RU2082770C1 - Способ термообработки холоднокатаной полосы изотропной электротехнической стали - Google Patents

Способ термообработки холоднокатаной полосы изотропной электротехнической стали Download PDF

Info

Publication number
RU2082770C1
RU2082770C1 RU94021422A RU94021422A RU2082770C1 RU 2082770 C1 RU2082770 C1 RU 2082770C1 RU 94021422 A RU94021422 A RU 94021422A RU 94021422 A RU94021422 A RU 94021422A RU 2082770 C1 RU2082770 C1 RU 2082770C1
Authority
RU
Russia
Prior art keywords
hydrogen
ratio
temperature
cooling
maximum
Prior art date
Application number
RU94021422A
Other languages
English (en)
Other versions
RU94021422A (ru
Inventor
И.В. Франценюк
Л.Б. Казаджан
В.П. Настич
К.Ф. Лосев
Б.И. Миндлин
В.И. Парахин
Original Assignee
Акционерное общество "Новолипецкий металлургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Новолипецкий металлургический комбинат" filed Critical Акционерное общество "Новолипецкий металлургический комбинат"
Priority to RU94021422A priority Critical patent/RU2082770C1/ru
Publication of RU94021422A publication Critical patent/RU94021422A/ru
Application granted granted Critical
Publication of RU2082770C1 publication Critical patent/RU2082770C1/ru

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Использование: получение холоднокатаного проката с высокими электромагнитными свойствами, толщиной 0,35 - 0,7 мм, с электроизоляционным покрытием или без него, предназначенного для выработки деталей магнитопроводов без заусенцев, сколов и других дефектов из стали с содержанием, мас.%: углерода 0,02 - 0,06; кремния 0,2 - 3,2; марганца 0,1 - 0,5; фосфора - не более 0,18; серы -не более 0,008; хрома и никеля - не более 0,06 каждого; меди - не более 0,15; алюминия 0,2 - 0,6; титана - не более 0,02 и железо - остальное по технологии с отжигом в агрегатах непрерывного действия. Сущность изобретения: горячекатаные полосы толщиной до 2,5 мм после термической обработки или без нее и травления подвергают холодной прокатке на конечную толщину. После холодной прокатки полосы обезжиривают, промывают и подвергают в проходной печи обезуглероживающему отжигу при 800 - 1050oC в азотоводородной атмосфере с уменьшением отношения содержания водяных паров к содержанию водорода от максимального 0,26 до минимального 0,006 в температурном интервале 800 - 1050oC, а охлаждение до промежуточной температуры 750 - 780oC обеспечивают со скоростью 60 - 90oC/мин в увлажненной азотоводородной атмосфере с отношением содержания водяных паров к содержанию водорода возрастающем от минимального до близкого к максимальному, далее - с произвольной скоростью до температуры окружающей атмосферы. 1 з.п. ф-лы, 4 табл.

