RU2086699C1 - Способ изготовления мишени - Google Patents

Способ изготовления мишени Download PDF

Info

Publication number
RU2086699C1
RU2086699C1 SU4859655A RU2086699C1 RU 2086699 C1 RU2086699 C1 RU 2086699C1 SU 4859655 A SU4859655 A SU 4859655A RU 2086699 C1 RU2086699 C1 RU 2086699C1
Authority
RU
Russia
Prior art keywords
temperature
target
coating
plasma stream
spraying
Prior art date
Application number
Other languages
English (en)
Inventor
А.А. Лепешев
В.Н. Саунин
С.В. Телегин
Original Assignee
Сибирская аэрокосмическая академия
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сибирская аэрокосмическая академия filed Critical Сибирская аэрокосмическая академия
Priority to SU4859655 priority Critical patent/RU2086699C1/ru
Application granted granted Critical
Publication of RU2086699C1 publication Critical patent/RU2086699C1/ru

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Изобретение относится к технологии изготовления мишеней для катодного распыления материалов и может быть использовано при нанесении покрытий, применяемых в машиностроении, приборостроении, радиоэлектронике и других отраслях народного хозяйства. В изобретении используется высокоскоростной нагрев порошка распыляемого материала в потоке низкотемпературной плазмы до температур на 50-200К, превышающих его температуру плавление, что снижает вероятность окисления и выгорания элементов, а дальнейший разгон материала в плазменном потоке до скоростей 200-350 м/с способствует увеличению плотности покрытия, заполнению микронеровностей поверхности расплавленными частицами, что обеспечивает прочное сцепление покрытия с основанием мишени и высокую механическую прочность при термоударах и термоциклировании, а поддержание температуры основания мишени при осаждении расплавленных частиц в интервале 280-350К уменьшает внутренние напряжения в нанесенном слое и приводит к увеличению толщины слоя распыляемого материала в местах наиболее интенсивного износа, что обеспечивает увеличение коэффициента использования материала мишени.

