RU2071816C1 - Способ очистки воздуха от органических примесей - Google Patents
Способ очистки воздуха от органических примесей Download PDFInfo
- Publication number
- RU2071816C1 RU2071816C1 RU92010987A RU92010987A RU2071816C1 RU 2071816 C1 RU2071816 C1 RU 2071816C1 RU 92010987 A RU92010987 A RU 92010987A RU 92010987 A RU92010987 A RU 92010987A RU 2071816 C1 RU2071816 C1 RU 2071816C1
- Authority
- RU
- Russia
- Prior art keywords
- gas
- photocatalyst
- organic impurities
- butanol
- pulse
- Prior art date
Links
Images
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Использование: газоочистка в химической, нефтехимической, машиностроительной и легкой промышленности. Сущность изобретения: воздух с примесями органических веществ, например бутанола, пропускают через зону импульсного газового разряда. Длительность импульсов 10-2 - 100 мкс. Частота следования импульсов 0,1 - 10 кГц. Степень очистки от бутанола на этой стадии составляет 64 - 95%. Затем очищаемый газ пропускают через блок фотокатализатора. Последний может содержать трубчатые стеклянные элементы, на которые нанесен слой TiO2. Фотокатализатор освещают источником света в видимом или ультра-фиолетовом диапазонах. На стадии фотокатализа достигается полная очистка газа от примесей органических веществ. 1 ил. 1 табл.
Description
Изобретение относится к технологии каталитического окисления для очистки газов от органических соединений, применяемой в химической, нефтехимической, машиностроительной, легкой промышленности.
Известен способ очистки отходящих газов от органических примесей по авт. св. СССР 1346215, B 01 D 53/36, который выбран за прототип.
По данному способу очищаемый газ пропускает через зону барьерного разряда, формируемого высокочастотным (2,1 2,6 кГц) синусоидальным напряжением с амплитудой 6 12 кВ. При этом осуществляется комбинированное воздействие на органические примеси озоном, образующимся в разряде, электронной и ионной бомбардировкой, интенсивным ультрафиолетовым излучением в разряде и радикалами, образующимися в плазмохимических реакциях.
Затем газ пропускают через окисно-марганцевый катализатор при объемной скорости 5000 20000 м3/ч и температуре 20 100oC.
При этом достигается примерно 99,6 100% степень очистки отходящих газов от органических веществ при сроке службы катализатора 350 ч.
Недостатком данного способа являются значительные энергетические затраты, а также небольшой срок службы катализатора.
Предлагаемый способ решает задачу повышения эффективности очистки воздуха от органических примесей. При этом достигается снижение энергозатрат, увеличение срока службы катализатора при сохранении высокой (до 100%) степени очистки.
Указанный технический результат достигается тем, что кислородсодержащий газ очищают от органических примесей путем пропускания его через зону газового разряда с последующим окислением оставшихся органических примесей на катализаторе, при этом газ пропускают через зону импульсного разряда с длительностью импульсов (10-2 100) мкс и частотой следования импульсов 0,1 10 кГц, а каталитическое окисление осуществляют на фотокатализаторе.
Новым в предлагаемом способе является то, что разряд осуществляют импульсным напряжением с длительностью импульсов (10-2 100) мкс и частотой следования (0,1 10) кГц, а также то, что каталитическое окисление осуществляют на фотокатализаторе. Пропускание кислородосодержащего газа через зону газового разряда приводит к очистке его от органических примесей как за счет окисления примесей озоном, образующимся в зоне разряда, так и за счет протекающих в нем плазмохимических реакций. При этом оказалось, что использование вместо синусоидального напряжения коротких периодических импульсов приводит к существенному повышению эффективности воздействия разряда на очищаемый газ. Это происходит из-за того, что при увеличении скорости нарастания напряжения (больше нескольких кВ/мкс) на газоразрядном промежутке увеличивается концентрация активных частиц (электронов, атомных частиц, возбужденных молекул, радикалов, ионов), а также повышается энергетическая эффективность выхода озона [В.Г. Самойлович, В.М. Гибалов, К.В. Козлов. Физическая химия барьерного разряда. МГУ, 1989, стр. 175] При переходе к импульсному питанию значительно увеличивается доля подводимой к разряду энергии, затрачиваемой на диссоциацию и окисление органических примесей, а потери на нагрев газа резко снижаются.
