RU2093879C1 - Способ регистрации и обработки изображения пространственной картины и фотоаппарат (варианты) - Google Patents

Способ регистрации и обработки изображения пространственной картины и фотоаппарат (варианты) Download PDF

Info

Publication number
RU2093879C1
RU2093879C1 SU925052018A SU5052018A RU2093879C1 RU 2093879 C1 RU2093879 C1 RU 2093879C1 SU 925052018 A SU925052018 A SU 925052018A SU 5052018 A SU5052018 A SU 5052018A RU 2093879 C1 RU2093879 C1 RU 2093879C1
Authority
RU
Russia
Prior art keywords
image
elementary
camera
plane
detectors
Prior art date
Application number
SU925052018A
Other languages
English (en)
Inventor
Мартинюззи Жан-Мишель
Original Assignee
Сантр Насьональ Д'Этюд Спасьяль
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сантр Насьональ Д'Этюд Спасьяль filed Critical Сантр Насьональ Д'Этюд Спасьяль
Application granted granted Critical
Publication of RU2093879C1 publication Critical patent/RU2093879C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • G01C11/025Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures by scanning the object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Television Signal Processing For Recording (AREA)
  • Color Television Image Signal Generators (AREA)
  • Multiple-Way Valves (AREA)

Abstract

Использование: для наблюдения Земли с искусственных спутников. Сущность изобретения: в способе регистрации и обработки пространственной картины, расположенной в заданной плоскости Р, определяемой двумя взаимно перпендикулярными направлениями Х и Y, причем изображения получают с помощью фотоаппарата, обладающего в направлении U (U = х, y) плоскости Р передаточной функцией модуляции Нu(f) с частотой отсечки fсu, где f представляет собой пространственную частоту, первый этап способа включает регистрацию изображения с частотой дискретизации этого изображения fсu в направлении U, равной kfсu, где k - целое число, большее 1, второй этап способа включает обработку зарегистрированного изображения фотоаппаратом путем применения к изображению картины операции развертывания, операция развертывания в частотной области и для каждого направления U выполняется путем произведения обратной величины передаточной функции модуляции Нu(f) на подстраиваемую функцию ограничения I и (f). Фотоаппарат 100 содержит планку 120 элементарных детекторов 121 типа ССД, помещенных в фокус линзы 110. 3 с. и 3 з.п. ф-лы, 6 ил.