Description

Изобретение относится к технологии изготовления мишеней для катодного, ионно-плазменного и магнетронного распыления материалов и может быть использовано при нанесении покрытий, применяемых в машиностроении, приборостроении, радиоэлектронике и других отраслях народного хозяйства.
Существует способ изготовления мишени [1] заключающийся в нанесении распыляемого материала на пластину из тугоплавкого металла с высокой теплопроводностью и жесткостью и их соединение посредством пайки.
Однако пайка разнородных материалов с сильно различающимися коэффициентами линейного расширения приводит к возникновению высоких механических напряжений в зоне соединения, появлению сколов, растрескиванию и отслаиванию материала мишени от охлаждаемой основы. В результате этого нарушается тепловой контакт, наблюдается локальный перегрев мишени и появление дугообразования, что в конечном счете приводит к возникновению термического и капельного распыления, снижающего выход годных элементов.
Кроме того, проведение высококачественной пайки, получение большой сплошности соединения для ряда материалов, например керамических, оказывается сложной, не всегда выполнимой задачей.
Известен также способ получения тонких пленок [2] в котором в качестве многокомпонентного катода используется порошкообразная смесь распыляемых веществ, насыпанная тонким слоем (2-5 мм) на проводящую подложку. Состав смеси при этом регулируется в соответствии со скоростями распыления компонентов. К недостаткам этого способа следует отнести невысокое качество используемого катодного узла: низкую механическую прочность, плохую теплопроводность, большую пористость смеси распыляемых материалов. Перечисленные недостатки известного способа снижают качество мишеней и уменьшают выход годных изделий при напылении.
Целью изобретения является повышение качества мишени.
Цель достигается тем, что в известном способе изготовления мишени, включающем нанесение слоя распыляемого материала на металлическую основу, операции нанесения материала и соединения его с основой осуществляют посредством подачи порошка дисперсностью 50-100 мкм в поток низкотемпературной плазмы, нагрева до температур, на 50-200К превышающих температуру плавления материала, разгона расплавленных частиц до скоростей 200-350 м/с и их последующего осаждения на охлаждаемое основание с температурой поверхности 280-350К.
Пример 1. Тщательно перемешанную смесь порошков кобальта и никеля (соответственно в весовых процентах 17 и 29%), дисперсностью 50<d<80 мкм подавали в поток аргоновой плазмы, нагревая при этом частицы до температур 1860-2000К. Последующее осаждение расплавленных частиц, движущихся со скоростью 250-300 м/с, проводили на охлаждаемое проточной водой медное основание в виде диска d 250 мм. Полученная мишень имела слой с толщиной 1-5 мм, специально увеличенной вдоль осевой линии зоны разряда, и была использована для магнитронного распыления на установке "Аратория 5". Напыленные магнитные диски имели следующие характеристики: намагниченность насыщения Js ≈0,1 Тл, коэрцитивная сила Hc ≈36-48 кА/м, коэффициент прямоугольности ≈0,9.
Пример 2. Железо-диспрозиевый сплав с соотношением компонентов Fe 64% Dy 36% после помола в порошок дисперсностью 80<d<100 мкм распылялся в потоке аргоновой плазмы. Нагретые до температур 1400-1600К частицы расплавленного материала со скоростью 220-260 м/с осаждались на охлаждаемое проточной водой прямоугольное медное основание 100х100 мм с температурой поверхности 320К. Толщина равномерно нанесенного материала мишени составила 3 мм. Полученная таким образом мишень использовалась для получения дисков с магнитооптической записью информации. Распыление мишени проводилось на установке типа УРМЗ-3-279-050. Намагниченная насыщенность Js ≈0,008-0,01 Тл, коэрцитивная сила Hс ≈160-240 кА/м, коэффициент прямоугольности ≈0,8.
Пример 3. Исходным материалом для приготовления мишени служила керамика YBa2Cu3O7-b, синтезированная из окислов Y2O3, BaO,CuO. Порошок указанной керамики дисперсностью 63<d<100 мкм подавался в поток аргоновой плазмы, нагревался до температур 1500-1700К и осаждался со скоростью 320-350 м/с в форме купола на прямоугольную медную основу, охлаждаемую проточной водой до температуры поверхности 280-300К.
Приготовленная мишень использовалась для напыления тонких пленок состава YBa2Cu3O7-b со сверхпроводящими свойствами. Температура перехода в сверхпроводящее состояние Ткр 98К.
Пример 4. Порошок кобальтового феррита (CoFe2O4) дисперсностью 50<d<80 мкм, полученный после первичной ферритизации соединения из окислов CoO и Fe2O3, вводился в поток аргоновой плазмы и нагревался до температур 1935-2100К. Затем расплавленные частицы, скорость которых составляла 200-300 м/с, осаждались на алюминиевое основание в виде диска ( d 250 мм) с температурой поверхности 300К. Толщина слоя распыляемого материала изготовленной таким образом мишени составила 3 мм. Мишень была использована для получения пленок кобальтового феррита при магнетронном распылении.
Пример 5. Порошок гексаферрита бария (BaFe12O19) дисперсностью 63-80 мкм вводился в поток аргонно-водородной плазмы, нагревался до температур 1965-2000К и разгонялся до скоростей 250-300 м/с. Осаждение расплавленных частиц осуществлялось на медное основание размером 100х100 мм при температуре поверхности 350К. Полученные мишени имели куполообразную форму и использовались для получения тонких магнитных пленок при ионно-плазменном распылении. Магнитные характеристики таких пленок имели следующие значения: остаточная индукция Br ≈0,18-0,2 Тл, коэрцитивная сила BHc ≈200-240 кА/м, максимальная магнитная энергия (BHc)max ≈(2 + 2,4) 10-2Тл•н/м
Пример 6. Частицы иттриевого феррита-гранита Y2Fe5O12 размером 50-80 мкм вводились в поток аргонно-кислородной плазмы, нагревались до температур 1878-1920К, разгонялись до скорости 200-230 м/с, а затем осаждались на медное основание с температурой поверхности 280К. Полученная мишень имела форму диска (d 250 мм) с профилированной поверхностью, имеющей утолщение ≈5мм на расстоянии, равном 1/4 диаметра диска. При магнитном распылении такой мишени были получены тонкие пленки феррита Y2Fe5O12, применяемые в магнитооптических устройствах.
Пример 7. Мишень для ионно-плазменного напыления магнитожестких пленок изготавливалась из самарий-кобальтового сплава. Частицы порошка сплава SmCo подавались в поток аргонно-водородной плазмы, нагревались до температуры 1950-2000К, разгонялись до скорости 320-350 м/с и осаждались на алюминиевое основание, температура которого поддерживалась равной 350К. Мишень имела размеры 100х100 мм с толщиной распыляемого материала 4 мм.