Указанные параметры импульсного разряда выбраны, исходя из того, что эффективность очистки воздуха зависит от энергии, вкладываемой в единичный импульс воздействия, и от частоты следования импульсов.
Доля энергии единичного импульса, расходуемая на диссоциацию и окисление молекул органических примесей, определяется крутизной фронта импульса напряжения dV/dt и длительностью импульса тока Ti, чем больше dV/dt и меньше Ti, тем эффективней идет нейтрализация диссоциация и окисление органических примесей, тем меньше потери на нагрев газа в зоне разряда. Кроме того, чем короче длительности воздействия напряжения, тем однороднее распределение плотности тока в разряде, и очистка идет во всем объеме газового разряда. Опытным путем установлено, что оптимальным диапазоном длительности импульсов с точки зрения указанных выше факторов является длительность 10-2 100 мкс.
Число единичных импульсов, воздействующих на элементарный объем газовой смеси за время пребывания его в зоне газового разряда, определяет эффективность очистки от молекул органических примесей. Чем выше это число, т.е. чем выше частота следования импульсов разрядного тока, тем выше степень очистки. Частота следования импульсов выбрана в диапазоне 0,1 10 кГц. При частоте меньше 0,1 кГц очистка будет не эффективна из-за малого числа импульсов напряжения, воздействующих на газ за время прохождения его через зону разряда. При частоте, большей 10 кГц, возможен перегрев газовой смеси в реакторе.
Использование фотокатализатора позволяет эффективно доокислить оставшиеся в газе после прохождения зоны газового разряда органические примеси. При этом протекающие под действием света на поверхности фотокатализатора реакции окисления органических примесей озоном, оставшимся в газовой смеси после выхода из зоны газового разряда, протекают с большей скоростью, чем на традиционных твердотельных катализаторах, при любой температуре вентиляционного потока без затрат энергии на нагрев фотокатализатора. В присутствии света остаточный озон способствует очищению поверхности фотокатализатора, увеличивая его время работы до регенерации. При этом эффективность процесса доокисления органических примесей на фотокатализаторе настолько высока, что практически весь остаточный озон в газовой смеси расходуется, и на выходе фотокатализатора озон отсутствует.
На фиг. 1 изображена блок-схема устройства газоочистки, реализующего предлагаемый способ.
Примеры осуществления способа.
Способ осуществляли на лабораторном макете устройства газоочистки, включающем побудитель расхода 1, реактор 2 низкотемпературной плазмы и блок фотокатализатора 3. Побудителем расхода производили подачу воздуха с органическими примесями (с бутанолом) в реактор 2. В реакторе 2 формировали низкотемпературную плазму в барьерном объемном разряде между двумя цилиндрическими электродами, разделенными разрядным промежутком, равным 2 мм, и барьером стеклянной трубкой. Система питания (высоковольтный генератор) подавала на разрядный промежуток знакопеременные импульсы. После выхода из реактора 2 газовая смесь прокачивалась через трубчатые стеклянные элементы блока фотокатализатора 3, на которые нанесен слой TiO2. Элементы блока фотокатализатора 3 освещались лампой ДРК-120, которая излучала свет в видимом и УФ-диапазонах. На выходе устройства газоочистки получали газ, очищенный от органических примесей.
Проводился анализ очищаемого газа хроматографическим методом на приборе ЛХМ-80М с колонкой ПЭГ-6000 (полиэтиленгликоль). Использовался ионизационно-плазменный детектор с максимальной чувствительностью 10 мкг/м3 по бутанолу. Отбор проб газа на анализ осуществлялся шприцем объемом 1 мл в точках а, b и с блок-схемы устройства на фиг. 1.
Пример 1.