Description

Изобретение относится к способу регистрации и обработки изображения картины, расположенной в заданной плоскости Р, определяемой двумя перпендикулярными направлениями x, y, причем указанное изображение получается фотографическим аппаратом, имеющим в направлении U (U x, y) плоскости Р передаточную функцию модуляции Hu(f) с частотой отсечки fcu, где f пространственная частота.
Изобретение находит преимущественное применение в области наблюдения Земли с искусственных спутников.
Наиболее близким к заявленным способу и устройству являются способ и устройство [1] Фотографическая аппаратура, описанная в статье, имеет либо элементарный детектор, изображение которого в плоскости Р пробегает картину для регистрации с помощью устройства механического сканирования, соединенного с трансляционным или вращательным движением спутника, либо линейку элементарных детекторов, например, типа соединения зарядов (ССД) с трансляционным сканированием в направлении, перпендикулярном оси указанной линейки.
Способ регистрации и обработки изображения включает первый этап регистрации изображения с частотой дискретизации fcu в направлении U, равной частоте отсечки fcu, обратная величина которой соответствует пространственному разрешению на уровне плоскости наблюдения Р. Это разрешение обычно ограничено размерами применяемого(ых) элементарного(ых) детектора(ов).
Однако вследствие того, что устройство формирования изображений фотографирующего прибора само не является идеальным, передаточная функция модуляции Ни(f) не равна 1 во всем спектре частот, что приводит к разрушению регистрируемого изображения наблюдаемой картины. Это изображение возможно обработать с применением разверточного фильтра. Если обозначить как Ри(f) и Su(f) соответствующие спектры частот в направлении наблюдаемой картины и зарегистрированного изображения, то будем иметь следующее соотношение:
Su(f) Hu(f)Pu(f).
Для восстановления Рu(f) нужно применить развертывающий фильтр Su(f), который в частотной области равен обратной передаточной функции модуляции
Figure 00000002
,
что выражается в пространственной области произведением:
Figure 00000003
,
где TF-1 обозначает обратное преобразование Фурье, а P(u) и S(u) - пространственные функции, показывающие, соответственно, картину и ее изображение.
Однако теория обработки сигналов, в частности теорема Шеннона, показывает, что лишь частоты, меньше или равные половине частоты дискретизации, могут быть восстановлены разверткой, причем это ограничение обусловлено общим явлением спектрального искажения. Кроме того, в процессе развертки высокие частоты, находящиеся в диапазоне между fеu/2 и fеu, возмущают низкие частоты, лежащие в диапазоне между 0 и fеu/2.
В статье Жакмода Ж. и др. было предложено ограничить влияние на спектральное искажение передискретизации изображения, причем частота дискретизации fеu берется равной kfсu, где k целое число, большее 1. В этом случае возможно восстановить частоты по меньшей мере до частоты отсечки fси. С другой стороны, как и за пределами fсu, передаточная функция модуляции практически равна 0, а частоты, превышающие fсu, не оказывают влияния на нижние частоты, меньшие, чем fсu.
Следовательно, имеется средство увеличить в k раз разрешение в направлении и данного фотографического прибора или по другому аспекту способа реализовать фотографический аппарат, имеющий те же характеристики по разрешению, но с меньшими габаритами, с тем чтобы фокусное расстояние устройства формирования изображения можно было разделить на k, сохраняя при этом то же самое цифровое раскрытие, а, следовательно, то же самое соотношение сигнал/шум. Последняя возможность имеет очень важное преимущество в случае рассмотренного выше пространственного применения, поскольку коэффициент k 2 обеспечит увеличение в 8 раз по объему и в 4-5 раз по массе фотографического аппарата, что позволит значительно уменьшить полезную нагрузку спутника.
Однако следует отметить, что указанные преимущества не лишены недостатков. Действительно, как в случае роста разрешения данного фотографического аппарата, так и в случае применения устройства формирования изображения с пониженным фокусным расстоянием операция развертки имеет следствием снижение отношения сигнал/шум, причем это обусловлено тем, что с учетом шумового спектра Вu(f) радиометрический сигнал Su(f) изображения записывается как:
Su(f) Hu(f)P>u(f) + Bu(f).
Применение развертывающего фильтра приводит к восстановленной картине:
Figure 00000004

Поскольку передаточная функция модуляции Нu(f) максимально равна 1, понятно, что шумовой эффект Вu(f) имеет тенденцию к росту.
Техническая задача изобретения повышение отношения сигнал/шум. Технический результат достигается тем, что в способе регистрации и обработки изображения пространственной картины, расположенной в заданной плоскости Р, определяемой двумя взаимно перпендикулярными направлениями Х и Y, причем изображения получают с помощью фотоаппарата, обладающего в направлении U (U x, y) плоскости Р передаточной функцией модуляции Hu(f) с частотой отсечки fеu, где f представляет собой пространственную частоту, первый этап способа включает регистрацию изображения с частотой дискретизации этого изображения fcu в направлении U, равной kfcu, где k целое число, большее I, второй этап способа включает обработку зарегистрированного изображения фотоаппаратом путем применения к изображению картины операции развертывания, согласно изобретению операция развертывания в частотной области и для каждого направления U выполняется путем произведения обратной величины передаточной функции модуляции Hu на подстраиваемую функцию ограничения Iu(f).
Технический результат в части способа достигается также тем, что регистрация и обработка изображения осуществляются с помощью фотоаппарата, содержащего по меньшей мере один элементарный светочувствительный детектор с частотой отсечки fcu, равной обратной величине размера ΔU изображения элементарного светочувствительного детектора в направлении U плоскости Р, и с частотой дискретизации fcu, равной k/DU.
Технический результат в части способа достигается также тем, что изображение регистрируется и обрабатывается путем сканирования изображения фотоаппаратом с одним элементарным светочувствительным детектором в двух направлениях X и Y -плоскости Р.
Изображение регистрируется и обрабатывается с помощью фотоаппарата, содержащего по меньшей мере одну линейную планку с N элементарными светочувствительными детекторами, изображения которых размещены в направлении X, причем изображение сканируется линейной планкой в направлении Y.
Технический результат в части первого варианта устройства достигается тем, что в фотоаппарат, содержащий устройство формирования изображения, выполненное в виде линзы, и линейную планку элементарных детекторов, дополнительно введено R параллельных линейных планок элементарных детекторов, причем размер элементарного детектора в направлении Х равен dx, линейные планки элементарных детекторов смещены друг относительно друга по оси X на расстояние dx/R и отделены друг от друга расстоянием R'dx/R по оси Y, где R' целое число, отличное от нуля.
Технический результат в части второго варианта устройства достигается тем, что в фотоаппарат, содержащий устройство формирования изображения, выполненное в виде линзы, и линейную планку элементарных детекторов, дополнительно введены по меньшей мере одна линейная планка элементарных детекторов и оптический делитель строки, выполненный в виде четырехгранной призмы, склеенной из двух одинаковых трехгранных призм с полупрозрачным покрытием, нанесенным на плоскость склейки. Размер элементарного детектора в направлении X равен dx, а первая и вторая планки элементарных детекторов расположены на смежных гранях оптического делителя строки и смещены друг относительно друга на расстояние dx/2 по оси X.
Таким образом, восстановленная картина имеет следующий спектр частот:
Figure 00000005