Description

Изобретение относится к металлургии, в частности к производству электротехнической изотропной стали по технологии с отжигом в агрегатах непрерывного действия.
В настоящее время производство электротехнической холоднокатаной изотропной стали включает следующие технологические операции: горячую прокатку непрерывнолитых слябов из стали с содержанием кремния до 3,5% на полосу толщиной 2,0 -2,5 мм, отжиг в защитной атмосфере горячекатаного металла путем нагрева до 800 1000oC или без него, травление, однократную холодную прокатку на конечную толщину и окончательную термическую обработку в агрегате непрерывного отжига (АНО). В линии АНО полосы обезжиривают, промывают, нагревают до 800oC и обезуглероживают в увлажненной азотоводородной атмосфере в течение 4, 5 6 мин, затем нагревают до 900 1050oC, выдерживают и охлаждают, после чего наносят покрытие.
Известен способ отжига изотропной электротехнической стали, который предусматривает горячую прокатку металла с содержанием кремния 0,8 -3,5% углерода 0,015 0,06% и алюминия 0,01 0,6% травление, холодную прокатку на конечную толщину и обезуглероживающий отжиг. Обезуглероживание металла начинают с нагрева до диапазона температур 1000 1100oC, затем продолжают при промежуточной температуре 760 840oC и заканчивают при 920 - 990oC, при этом, охлаждение до промежуточной температуры осуществляют со скоростью 300 580o/мин, а нагрев -со скоростью 30 60o/мин. Данный способ позволяет получать прокат с высокими магнитными свойствами, но не предотвращает образование на его поверхности хрупкой оксидной пленки толщиной до 5 мкм, которая затрудняет вырубку при изготовлении деталей магнитопроводов.
Известен способ производства листовой электротехнической кремнистой стали с пониженной хрупкостью после отжига. Способ предусматривает горячую прокатку полосы толщиной 2,2 мм из стали с химическим составом, мас. углерода не более 0,04; кремния до 3,2 и алюминия не менее 0,4. Затем следует травление, холодная прокатка до толщины 0,55 мм, промежуточный рекристаллизационный отжиг в течение 4 мин при 810oC во влажной атмосфере, содержащей пары воды и водород и окончательная холодная прокатка до толщины 0,5 мм. Обезуглероженный прокат отжигают повторно в той же атмосфере в течение 4 мин при 840oC. Затем следует еще один отжиг при 750oC в течение 2 ч. в атмосфере сухого азота.
На поверхности проката образуется оксидная пленка толщиной от 0,5 до 2,5 мкм, состоящая, в основном, из окислов алюминия. Уменьшение содержания алюминия в стали менее 0,4% приводит к утолщению пленки и появлению хрупкости. Данный способ позволяет получать прокат как с высокими электромагнитными свойствами, так и технологичным при вырубке деталей магнитоводов, т.е. способностью штамповаться без заусенцев. Однако, этот способ является трудоемким, т. к. предусматривает две холодные прокатки и три термические обработки.
Наиболее близким по совокупности признаков к изобретению является способ термической обработки электротехнической изотропной стали. По этому способу после горячей прокатки и однократной холодной прокатки металл с содержанием 0,03 0,07% углерода, 0,3 0,7% алюминия, до 3,3% кремния, железо - остальное подвергают обезуглероживанию в агрегатах непрерывного отжига в увлажненной азотоводородной атмосфере с отношением содержания водяных паров к содержанию водорода
Figure 00000001
равным 0,26 0,006, причем в начале обезуглероживания выбирают отношение, близкое к максимальному с уменьшением его по мере обезуглероживания полосы при ее нагреве в температурном интервале 800 - 1050oC и охлаждения. Как показывают опытные данные, этот способ обеспечивает получение проката с высокой средней магнитной индукцией B2500. Однако, при глубоком обезуглероживании (до содержания углерода не более 0,003%) на поверхности полосы при высоких температурах, образуется прерывистая, толщиной до 3 мкм, оксидная пленка, которая ухудшает средние удельные магнитные потери P1,5/50.
По предлагаемому способу производства технологичной при холодной штамповке электротехнической изотропной стали с содержанием, мас. углерод 0,02 0,06; кремний 0,2 3,2; марганец 0,11 0,5; фосфор не более 0,18; сера не более 0,008; хром и никель не более 0,06 каждого; медь не более 0,15; алюминий 0,2 0,6; титан не более 0,03 и железо остальное после горячей прокатки, отжига горячекатаной полосы или без него, травления, холодной прокатки на конечную толщину металл подвергают обезуглероживающему отжигу в агрегатах непрерывного действия в увлажненной азотоводородной атмосфере с отношением содержания водяных паров к содержанию водорода
Figure 00000002
равным 0,26 0,006, причем в начале обезуглероживания выбирают отношение близкое к максимальному, с уменьшением его по мере обезуглероживания полосы при ее нагреве в температурном интервале 800 1050oC и охлаждения.
Предлагаемый способ отличается от известного тем, что при обезуглероживающем отжиге обеспечивают охлаждение до промежуточной температуры 750 780oC со скоростью 60 90o/мин в увлажненной азотоводородной атмосфере с отношением содержания водяных паров к содержанию водорода, возрастающем от минимального до близкого к максимальному, далее с произвольной скоростью до температуры окружающей атмосферы.
Продолжение при обезуглероживающем отжиге охлаждения во влажной азотоводородной атмосфере до промежуточной температуры 750 780oC со скоростью 60 90o/мин способствует более глубокому обезуглероживанию (не более 0,003%) металла и формированию на поверхности полосы оксидной пленки толщиной не более 0,8 мкм, состоящей из окислов алюминия.
Оксидная пленка толщиной до 0,08 мкм практически не ухудшает электромагнитные свойства стали и не затрудняет вырубку деталей магнитопроводов без заусенцев.
Анализ патентной и научно-технической литературы показал, что в предлагаемом способе производства технологичной при холодной штамповке электротехнической изотропной стали техническое решение заключается в том, что при обезуглероживающем отжиге обеспечивают охлаждение до промежуточной температуры 750 780oC со скоростью 60 90o/мин в увлажненной азотоводородной атмосфере с отношением содержания водяных паров к содержанию водорода возрастающем от минимального до близкого к максимальному, далее -с произвольной скоростью до температуры окружающей атмосферы является новым и соответствует критерию "изобретательский уровень".