Побудителем расхода (микронагнетателем) 1 производили подачу смеси воздуха с бутанолом в реактор 2 низкотемпературной плазмы. Концентрацию бутанола измеряли в точке а блок-схемы устройства очистки перед входом в реактор 2. Система питания подавала на газоразрядный промежуток знакопеременные импульсы с амплитудой 10 кВ, длительностью 100 мкс и частотой следования 0,2 кГц. После выхода из реактора 2 газовая смесь прокачивалась через блок фотокатализатора 3 и далее поступала на выход из устройства газоочистки. Осуществлялся отбор проб газа и их анализ после выхода газовой смеси из реактора 2 (точка в блок-схеме устройства очистки) и после выхода очищаемого газа из блока фотокатализатора 3 (точка с блок-схемы устройства очистки). Результат анализа приведен в табл. 1.
Из табл. 1 следует, что в реакторе 2 произошло значительное снижение концентрации бутанола в очищаемом газе (до 36%) за счет процессов окисления органических примесей озоном, образующимся в реакторе 2, и протекающих в нем плазмохимических реакций.
Дальнейшее снижение концентрации бутанола (до 5%) произошло в блоке фотокатализатора 3, в котором осуществлялось "дожигание" остаточных органических примесей и озона после выхода газа из реактора 2.
Озон на выходе очищаемого газа из устройства газоочистки отсутствовал.
Пример 2.
Производили подачу смеси воздуха с бутанолом (концентрацией 292 г/м3 в реактор 2, где формировали низкотемпературную плазму в барьерном объемном разряде, создаваемом импульсами с амплитудой 10 кВ, длительностью 10 мкс и частотой следования 1,0 кГц. После выхода из реактора 2 газовая смесь прокачивалась через блок фотокатализатора 3 и поступала на выход устройства газоочистки. Осуществляли измерение концентрации бутанола в газовой смеси на входе в реактор 2, а также анализ очищаемого газа на выходе из реактора 2 и на выходе из блока фотокатализатора 3 (точки а, b, c блок-схемы устройства очистки). Результаты анализа приведены в таблице.
Из таблицы следует, что концентрация бутанола в очищаемом газе после выхода из реактора 2 снизилась до 29% а после прохождения блока фотокатализатора 3 до 2% Степень очистки газа от органических примесей составила 98% Озон в очищенном газе отсутствовал.
Пример 3.
Осуществляли подачу смеси воздуха с бутанолом (концентрация 292 мг/м3) в реактор 2, где формировали низкотемпературную плазму в барьерном объемном разряде, создаваемом импульсами с амплитудой 10 кВ, длительностью 10 мкс и частотой следования 2 кГц. После выхода из реактора 2 газовая смесь прокачивалась через блок фотокатализатора 3 и поступала на выход устройства газоочистки. Производили измерение концентрации бутанола в газовой смеси перед входом в реактор 1, а также анализ очищаемого газа на выходе из реактора 2 и на выходе из блока фотокатализатора 3 (точки a, b, c блок-схемы устройства очистки). Результаты анализа приведены в таблице.
Из таблицы следует, что концентрация бутанола в очищаемом газе снизилась до 5% после прохождения блока фотокатализатора 3 бутанол в воздухе отсутствует. Степень очистки воздуха составила 100% Озон в очищенном воздухе отсутствовал.
Из приведенных в таблице примеров видно, что по предлагаемому способу достигается 100% степень очистки воздуха от органических примесей. Степень очистки при этом тем выше, чем больше частота следования импульсов напряжения, формирующих газовый разряд, и меньше их длительность, выбранные из указанных выше допустимых диапазонов изменения этих величин.
Способ отличается малым удельным потреблением энергии. Так произведенные оценки показывают, что для эффективной очистки 1000 м3/час воздуха от бутанола с массовой концентрацией до 80 мг/м3 достаточно мощности установки газоочистки, работающей по предлагаемому способу, равной 5 кВт.
Способ достаточно универсален, позволяет очищать воздух от различных типов органических примесей бутанола, толуола, ацетона, фенола, ксилола и т.д.