Влияние функции ограничения Iu(f) меняется в противоположных направлениях в зависимости от того, рассматривают ли качество изображения или отношение сигнал/шум. Если хотят значительно ограничить конечный шум, нужно выбирать небольшую функцию ограничения в ущерб пространственному разрешению, представляемому выражением Iu(f)Pu(f), что не очень существенно в случае данного фотографического аппарата, передискретизация которого увеличивает разрешение и снижает сигнал. С другой стороны, для аппарата с меньшими габаритами, передискретизация которого позволяет поддерживать разрешение с тем же раскрытием и, следовательно, тем же сигналом, можно выбрать большую функцию ограничения Iu(f). Очевидно, что в зависимости от рассматриваемого аппарата функция ограничения будет выбираться и согласовываться с учетом характеристик выполняемой задачи.
На фиг. 1 изображена схема фотографического аппарата для реализации способа по изобретению; на фиг. 2 типичная передаточная функция модуляции аппарата по фиг. 1; на фиг. 3 функция ограничения, применяемая в комбинации с передаточной функцией модуляции по фиг. 2; на фиг. 4: а вариант реализации передискретизации столбца для сборки линейных детекторов, b вариант реализации линейной передискретизации для планки детекторов; на фиг. 5 - первый монтаж планок детекторов, выполняющих линейную передискретизацию порядка 2; на фиг. 6 второй монтаж планок, выполняющих линейную передискретизацию порядка 2.
На фиг. 1 схематично показан фотографический аппарат 100, установленный, например, на борту искусственного спутника Земли и предназначенный для передачи изображения картины, расположенной в заданной плоскости Р, определяемой двумя взаимно перпендикулярными направлениями X, Y. В рассматриваемом применении плоскость Р соответствует поверхности Земли.
Фотографический аппарат 100 образован, с одной стороны, устройством формирования изображения, схематично показанным линзой 110, но которое может также быть зеркальным телескопом, а, с другой стороны, планкой 120 элементарных детекторов 121 типа ССД, помещенных в фокус F линзы 110. В последующем описании, не носящем ограничительный характер, элементарные детекторы 121 полагаются имеющими квадратную форму. Как это можно видеть на фиг.1 вариант сканирования плоскости Р представляет собой тип "Pushroom", в котором изображение оси X планки 120 перемещается в направлении, перпендикулярном Y, со скоростью V, равной скорости спутника относительно Земли.
Фотографический аппарат 100 имеет в каждом направлении U х, у плоскости Р передаточную функцию модуляции Hu(f), типичный ход которой показан на фиг. 2. Эта передаточная функция модуляции обнуляется для частоты отсечки fсu, соответствующей разрешению аппарата 100. Обычно разрешающая способность ограничивается прерывистой конструкцией детекторов больше, чем качеством устройства формирования изображения. Если dx представляет собой размер элементарных детекторов 121, разрешение на земле ΔU в направлении и плоскости Р определяется выражением:
Figure 00000006

