RU2073734C1 - Способ обогащения некондиционного оловосодержащего полиметаллического сырья - Google Patents
Способ обогащения некондиционного оловосодержащего полиметаллического сырья Download PDFInfo
- Publication number
- RU2073734C1 RU2073734C1 RU93051915A RU93051915A RU2073734C1 RU 2073734 C1 RU2073734 C1 RU 2073734C1 RU 93051915 A RU93051915 A RU 93051915A RU 93051915 A RU93051915 A RU 93051915A RU 2073734 C1 RU2073734 C1 RU 2073734C1
- Authority
- RU
- Russia
- Prior art keywords
- tin
- arsenic
- sublimates
- capture
- dressing
- Prior art date
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к цветной металлургии и может быть использовано для получения высококачественных оловянных концентратов из труднообогатимых оловянных руд и некондиционного оловянного сырья: например промпродуктов обогащения сульфидно-касситеритовых руд с высоким содержанием мышьяка и серы, сульфидных и кварцевых хвостов обогатительных и доводочных фабрик. Предложенный способ позволяет при сохранении высокого извлечения олова и других ценных компонентов (свинца, висмута, индия) исключить возможность образования в системе улавливания возгонов сильнотоксичного мышьяковистого водорода, уменьшить стоимость оборудования и повысить безопасность обслуживания установки. Согласно изобретению в способе обогащения некондиционного оловосодержащего полиметаллического сырья, включающем приготовление шихты, хлоридовозгоночный обжиг, улавливание возгонов и их гидрометаллургическую переработку, возгоны улавливают водной суспензией щелочного соединения кальция. В нейтральной и щелочной среде возможность образования мышьяковистого водорода полностью исключена. Пульпу выводят из системы улавливания и выщелачивают раствором соляной кислоты. Сульфид мышьяка и элементарный мышьяк вместе с пылью отделяют фильтрованием, а из фильтрата щелочной кальцийсодержащей суспензией осаждают оловянный концентрат. 1 ил.
Description
Изобретение относится к цветной металлургии и может быть использовано для получения оловянных концентратов из труднообогатимых оловянных руд и некондиционного оловянного сырья: например промпродуктов обогащения сульфидно-касситеритовых руд с высоким содержанием мышьяка и серы, сульфидных и кварцевых хвостов обогатительных и доводочных фабрик.
Известны способы химико-металлургического обогащения некондиционного оловянного сырья, основанные на возгонке летучих оксидов и сульфидов из расплавов.
Так на горно-металлургическом комбинате "Альберт Функ" в Германии бедные концентраты, оловосодержащие продукты из отвалов и измельченные, богатые оловом шлаки металлургического производства смешивают с сульфидизатором (пирротином), гранулируют, сушат, подвергают плавке и возгоночному обжигу (фьюмингованию). Возгоны, содержащие олово, свинец, мышьяк, конденсируют в виде тонкой пыли, гранулируют, подвергают обжигу для удаления мышьяка, и используют в качестве оловянного концентрата при получении олова известными способами. Извлечение олова в концентрат достигает 95% что существенно выше, чем при использовании традиционных способов обогащения.
К недостаткам способа относится помимо высоких энергетических затрат, обусловленных необходимостью расплавления всей массы бедного сырья, образование большого количества отходящих газов, очистка которых от токсичных оксидов мышьяка и серы затруднена тем, что процесс фьюмингования периодический, поэтому состав отходящих газов резко меняется во времени.
Наиболее близким к предлагаемому способу является способ химико-металлургического обогащения оловосодержащего полиметаллического сырья, основанный на использовании процессов хлоридовозгонки и гидрометаллургической переработки возгонов [1] Способ включает следующие стадии:
1. Приготовление шихты, содержащей бедное оловянное сырье, уголь и хлорид кальция;
2. Хлоридно-сульфатизирующий обжиг (ХСО), в результате которого олово, свинец, висмут, индий возгоняются в виде хлоридов, а мышьяк в виде нерастворимого в солянокислых растворах и малотоксичного сульфида.