Для осуществления изобретения горячекатаный продукт толщиной 2 2,5 мм подвергают отжигу или без него, травлению, холодной прокатке на конечную толщину и обезуглероживающему отжигу в увлажненной азотоводородной атмосфере с отношением содержания водяных паров к содержанию водорода
Figure 00000003
равным 0,26 0,006, причем в начале обезуглероживания выбирают отношение близкое к максимальному, с уменьшением его по мере обезуглероживания полосы при ее нагреве в температурном интервале 800 1050oC и охлаждения.
При обезуглероживающем отжиге обеспечивают охлаждение до промежуточной температуры 750 780oC со скоростью 60 90o/мин в увлажненной азотоводородной атмосфере с отношением содержания водяных паров к содержанию водорода, возрастающем от минимального до близкого к максимальному, далее с произвольной скоростью до температуры окружающей атмосферы.
Экспериментальная проверка была проведена на стали с содержанием кремния 0,96; 1,72 и 2,77% (см. табл. 1).
Горячекатаные полосы толщиной 2,2 мм подвергали в атмосфере сухого азота термической обработке при температуре 850 900oC в течение 1 мин, травлению, холодной прокатке на конечную толщину 0,5 мм и обезуглероживающему отжигу в агрегате непрерывного действия в атмосфере увлажненного защитного газа, состоящего из 15 20% водорода и 85 80% азота.
При производстве проката по предлагаемому изобретению и с отклонениями от него в температурном интервале обезуглероживания 800 1050oC нагрев осуществляли при уменьшении отношения
Figure 00000004
от 0,26 до 0,006, а охлаждение до температуры 750 780, 795 и 735oC обеспечивали со скоростью 60 90, 45 и 105o/мин при увеличении отношения
Figure 00000005
от 0,006 до 0,26.
Содержание углерода в металле после отжигов не превышало 0,003%
Магнитные свойства проката, изготовленного по предлагаемому изобретению, а также с отклонениями от него приведены в табл. 2.
Установлено, что при одинаковой скорости охлаждения, при уменьшении температуры промежуточной ступени от 780 до 750oC магнитные свойства стали каждой плавки изменяются незначительно: средние удельные магнитные потери P1,5/50 возрастают на 0,02 0,03 Вт/кг, а средняя магнитная индукция B2500 и анизотропия магнитной индукции ΔB1500 не изменяются.
При изменении температуры промежуточной ступени до значений, находящихся вне пределов изобретения электромагнитные свойства стали ухудшаются. При увеличении температуры промежуточной ступени до значений более 780oC средние удельные магнитные потери P15/50 и анизотропия магнитной индукции B практически не изменяются, а средняя магнитная индукция B уменьшается на 0,01 0,02 Тл (табл. 2, примеры 4 и 1). При снижении температуры промежуточной ступени до значений менее 750oC средние удельные магнитные потери P1,5/50 возрастают на 0,08 0,14 Вт/кг, а средняя магнитная индукция B2500 и анизотропия магнитной индукции ΔB2500 не изменяются (табл. 2, примеры 5 и 3).
Определено, что при одинаковой температуре промежуточной ступени, с возрастанием скорости охлаждения от 60 до 90o/мин увеличиваются средние удельные магнитные потери P1,5/50 на 0,02 0,06 Вт/кг, анизотропия магнитной индукции ΔB2500 на 0,01 Тл, а средняя магнитная индукция B2500 не изменяется (табл. 2, примеры 1 3).
При изменении скорости охлаждения до значений, находящихся вне пределов предлагаемого изобретения, электромагнитные свойства проката ухудшаются. При уменьшении скорости охлаждения до значений менее 60o/мин средние удельные магнитные потери P1,5/50 и анизотропия магнитной индукции ΔB2500 не изменяются, а средняя магнитная индукция B2500 уменьшается на 0,01 - 0,02 Тл; при увеличении скорости охлаждения до значений более 90o/мин средние удельные магнитные потери P1,5/50 возрастают на 0,12 0,23 Вт/кг, при этом, средняя магнитная индукция B2500 не изменяется, а анизотропия магнитной индукции ΔB2500 увеличивается на 0,01 Тл (табл. 2, примеры 6 и 2).
Следует особо отметить, что во всех случаях (табл. 2, примеры 1 3) толщина оксидного на поверхности проката слоя, состоящего из окислов алюминия, не превышает 0,8 мкм, а граница "оксидный слой-металл" имеет четкий, но плавный переход.
При изготовлении проката по известному способу-прототипу обезуглероживающий отжиг в температурном интервале 800 1050oC проводили с увлажненной азотоводородной атмосфере с отношением содержание водяных паров к содержанию водорода
Figure 00000006
равным 0,26 0,006, причем в начале обезуглероживания выбирают отношение, близкое к минимальному, с уменьшением его по мере обезуглероживания полосы.
Содержание углерода в металле после обезуглероживающего отжига не превышало 0,003%
Магнитные свойства проката, изготовленного по способу-прототипу приведены в табл. 3.
Сравнение электромагнитный свойств стали показывает, что прокат, изготовленный по известному способу, имеет средние удельные магнитные потери P1,5/50 на 0,09 0,25 Вт/кг больше, а среднюю магнитную индукцию B2500 на 0,01 0,3 Тл меньше, по сравнению с металлом, изготовленным по предлагаемому способу (табл. 3 и 2, примеры 1 3).
Следует также отметить, что на поверхности проката, изготовленного по известному способу, образуется прерывистая оксидная пленка, состоящая в основном из окислов алюминия, толщиной от 0,7 до 3,2 мм.
Сравнение механических свойств показало, то прокат, изготовленный по пpедложенному способу имеет лучшее сочетание пластических, пpочностных хаpактеpистик и твеpдости HV5, обеспечивающих меньший износ pежущих инстpументов и склонность к обpазованию заусенцев, искажению фоpмы и pазмеpов выpубленных деталей, по сpавнению с металлом, изготовленным по известному способу-пpототипу (табл. 4). Пpи пpактически одинаковом относи- тельном удлинением δ4, отношение пpедела текучести к вpеменному сопpотив- лению σтв металла, изготовленного по пpедлагаемому изобpетению, на 0,05-0,08 больше и составляет 0,69-0,71, а твеpдость HV5 на 6,15 и 25 ед. меньше и составляет 124-129, 130-135 и 145-150 ед. для стали плавок 1, 2 и 3 соответственно, по сpавнению со сталью, изготовленной по известному способу- пpототипу (табл.4)о