где Н высота спутника;
f0 фокусное расстояние устройства формирования изображения.
В качестве примера: для спутника, орбита которого располагается в 800 км над Землей, фокальное расстояние равно 1 м, а элементарные детекторы имеют сторону в 7 мкм, достигается разрешение на Земле в 5, 6 м.
Частота отсечки fсu при этом равна:
Figure 00000007

Изображение картины наблюдения регистрируется при частоте дискретизации fсu в направлении и, равном kfсu, где k целое число, большее 1. В специальном варианте реализации, показанном на фиг. 2, коэффициент передискретизации k был принят равным 2, так что fсu равно:
Figure 00000008

После первого этапа регистрации записанное изображение Su(f) подвергается операции обработки, состоящей в приложении к нему разверточного фильтра, равного в частотной области и в каждом направлении произведению обратной передаточной функции модуляции Нu(f) на функцию ограничения Ju(f).
На фиг. 3 показан пример такой функции ограничения, даваемой аналитически выражением:
Figure 00000009

Эта кривая известна под названием окно Хэннинга.
Как это было пояснено выше, функция ограничения Iu(f) подстраивается таким образом, чтобы подучить, в зависимости от рассматриваемого задания, наилучший компромисс между пространственным разрешением и соотношением сигнал/шум.
Фиг. 4, а и b, показывает, соответственно, как может быть получена в случае планки типа ССД передискретизация на 2 в столбце и в строке.
Что касается передискретизации столбца /фиг. 4, а/, достаточно располагать временем опроса ТI планки, равным времени Δt, затрачиваемого спутником на прохождение на Земле расстояния Dy/2, т.е.
Figure 00000010

Для реализации передискретизации строки /фиг. 4, b/ достаточно иметь две элементарные параллельные планки с одним и тем же шагом dx, смещенными друг относительно друга на расстояние dx/2 так, чтобы изображения этих планок в плоскости Р были бы смещены на Δx/2 Du/2.
На фиг. 5 дан первый монтаж двух планок, выполняющих построчную передискретизацию порядка 2. Планки 120 и 120" установлены каждая на поверхности соответствующей призмы 210', 210", причем указанные призмы склеены таким образом, чтобы образовать оптический делитель 200 строки. Падающий поток 300 разделяется на поверхности раздела 220 двух призм, формирующих полуотражающую пластину. Каждая планка 120' и 120" получает лишь половину световой энергии, поступающей от наблюдаемой картины, откуда ограничения на соотношение сигнал/шум.
Монтаж, показанный на фиг. 6, позволяет получить передискретизацию порядка 2 с сигналом, умноженным на коэффициент 2 по отношению к предыдущему монтажу. Две планки 120' 120", смещенные на dx/2, выполнены в виде одного компонента 400 и таким образом, чтобы обеспечить синхронизацию изображений, зарегистрированных раздельно каждой планкой, причем запаздывание в регистрации одной из планок по отношению к другой должно быть равно k'Т, где k' целое ненулевое число, что требует того, чтобы расстояние a, разделяющее планки, было равно k'dx/2. В этом втором монтаже каждая строка детекторов принимает падающий интегральный световой поток, откуда удвоение сигнала по сравнению с монтажом по фиг. 5. В случае, когда фотонный шум является преобладающим, отношение сигнал/шум умножается на коэффициент, равный
Figure 00000011

Следует также отметить, что последний монтаж может быть обобщен на случай передискретизации порядка k, превышающего 2. Достаточно расположить в одном компоненте k планок, смещенных на dx/k и отстоящих друг от друга на k'dx/k. Число k ограничивается лишь технологическими возможностями выполнения компонента с несколькими линейками.
Наконец, изобретение было описано с использованием множества элементарных детекторов, собранных в планку, но оно может быть также реализовано с одним элементарным детектором. В этом случае регистрация изображения на детекторе выполняется сканированием изображения указанным элементарным детектором в двух направлениях плоскости Р с передискретизацией на каждом сканировании.