1. Приготовление шихты, содержащей бедное оловянное сырье, уголь и хлорид кальция;
2. Хлоридно-сульфатизирующий обжиг (ХСО), в результате которого олово, свинец, висмут, индий возгоняются в виде хлоридов, а мышьяк в виде нерастворимого в солянокислых растворах и малотоксичного сульфида.
3. Конденсацию возгонов в конденсаторах, орошаемых солянокислыми оборотными растворами, в результате которой образуется пульпа, содержащая в растворе хлориды олова, свинца, висмута, индия, а в твердой фазе сульфиды мышьяка и пыль;
4. Гидрометаллургическую переработку пульпы, включающую фильтрование для отделения пыли и сульфидов мышьяка, нейтрализацию кислого фильтрата гидрооксидом кальция с целью осаждения из фильтрата гидроксидов олова, свинца, висмута (коллективного оловянного концентрата) и отделение полученного в результате гидролиза хлоридов богатого оловянного концентрата от раствора хлорида кальция.
4. Гидрометаллургическую переработку пульпы, включающую фильтрование для отделения пыли и сульфидов мышьяка, нейтрализацию кислого фильтрата гидрооксидом кальция с целью осаждения из фильтрата гидроксидов олова, свинца, висмута (коллективного оловянного концентрата) и отделение полученного в результате гидролиза хлоридов богатого оловянного концентрата от раствора хлорида кальция.
Способ обеспечивает высокое извлечение олова и его спутников, позволяет по сравнению с фьюмингованием в 3-4 раза снизить энергетические затраты, примерно в 5 раз уменьшить количество отходящих газов, повысить извлечение в коллективный оловянный концентрат ценных спутников олова: свинца, висмута, индия.
Недостатком прототипа является использование солянокислых растворов для конденсации хлоридных возгонов, что может привести к образованию в конденсационной системе высокотоксичного мышьяковистого водорода в результате взаимодействия растворимых соединений мышьяка с металлической поверхностью конденсаторов, трубопроводов и циркуляционных насосов.
Использование солянокислых растворов для улавливания хлоридов олова обусловлено тем, что при гидролизе в нейтральной и щелочной среде тетрахлорида олова могут образовываться нерастворимые даже в концентрированной соляной кислоте полимерные соединения олова, что затруднит последующее отделение олова от пыли и сульфидов мышьяка.
Для предотвращения возможности контакта солянокислых растворов с металлическими стенками применяют защитные покрытия, что обуславливает существенное удорожание аппаратурного оформления конденсационной системы и не позволяет полностью исключить опасность для обслуживающего персонала в случае нарушения покрытия.
Цель настоящего изобретения состоит в том, чтобы исключить возможность образования в конденсационной системе сильнотоксичного мышьяковистого водорода, что позволит снизить требования предъявляемые к аппаратурному оформлению конденсационной системы, следовательно, уменьшить стоимость оборудования и повысить безопасность обслуживания установки.
Согласно изобретению поставленная цель достигается тем, что в способе химико-металлургического обогащения оловянного полиметаллического сырья, включающем приготовление шихты, ХСО, мокрое улавливание возгонов и гидрометаллургическую переработку образующейся пульпы, улавливание возгонов осуществляют водной суспензией щелочного соединения кальция, например гидроксида или карбоната кальция.
В нейтральной и щелочной среде возможность образования мышьяковистого водорода полностью исключена. Хлориды олова, и сопутствующих металлов гидролизуются уже в процессе конденсации, в результате чего происходит более полное улавливание возгонов.
Пульпу, твердая фаза которой содержит гидроксиды олова, свинца, висмута и нерастворимые в соляной кислоте сульфид мышьяка, элементарный мышьяк и пыль, выводят из конденсационной системы в реактор и выщелачивают раствором соляной кислоты. В раствор практически полностью переходит олово, свинец висмут, индий.
Сульфид мышьяка и элементарный мышьяк не растворяются в соляной кислоте и вместе с нерастворимой пылью отделяются фильтрованием. Полученный мышьяксодержащий кек направляют на дальнейшую переработку с целью превращения в товарные продукты, либо на захоронение.
В раствор хлоридов металлов добавляют суспензию щелочного соединения кальция. В результате гидролиза хлоридов в осадок переходят гироксиды олова, свинца, висмута. Полученный коллективный оловянный концентрат фильтрованием отделяют от раствора хлорида кальция.