Claims (1)
- Способ очистки воздуха от органических примесей путем пропускания его через зону газового разряда с последующим окислением оставшихся органических примесей на катализаторе, отличающийся тем, что газ пропускают через зону импульсного разряда с длительностью импульсов 0,01 100 мкс с частотой следования импульсов 0,1 10 кГц, а каталитическое окисление осуществляют на фотокатализаторе.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU92010987A RU2071816C1 (ru) | 1992-12-04 | 1992-12-04 | Способ очистки воздуха от органических примесей |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU92010987A RU2071816C1 (ru) | 1992-12-04 | 1992-12-04 | Способ очистки воздуха от органических примесей |
Publications (2)
Publication Number | Publication Date |
---|---|
RU92010987A RU92010987A (ru) | 1996-01-20 |
RU2071816C1 true RU2071816C1 (ru) | 1997-01-20 |
Family
ID=20133331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU92010987A RU2071816C1 (ru) | 1992-12-04 | 1992-12-04 | Способ очистки воздуха от органических примесей |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2071816C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2911433A1 (fr) * | 2007-01-15 | 2008-07-18 | Renault Sas | Module de puissance comprenant un dispositif de purification d'un gaz riche en oxygene |
RU203298U1 (ru) * | 2020-12-22 | 2021-03-30 | Александр Михайлович Панин | Устройство для очистки воздуха |
RU2797201C1 (ru) * | 2023-04-04 | 2023-05-31 | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) | Способ очистки воздуха от диэтиламина |
-
1992
- 1992-12-04 RU RU92010987A patent/RU2071816C1/ru active
Non-Patent Citations (1)
Title |
---|
Авторское свидетельство СССР N 1346215, кл. В 01 D 53/36, 1985. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2911433A1 (fr) * | 2007-01-15 | 2008-07-18 | Renault Sas | Module de puissance comprenant un dispositif de purification d'un gaz riche en oxygene |
RU203298U1 (ru) * | 2020-12-22 | 2021-03-30 | Александр Михайлович Панин | Устройство для очистки воздуха |
RU2797201C1 (ru) * | 2023-04-04 | 2023-05-31 | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) | Способ очистки воздуха от диэтиламина |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6030506A (en) | Preparation of independently generated highly reactive chemical species | |
AU2006310457B2 (en) | Combined treatment of gaseous effluents by cold plasma and photocatalysis | |
RU2540427C2 (ru) | Усовершенствованное устройство и способ удаления загрязнений из воздуха | |
US6146599A (en) | Dielectric barrier discharge system and method for decomposing hazardous compounds in fluids | |
JP2001507274A (ja) | 水溶液の処理方法および処理装置 | |
JP4016134B2 (ja) | ガス処理装置 | |
RU94669U1 (ru) | Устройство для санитарно-гигиенической обработки воздуха | |
KR20180129490A (ko) | 고전압펄스전원과 플라즈마반응기, 이를 이용한 오염공기제거장치와 그 제어 방법 | |
RU2071816C1 (ru) | Способ очистки воздуха от органических примесей | |
JPH10325A (ja) | 放電プラズマを用いた空気中揮発性有機化合物除去装置 | |
KR100461516B1 (ko) | 유전체 매입형 전극 보호 구조의 다단식 배리어 방전장치 | |
Nikiforov | An application of AC glow discharge stabilized by fast air flow for water treatment | |
JP2000300650A (ja) | 光触媒型空気浄化装置 | |
RU2730340C2 (ru) | Способ и устройство окисления примесей в отходящих газах "Плазменный барьер" | |
JPH11221270A (ja) | 光触媒型空気浄化装置 | |
MuhammadArifMalik | Pulsed corona discharges and their applications in toxic VOCs abatement | |
RU2149704C1 (ru) | Устройство очистки и обеззараживания воздуха | |
Quan et al. | Development of a separate multiphase dielectric barrier discharge reactor and study on the treatment effect of methylene blue | |
AU636896B2 (en) | Ozone generator | |
RU2804697C1 (ru) | Устройство для получения окиси азота | |
RU2001882C1 (ru) | Способ очистки сточных вод от органических веществ | |
WO1998011982A1 (en) | Preparation and use of independently generated highly reactive chemical species | |
Chenlei et al. | Research on removal of dilute gaseous toluene using dielectric barrier discharge with TiO 2 photocatalyst | |
JP2022132263A (ja) | 空気浄化装置 | |
RU2537613C1 (ru) | Способ очистки газовых выбросов от ртути |