Claims (5)

1. Способ регистрации и обработки изображения пространственной картины, расположенной в заданной плоскости P, определяемой двумя взаимно перпендикулярными направлениями X и Y, причем изображения получают с помощью фотоаппарата, обладающего в направлении U (U x,y) плоскости P передаточной функцией модуляции Hи(f) с частотой отсечки fcu, где f представляет собой пространственную частоту, причем первый этап способа включает регистрацию изображения с частотой дискретизации этого изображения fеu в направлении U, равной kfcu, где k целое число, больше 1, второй этап способа включает обработку зарегистрированного изображения фотоаппаратом путем применения к изображению картины операции развертывания, отличающийся тем, что операция развертывания в частотной области и для каждого направления U выполняется путем произведения обратной величины передаточной функции модуляции Hи(f) на подстраиваемую функцию ограничения Iи(f).
2. Способ по п.1, отличающийся тем, что регистрация и обработка изображения осуществляется с помощью фотоаппарата, содержащего по меньшей мере один элементарный светочувствительный детектор с частотой отсечки fcu, равной обратной величине размера ΔU изображения элементарного светочувствительного детектора в направлении U плоскости P и с частотой дискретизации feu, равной k/ΔU.
3. Способ по п.1 или 2, отличающийся тем, что изображение регистрируется и обрабатывается путем сканирования изображения фотоаппаратом с одним элементарным светочувствительным детектором в двух направлениях X и Y плоскости P.
4. Способ по п.1 или 2, отличающийся тем, что изображение регистрируется и обрабатывается с помощью фотоаппарата, содержащего по меньшей мере одну линейную планку с N элементарными светочувствительными детекторами, изображения которых размещены в направлении X, причем изображение сканируется линейной планкой в направлении Y.
5. Фотоаппарат, содержащий устройство формирования изображения, выполненное в виде линзы, и линейную планку элементарных детекторов, отличающийся тем, что в него дополнительно введено R параллельных линейных планок элементарных детекторов, причем размер элементарного детектора в направлении X равен dx, линейные планки элементарных детекторов смещены друг относительно друга по оси X на расстояние dx/R и отделены друг от друга расстоянием R'dx/R по оси Y, где R' целое число, отличное от нуля.
6. Фотоаппарат, содержащий устройство формирования изображения, выполненное в виде линзы, и линейную планку элементарных детекторов, отличающийся тем, что в него дополнительно введены по меньшей мере одна линейная планка элементарных детекторов и оптический делитель строки, выполненный в виде четырехгранной призмы, склеенной из двух одинаковых трехгранных призм с полупрозрачным покрытием, нанесенным на плоскость склейки, причем размер элементарного детектора в направлении X равен dx, а первая и вторая планки элементарных детекторов расположены на смежных гранях оптического делителя строки и смещены друг относительно друга на расстоянии dx/2 по оси X.
SU925052018A 1991-06-27 1992-06-26 Способ регистрации и обработки изображения пространственной картины и фотоаппарат (варианты) RU2093879C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9107962A FR2678460B1 (fr) 1991-06-27 1991-06-27 Procede d'enregistrement et de traitement d'une image et instrument de prise de vues pour la mise en óoeuvre de ce procede.
FR9107962 1991-06-27

Publications (1)

Publication Number Publication Date
RU2093879C1 true RU2093879C1 (ru) 1997-10-20

Family

ID=9414375

Family Applications (1)

Application Number Title Priority Date Filing Date
SU925052018A RU2093879C1 (ru) 1991-06-27 1992-06-26 Способ регистрации и обработки изображения пространственной картины и фотоаппарат (варианты)

Country Status (8)