Фильтрат раствор хлорида кальция, используют для приготовления шихты, а промывные воды, получаемые при отмывке оловянного концентрата от иона хлора, направляют на орошение конденсаторов.
Как показали результаты наших исследований, при использовании нового процесса хлоридовозгоночного обжига [2] олово возгоняется в виде дихлорида. Гидроксид двухвалентного олова, в отличие от гидроксида четырехвалентного олова, образующегося при общепринятом способе хлоридовозгонки, не переходит в нерастворимую форму. Тем самым обеспечиваются условия, необходимые для последующего отделения олова от нерастворимых в соляной кислоте сульфидов мышьяка и пыли.
Принципиальная схема предлагаемого способа приведена на рисунке. Способ осуществляют следующим образом.
Бедное оловянное полиметаллическое сырье (1), содержащее мышьяк и серу, смешивают с углем (2) и оборотным раствором хлорида кальция (3), сушат (4) при 120-150oС и направляют на ХСО, в реактор кипящего слоя (5). Обжиг осуществляют в соответствии с а.с. N 17149412, что позволяет возогнать олово в форме дихлорида, а мышьяк в виде сульфида.
Огарок (6) ХСО охлаждают и направляют в отвал или на дальнейшую переработку для извлечения меди и благородных металлов, которые при условия ХСО остаются полностью в огарке.
Возгоны ХСО улавливают в конденсаторах (7), орошаемых оборотными растворами. Для выделения в твердую фазу олова и других металлов, в оборотные растворы добавляют известь или карбонат кальция (8).
Пульпу, полученную при мокром улавливании возгонов, выводят из конденсационной системы в реактор (9), туда же добавляют соляную кислоту (10). После растворения гидроксидов металлов пульпу фильтруют (11) для отделения твердой фазы (12), содержащей сульфид мышьяка и пыль, попавшую в конденсационную систему из реактора КС.
В реактор с фильтратом (13) солянокислым раствором хлоридов олова, свинца, висмута и других металлов добавляют известь или карбонат кальция (8), для осаждения гидроксидов олова и сопутствующих металлов. Полученную суспензию фильтруют (11). Осадок (14) оловянный концентрат, промывают, сушат и направляют на пирометаллургическую переработку.
Пример 1. Сульфидно-кварцевые хвосты доводочной фабрики Новосибирского оловокомбината состава, олово 1,5; мышьяк 3,6; железо 21; свинец - 0,5; висмут 0,03; сера 6,5; остальное кислород, кремний и другие элементы, смешивают с углем (6%) и таким количеством концентрированного раствора хлорида кальция, чтобы концентрация хлорида кальция в шихте составила 5%
Шихту гранулируют, сушат при 120-160oС и обжигают при 850oС в течение 2-х часов при расходе воздуха не более 0,5-0,6 м3/кг шихты.
Шихту гранулируют, сушат при 120-160oС и обжигают при 850oС в течение 2-х часов при расходе воздуха не более 0,5-0,6 м3/кг шихты.
В результате обжига получают огарок с содержанием, олова 0,07; мышьяка 0,05; серы 3,8; железа 22,5; остальное кислород, кремний и другие элементы. Извлечение в возгон олова и мышьяка свыше 96%
Возгоны, образующиеся при обжиге, улавливают в конденсаторе, орошаемом оборотными растворами, в которые вводят известь.
Возгоны, образующиеся при обжиге, улавливают в конденсаторе, орошаемом оборотными растворами, в которые вводят известь.
Пульпу, полученную при улавливании возгонов, направляют в реактор с мешалкой. Туда же подают расчетное количество соляной кислоты для растворения гидроксидов олова и других металлов. Суспензию перемешивают в течение 30 минут, фильтруют и получают раствор хлоридов металлов и мышьяковый кек, в котором после промывки и сушки содержится, мышьяк 48; сера 34,8; железо 3,7; олово 0,8, остальное кальций, кислород и другие элементы.
В фильтрат для осаждения гидроксидов олова и других металлов добавляют известь. Полученный в результате осаждения оловянный концентрат содержит, в олово 38,3; свинец 13; висмут 0,8; мышьяк 0,1; железо 1,54; кальций 8,7; остальное кислород, кремний и другие элементы.
