора серной кислоты. Количество клеток, содержащихся в прививочном материале (200 клеток/мл), было подсчитано по количеству колоний в железистой агаризованной среде и оно совпало с ошибкой +8% по отношению к числу колоний бактерий, которые были получены в чашках Петри с CuS в конце эволюции.
К стерильным контрольным пробам добавили 20 микролитров стерильного 0,06N раствора кислоты. Все чашки Петри были подвергнуты выдерживанию в термостате при 30oC.
Растворимая медь подвергалась периодическому анализу из стерильной чашки Петри и из затравленной чашки Петри. Через 18 ч, когда чашки Петри имели сухой внешний вид, биологическое окисление было начато и его продолжали с почти постоянной скоростью в течение 8 ч. В конце этой стадии была достигнута максимальная эволюция в единицах размера колоний, составленных из твердого кристаллообразного сульфата меди.
Скорость биологического окисления в течение этого периода, выраженная как растворенная медь в 1 ч на подвергнутую затравке клетку, составила 0,319 мг/ч на клетку. Это значение следует сравнить с соответствующим значением, полученным из жидкой среды.
Claims (8)
1. Способ биоокисления минерального сырья для извлечения металлов, обессеривания угля или очистки ценных металлов, включающий последовательную обработку минерального сырья кислотным реагентом и культурой микроорганизмов-биоокислителей, культивирования микроорганизмов на минеральном сырье с последующим отделением продуктов биоокисления, отличающийся тем, что до отделения продуктов биоокисления осуществляют осушениее минерального сырья.
2. Способ по п.1, отличающийся тем, что в качестве минерального сырья используют руды, минеральные концентраты или уголь.
3. Способ по п.1, отличающийся тем, что одновременно с обработкой минерального сырья кислотным реагентом сырье дополнительно обрабатывают поверхностно-активным веществом.
4. Способ по п.1, отличающийся тем, что минеральное сырье дополнительно обрабатывают реагентами, удаляющими связанную воду.
5. Способ по п. 1, отличающийся тем, что используют микроорганизмы - биоокислители, способные развиваться при 5 100oС.
6. Способ по п. 1, отличающийся тем, что в качестве микроорганизмов-биоокислителей используют собственную микрофлору минерального сырья.
7. Способ по п. 1, отличающийся тем, что процессы обработки кислотным реагентом и осушения минерального сырья осуществляют циклически.
8. Способ по п.1, отличающийся тем, что отделение продуктов биоокисления осуществляют посредством промывки, просеивания или любым другим известным путем.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AR90318330A AR245506A1 (es) | 1990-11-07 | 1990-11-07 | Un proceso de bio-metalurgica en el cual se produce la bio-oxidacion de compuestos minerales |
AR318.330 | 1990-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2099432C1 true RU2099432C1 (ru) | 1997-12-20 |
Family
ID=3478796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU915010167A RU2099432C1 (ru) | 1990-11-07 | 1991-11-06 | Способ биоокисления минерального сырья |
Country Status (21)
Country | Link |
---|---|
EP (1) | EP0489258B1 (ru) |
JP (1) | JP2854746B2 (ru) |
AP (1) | AP283A (ru) |
AR (1) | AR245506A1 (ru) |
AT (1) | ATE133998T1 (ru) |
AU (1) | AU643566B2 (ru) |
BG (1) | BG61042B1 (ru) |
BR (1) | BR9104843A (ru) |
CA (1) | CA2054806C (ru) |