Country Link
EP (1) EP0524043B1 (ru)
JP (1) JP3012870B2 (ru)
AR (1) AR247938A1 (ru)
BR (1) BR9202441A (ru)
DE (1) DE69207499T2 (ru)
ES (1) ES2083707T3 (ru)
FR (1) FR2678460B1 (ru)
RU (1) RU2093879C1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2737376B1 (fr) * 1995-07-28 1997-10-17 Centre Nat Etd Spatiales Procede et dispositif pour l'acquisition d'une image par echantillonnage par une barrette ou matrice de detecteurs optiques elementaires a transfert de charge
DE69600785T2 (de) * 1995-07-28 1999-06-10 Centre Nat Etd Spatiales Bildaufnahmeverfahren mit "push-broom" abtastung
FR2737375B1 (fr) * 1995-07-28 1997-10-17 Centre Nat Etd Spatiales Procede d'acquisition d'une image par balayage pousse-balai
FR2742554B1 (fr) * 1995-12-14 1998-03-06 Onera (Off Nat Aerospatiale) Systeme d'imagerie par defilement, notamment systeme d'observation satellitaire
FR2776456B1 (fr) 1998-03-20 2000-06-16 Centre Nat Etd Spatiales Perfectionnement a l'acquisition d'image par balayage pousse-balai
AU2002215760A1 (en) 2000-12-28 2002-07-16 Darren Kraemer Superresolution in periodic data storage media
FR2920869B1 (fr) * 2007-09-07 2009-11-27 Thales Sa Procede d'augmentation de resolution d'images multi-spectrales
CN103134664B (zh) * 2013-02-27 2015-11-18 中国科学院安徽光学精密机械研究所 一种基于凸面反射镜的在轨光学卫星相机mtf测量方法
FR3015740B1 (fr) * 2013-12-20 2016-02-05 Centre Nat Etd Spatiales Procede, dispositif et systeme de traitement de correction d'images
CN114693691B (zh) * 2022-03-23 2023-05-02 成都智元汇信息技术股份有限公司 一种双源双视角基于坐标映射的切图方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616356A (en) * 1984-03-06 1986-10-07 Optical Disc Corporation Aperture compensation signal processor for optical recording
JPH0636596B2 (ja) * 1984-05-21 1994-05-11 コニカ株式会社 放射線画像処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Жаклюда Ж. и др. Спектральное искажение, связанное с применением детекторов, образованных ячейками ССД.- Обработка сигналов т. 5, N 1, 1988. *

Also Published As

Publication number Publication date
FR2678460A1 (fr) 1992-12-31
DE69207499D1 (de) 1996-02-22
EP0524043B1 (fr) 1996-01-10
JPH06111015A (ja) 1994-04-22
BR9202441A (pt) 1993-02-09
EP0524043A1 (fr) 1993-01-20
ES2083707T3 (es) 1996-04-16
DE69207499T2 (de) 1996-09-12
FR2678460B1 (fr) 1993-10-22
JP3012870B2 (ja) 2000-02-28
AR247938A1 (es) 1995-04-28

Similar Documents

Publication Publication Date Title
US5790188A (en) Computer controlled, 3-CCD camera, airborne, variable interference filter imaging spectrometer system
EP1169847B1 (en) A method and system for super resolution image capture using a mask
US5379065A (en) Programmable hyperspectral image mapper with on-array processing
US6211906B1 (en) Computerized component variable interference filter imaging spectrometer system method and apparatus
US4908705A (en) Steerable wide-angle imaging system
RU2093879C1 (ru) Способ регистрации и обработки изображения пространственной картины и фотоаппарат (варианты)
JP3182015B2 (ja) 光学像の合成方法
US4065788A (en) Realtime image processor
US7336811B2 (en) Method and unit for suppressing a periodic pattern
US5712685A (en) Device to enhance imaging resolution
US20140204385A1 (en) Mems microdisplay optical imaging and sensor systems for underwater and other scattering environments
US5508507A (en) Imaging system employing effective electrode geometry and processing
WO2000028476A1 (en) Transformation and selective inverse transformation of large digital images
WO1998046007A1 (en) Imaging system & method
DE112010002987T5 (de) Verfahren zum Verbessern von Bildern
Lomheim et al. Analytical modeling and digital simulation of scanning charge-coupled device imaging systems
JPH08211199A (ja) X線撮像装置
Alam et al. High-resolution infrared image reconstruction using multiple randomly shifted low-resolution aliased frames
US5023921A (en) Method and a device for processing electric signals coming from the analysis of the line of an image
US6215522B1 (en) Method of acquiring an image by push-broom scanning
US20020159647A1 (en) Method and system for enhancing the performance of a fixed focal length imaging device
Schuler et al. Increasing spatial resolution through temporal super-sampling of digital video
JPH0969967A (ja) 撮像装置
Billingsley Noise considerations in digital image processing hardware
Latry et al. In-flight commissioning of SPOT5 THR quincunx sampling mode