Основные стадии процесса успешно прошли полупромышленную проверку на Новосибирском оловокомбинате. Принято решение о внедрении способа для переработки отвалов прежних лет и другого некондиционного оловянного сырья.
Claims (1)
- Способ обогащения некондиционного оловосодержащего полиметаллического сырья, включающий приготовление шихты с использованием восстановителя и хлорида кальция, хлоридовозгоночный обжиг, улавливание возгонов и их гидрометаллургическую переработку фильтрацией для отделения мышьяксодержащего кека и осаждением оловянного концентрата щелочным кальцийсодержащим соединением, отличающийся там, что улавливание возгонов осуществляют щелочной кальцийсодержащей суспензией, а пульпу, полученную при улавливании возгонов, перед фильтрацией обрабатывают соляной кислотой.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU93051915A RU2073734C1 (ru) | 1993-11-15 | 1993-11-15 | Способ обогащения некондиционного оловосодержащего полиметаллического сырья |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU93051915A RU2073734C1 (ru) | 1993-11-15 | 1993-11-15 | Способ обогащения некондиционного оловосодержащего полиметаллического сырья |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2073734C1 true RU2073734C1 (ru) | 1997-02-20 |
RU93051915A RU93051915A (ru) | 1997-03-20 |
Family
ID=20149258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU93051915A RU2073734C1 (ru) | 1993-11-15 | 1993-11-15 | Способ обогащения некондиционного оловосодержащего полиметаллического сырья |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2073734C1 (ru) |
-
1993
- 1993-11-15 RU RU93051915A patent/RU2073734C1/ru active
Non-Patent Citations (1)
Title |
---|
Евдокимов В.И. Переработка некондиционного оловосодержащего полиметаллического сырья.- М.: ЦНИИцветмет экономики и информации, 1983, с.9 - 13. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2511662C (en) | Recovering metals from sulfidic materials | |
RU2119542C1 (ru) | Способ извлечения оксида цинка (варианты) | |
RU2174562C2 (ru) | Способ извлечения никеля и/или кобальта (варианты) | |
AU2011334600B2 (en) | Process for recovering zinc and/or zinc oxide II | |
US4405569A (en) | Hydrometallurgical process for extracting metal values from complex ores containing arsenic and sulfur | |
CA2188658A1 (en) | Recovery of chemical values from industrial wastes | |
KR20080016607A (ko) | 산화 아연 및 아철산염을 함유한 전기로 및 기타 가열로의분제 및 잔재물 처리 방법 | |
US5078786A (en) | Process for recovering metal values from jarosite solids | |
GB2145402A (en) | Process for recovering copper by the leaching of oxide-and sulphide-containing materials with water-soluble cyanides | |
JP3052535B2 (ja) | 製錬中間産物の処理方法 | |
US4305914A (en) | Process for precipitating iron as jarosite with a low non-ferrous metal content | |
ZA200505261B (en) | Recovering metals for sulfidic materials | |
US3883345A (en) | Process for the recovery of antimony | |
US5961691A (en) | Recovery of lead and others metals from smelter flue dusts | |
RU2353679C2 (ru) | Извлечение металлов из сульфидных материалов | |
RU2073734C1 (ru) | Способ обогащения некондиционного оловосодержащего полиметаллического сырья | |
EP0244910B1 (en) | Separation of non-ferrous metals from iron-containing powdery material | |
CN114959274A (zh) | 一种铅滤饼中有价元素高效分离的方法 | |
EA024717B1 (ru) | Способ получения оксида цинка из руды | |
CN111910084B (zh) | 一种提取回收烟灰中多金属的方法 | |
JP3760353B2 (ja) | 塩化亜鉛と塩化鉛との混合ダストから鉛化合物を分離する方法 | |
AU759940B2 (en) | Method for the removal of sulfur in the nickel leaching process | |
US1316351A (en) | Process of treating copper ores by lixiviation with an so | |
US1380515A (en) | Process for the manufacture of zinc oxid direct from oxidized zinc ores | |
CA1106620A (en) | Method for recovering zinc |