Claims (2)

1. Способ термообработки холоднокатаных полос изотропной электротехнической стали, включающий обезуглероживающий отжиг в температурном интервале 800 1050oС в увлажненной азотоводородной атмосфере, с отношением содержания водяных паров к содержанию водорода PH2O PH2 в интервале 0,26 0,006, причем в начале обезуглероживающего отжига выбирают отношение, близкое к максимальному, и уменьшают его по мере обезуглероживания стали, с последующим охлаждением, отличающийся тем, что используют сталь, содержащую, мас.
Углерод 0,2 0,06
Кремний 0,2 3,2
Марганец 0,1 0,5
Фосфор Не более 0,18
Сера Не более 0,008
Хром Не более 0,06
Никель Не более 0,06
Медь Не более 0,15
Алюминий 0,2 0,6
Титан Не более 0,02
Железо Остальное
а охлаждение проводят со скоростью 60 90o/мин до промежуточной температуры 750 780oС в увлажненной азотоводородной атмосфере при изменении отношения содержания водяных паров к содержанию, водорода PH2O PH2 от минимального до близкого к максимальному, далее охлаждают с произвольной скоростью до температуры окружающей атмосферы.
2. Способ по п.1, отличающийся тем, что обезуглероживающий отжиг проводят в агрегатах непрерывного действия.
RU94021422A 1994-06-07 1994-06-07 Способ термообработки холоднокатаной полосы изотропной электротехнической стали RU2082770C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94021422A RU2082770C1 (ru) 1994-06-07 1994-06-07 Способ термообработки холоднокатаной полосы изотропной электротехнической стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94021422A RU2082770C1 (ru) 1994-06-07 1994-06-07 Способ термообработки холоднокатаной полосы изотропной электротехнической стали