DE (1) | DE69117016T2 (ru) |
DK (1) | DK0489258T3 (ru) |
ES (1) | ES2086453T3 (ru) |
FI (1) | FI915244A (ru) |
GR (1) | GR3019831T3 (ru) |
MX (1) | MX9101933A (ru) |
PE (1) | PE14091A1 (ru) |
PL (1) | PL168727B1 (ru) |
RU (1) | RU2099432C1 (ru) |
UA (1) | UA27709C2 (ru) |
YU (1) | YU176991A (ru) |
ZA (1) | ZA918770B (ru) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2087033B1 (es) * | 1994-10-14 | 1997-02-16 | Univ Madrid Autonoma | Nuevo microorganismo del genero sulfolobus y su uso en la biolixiviacion de sulfuros metalicos para recuperacion de metales. |
JP5090697B2 (ja) * | 2005-09-26 | 2012-12-05 | 公立大学法人大阪府立大学 | 金属回収方法 |
JP5052834B2 (ja) * | 2006-07-27 | 2012-10-17 | Jx日鉱日石金属株式会社 | 黄銅鉱を含有する硫化銅鉱の浸出方法 |
CN115921095B (zh) * | 2023-01-03 | 2024-06-07 | 湖南新龙矿业有限责任公司 | 一种金锑混合精矿中金的富集方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3607235A (en) * | 1968-02-23 | 1971-09-21 | British Columbia Res Council | Rapid bacteriological metal extraction method |
AU565144B2 (en) * | 1982-12-17 | 1987-09-03 | Cra Services Limited | Process |
US4974816A (en) * | 1986-02-07 | 1990-12-04 | Envirotech Corporation | Method and apparatus for biological processing of metal-containing ores |
US4729788A (en) * | 1987-01-23 | 1988-03-08 | Advanced Mineral Technologies, Inc. | Thermophilic microbial treatment of precious metal ores |
-
1990
- 1990-11-07 AR AR90318330A patent/AR245506A1/es active
- 1990-11-20 PE PE1990177903A patent/PE14091A1/es not_active Application Discontinuation
-
1991
- 1991-10-31 DE DE69117016T patent/DE69117016T2/de not_active Expired - Fee Related
- 1991-10-31 DK DK91118621.1T patent/DK0489258T3/da active
- 1991-10-31 EP EP91118621A patent/EP0489258B1/en not_active Expired - Lifetime
- 1991-10-31 AT AT91118621T patent/ATE133998T1/de not_active IP Right Cessation
- 1991-10-31 ES ES91118621T patent/ES2086453T3/es not_active Expired - Lifetime
- 1991-11-01 CA CA002054806A patent/CA2054806C/en not_active Expired - Fee Related
- 1991-11-05 ZA ZA918770A patent/ZA918770B/xx unknown
- 1991-11-05 MX MX9101933A patent/MX9101933A/es not_active IP Right Cessation
- 1991-11-05 AU AU86993/91A patent/AU643566B2/en not_active Ceased
- 1991-11-06 YU YU176991A patent/YU176991A/sh unknown
- 1991-11-06 AP APAP/P/1991/000333A patent/AP283A/en active
- 1991-11-06 BR BR919104843A patent/BR9104843A/pt not_active IP Right Cessation
- 1991-11-06 FI FI915244A patent/FI915244A/fi not_active Application Discontinuation
- 1991-11-06 UA UA5010167A patent/UA27709C2/ru unknown
- 1991-11-06 RU SU915010167A patent/RU2099432C1/ru not_active IP Right Cessation
- 1991-11-07 JP JP3350599A patent/JP2854746B2/ja not_active Expired - Fee Related
- 1991-11-07 PL PL91292342A patent/PL168727B1/pl not_active IP Right Cessation
- 1991-11-07 BG BG95433A patent/BG61042B1/bg unknown
-
1996
- 1996-05-06 GR GR960401206T patent/GR3019831T3/el unknown
Non-Patent Citations (1)
Title |
---|
US, патент, 4729778, кл. C 22 B 3/00, 1988. * |
Also Published As
Publication number | Publication date |
---|---|
AP283A (en) | 1993-09-09 |
FI915244A0 (fi) | 1991-11-06 |
MX9101933A (es) | 1992-06-01 |
GR3019831T3 (en) | 1996-08-31 |
CA2054806C (en) | 2003-03-11 |
FI915244A (fi) | 1992-05-08 |
DE69117016T2 (de) | 1996-11-14 |
DE69117016D1 (de) | 1996-03-21 |
PE14091A1 (es) | 1991-04-27 |