Claims (1)

  1. Способ изготовления мишени, включающий послойное нанесение распыляемого материала на металлическое основание, отличающийся тем, что, с целью повышения качества мишени, нанесение ведут потоком низкотемпературной плазмы путем подачи в поток материала в виде частиц с дисперсностью 50 100 мкм, в потоке частицы нагревают до температуры, на 50 200 К превышающей температуру плавления распыляемого материала, затем разгоняют до скорости 200 350 м/с и осаждают на основание, температуру которого поддерживают в процессе нанесения при 280 350 К.
SU4859655 1990-05-14 1990-05-14 Способ изготовления мишени RU2086699C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4859655 RU2086699C1 (ru) 1990-05-14 1990-05-14 Способ изготовления мишени

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4859655 RU2086699C1 (ru) 1990-05-14 1990-05-14 Способ изготовления мишени

Publications (1)

Publication Number Publication Date
RU2086699C1 true RU2086699C1 (ru) 1997-08-10

Family

ID=21532368

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4859655 RU2086699C1 (ru) 1990-05-14 1990-05-14 Способ изготовления мишени

Country Status (1)

Country Link
RU (1) RU2086699C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490367C2 (ru) * 2008-10-08 2013-08-20 Улвак, Инк. Иcпаряющийся материал и способ его изготовления
EA026366B1 (ru) * 2013-12-27 2017-03-31 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Способ изготовления катодной мишени для распыления керамических материалов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Заявка Японии N 6096760, кл.H 01 C 7/00, 1972. Авторское свидетельство СССР N 254304, кл.C 23 C 15/00, 1972. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490367C2 (ru) * 2008-10-08 2013-08-20 Улвак, Инк. Иcпаряющийся материал и способ его изготовления
EA026366B1 (ru) * 2013-12-27 2017-03-31 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Способ изготовления катодной мишени для распыления керамических материалов

Similar Documents

Publication Publication Date Title
Herman Plasma-sprayed coatings
US4197146A (en) Molded amorphous metal electrical magnetic components
US4911987A (en) Metal/ceramic or ceramic/ceramic bonded structure
US8323728B2 (en) Magnetic laminated structure and method of making
JP2957421B2 (ja) 薄膜磁石およびその製造方法ならびに円筒形強磁性薄膜
RU2086699C1 (ru) Способ изготовления мишени
KR100237316B1 (ko) 자성 박막 형성을 위한 스파터링 타겟 및 그 제조방법
EP0288711A2 (en) Rapid, large area coating of high-Tc superconductors
JPS60230903A (ja) 合金タ−ゲツトの製造方法
CN113817946A (zh) 一种HEA-SiC高温吸波材料及其制备方法
RU2564642C2 (ru) Источник для нанесения покрытия и способ его изготовления
CN112080717A (zh) 一种耐高温复合吸波材料及其制备方法
US4217151A (en) Cermet type magnetic material
US5221322A (en) Method of making ferromagnetic ultrafine particles
JPH0598433A (ja) スパツタリング用ターゲツトの製造方法
JP2010010668A (ja) 軟磁性体
JPH02111877A (ja) ターゲットを使用した基質上の無機薄膜の形成方法
JP7493717B2 (ja) 軟磁性合金粉末
JP2004296609A (ja) 永久磁石膜
US5256479A (en) Ferromagnetic ultrafine particles, method of making, and recording medium using the same
JPH08158048A (ja) ターゲットとその製造方法および高屈折率膜の形成方法
JPS6320570B2 (ru)
Babbitt et al. Fabrication and performance of ferrite phase shifters for millimeter frequencies
KR100270605B1 (ko) 철계연자성박막합금및그의제조방법
JP2006307345A (ja) スパッタリングターゲット