Publications (2)

Publication Number Publication Date
RU94021422A RU94021422A (ru) 1996-04-20
RU2082770C1 true RU2082770C1 (ru) 1997-06-27

Family

ID=20156960

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94021422A RU2082770C1 (ru) 1994-06-07 1994-06-07 Способ термообработки холоднокатаной полосы изотропной электротехнической стали

Country Status (1)

Country Link
RU (1) RU2082770C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2471013C2 (ru) * 2008-07-22 2012-12-27 Ниппон Стил Корпорейшн Электротехническая листовая сталь с неориентированным зерном и способ ее изготовления
RU2489500C1 (ru) * 2012-05-03 2013-08-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства холоднокатаной электротехнической изотропной стали с улучшенной плоскостностью
RU2804215C1 (ru) * 2020-05-29 2023-09-26 Смс Груп Гмбх Способ рекристаллизационного отжига изотропной электротехнической полосовой стали

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1770400, кл. C 21D 8/12, 1992. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2471013C2 (ru) * 2008-07-22 2012-12-27 Ниппон Стил Корпорейшн Электротехническая листовая сталь с неориентированным зерном и способ ее изготовления
RU2489500C1 (ru) * 2012-05-03 2013-08-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства холоднокатаной электротехнической изотропной стали с улучшенной плоскостностью
RU2804215C1 (ru) * 2020-05-29 2023-09-26 Смс Груп Гмбх Способ рекристаллизационного отжига изотропной электротехнической полосовой стали

Also Published As

Publication number Publication date
RU94021422A (ru) 1996-04-20

Similar Documents

Publication Publication Date Title
KR101070064B1 (ko) 자속 밀도가 높은 방향성 전자기 강판의 제조 방법
JP5779303B2 (ja) 高透磁率方向性電磁鋼材
JP2983128B2 (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
WO2014049770A1 (ja) 方向性電磁鋼板の製造方法
MX2013005804A (es) Metodo para fabricar una lamina de acero electrico de grano orientado.
JPH10298653A (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3392669B2 (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
RU2082770C1 (ru) Способ термообработки холоднокатаной полосы изотропной электротехнической стали
EP0528419B2 (en) Method of producing grain oriented silicon steel sheet having low iron loss
US3881967A (en) High saturation cobalt-iron magnetic alloys and method of preparing same
EP0398114A2 (en) Process for preparation of thin grain oriented electrical steel sheet having superior iron loss and high flux density
JP2592740B2 (ja) 超低鉄損一方向性電磁鋼板およびその製造方法
CA1098426A (en) Electromagnetic silicon steel from thin castings
CA1231630A (en) Low loss electrical steel strip and method for producing same
JPH06100937A (ja) グラス被膜を有しない極めて鉄損の優れた珪素鋼板の製造法
JPS61288056A (ja) 深絞り用アルミニウム合金板の製造方法
GB2060697A (en) Grain-oriented silicon steel production
JP4103393B2 (ja) 方向性電磁鋼板の製造方法
JPH03215627A (ja) 無方向性電磁鋼板の製造方法
JPH11350032A (ja) 電磁鋼板の製造方法
JPS63186823A (ja) 磁気特性の優れた電磁鋼板の製造方法
JPS63227716A (ja) 高珪素鉄板の製造方法
JP3061515B2 (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
WO2023129259A1 (en) Improved method for the production of high permeability grain oriented electrical steel containing chromium
JP3561918B2 (ja) 方向性けい素鋼板の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070608