EP0489258A1 (en) | 1992-06-10 |
AU8699391A (en) | 1992-05-14 |
BG61042B1 (bg) | 1996-09-30 |
JPH0841553A (ja) | 1996-02-13 |
DK0489258T3 (da) | 1996-07-01 |
ZA918770B (en) | 1992-10-28 |
BR9104843A (pt) | 1992-06-23 |
AR245506A1 (es) | 1994-01-31 |
AU643566B2 (en) | 1993-11-18 |
AP9100333A0 (en) | 1992-01-31 |
YU176991A (sh) | 1994-01-20 |
PL292342A1 (en) | 1992-10-19 |
ATE133998T1 (de) | 1996-02-15 |
ES2086453T3 (es) | 1996-07-01 |
BG95433A (bg) | 1993-12-24 |
PL168727B1 (pl) | 1996-03-29 |
UA27709C2 (ru) | 2000-10-16 |
EP0489258B1 (en) | 1996-02-07 |
CA2054806A1 (en) | 1992-05-08 |
JP2854746B2 (ja) | 1999-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5763259A (en) | Bio-metallurgical process in which bio-oxidation of mineral compounds is produced | |
Frankenberger Jr et al. | Microbial volatilization of selenium from soils and sediments | |
US5834294A (en) | Biooxidation process for recovery of metal values from sulfur-containing ore materials | |
CA2305052C (en) | Bioleaching sulfidic materials | |
Gomez et al. | Silver-catalysed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms | |
Berthelin et al. | Effect of microorganisms on mobility of heavy metals in soils | |
FR2475522A1 (fr) | Procede pour separer des metaux de leurs solutions aqueuses par traitement a l'aide de champignons vivants | |
Elzeky et al. | Effect of bacterial adaptation on kinetics and mechanisms of bioleaching ferrous sulfides | |
Groudev et al. | Microbial communities in four industrial copper dump leaching operations in Bulgaria | |
de Silóniz et al. | Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge | |
Battaglia-Brunet et al. | The mutual effect of mixed thiobacilli and leptospirilli populations on pyrite bioleaching | |
Southam et al. | Examination of lipopolysaccharide (O-antigen) populations of Thiobacillus ferrooxidans from two mine tailings | |
US5030426A (en) | Biomining of gallium and germanium containing ores | |
RU2099432C1 (ru) | Способ биоокисления минерального сырья | |
Kawabe et al. | Enhancement of the specific growth rate of Thiobacillus ferrooxidans by diatomaceous earth | |
KR100557410B1 (ko) | 망간단괴의 중간생성물인 매트로부터 철산화균에 의한구리, 니켈, 코발트의 미생물침출 제련방법 | |
Kanayev et al. | The effect of temperature on the duration of the process of biochemical leaching method | |
Baldi et al. | Bioleaching of cobalt and zinc from pyrite ore in relation to calcitic gangue content | |
Acevedo et al. | Biooxidation of an enargite-pyrite gold concentrate in aerated columns | |
Garcia et al. | Microbial activity in weathering columns | |
KR100557411B1 (ko) | 섬아연광 정광으로부터 철산화균에 의한 아연의미생물침출 제련방법 | |
Groza et al. | Application of the BIOX process to the pretreatment of refractory sulphide gold ores and concentrates in order to increase Au and Ag recovery rate in hydrometallurgical extraction process [articol] | |
Monroy et al. | A laboratory study on the behavior of Thiobacillus ferrooxidans during pyrite bioleaching in percolation columns | |
Skłodowska et al. | The role of microorganisms in dispersion of thallium compounds in the environment | |
Trudinger et al. | Leaching of copper-bearing mineral substrates with wild microflora and with laboratory-bred strains of Thiobacillus ferrooxidans |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20051107 |