RU2070597C1 - Литейный жаропрочный сплав на основе никеля - Google Patents

Литейный жаропрочный сплав на основе никеля Download PDF

Info

Publication number
RU2070597C1
RU2070597C1 RU93041275/02A RU93041275A RU2070597C1 RU 2070597 C1 RU2070597 C1 RU 2070597C1 RU 93041275/02 A RU93041275/02 A RU 93041275/02A RU 93041275 A RU93041275 A RU 93041275A RU 2070597 C1 RU2070597 C1 RU 2070597C1
Authority
RU
Russia
Prior art keywords
alloy
nickel
scandium
yttrium
carbides
Prior art date
Application number
RU93041275/02A
Other languages
English (en)
Other versions
RU93041275A (ru
Inventor
С.Т. Кишкин
В.В. Сидоров
Original Assignee
Всероссийский научно-исследовательский институт авиационных материалов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Всероссийский научно-исследовательский институт авиационных материалов filed Critical Всероссийский научно-исследовательский институт авиационных материалов
Priority to RU93041275/02A priority Critical patent/RU2070597C1/ru
Publication of RU93041275A publication Critical patent/RU93041275A/ru
Application granted granted Critical
Publication of RU2070597C1 publication Critical patent/RU2070597C1/ru

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение относится к области металлургии, в частности к сплавам на никелевой основе, предназначенным для изготовления отливок, например, рабочих и сопловых лопаток газотурбинных двигателей с равноосной и направленной структурой. Сплав содержит следующие компоненты, мас.%: углерод 0,05-0,2, хром 7,0-14,0, кобальт 8,0-15,0, вольфрам 9,0-12,0, молибден 0,7-3,0, ниобий 0,5-4,0, титан 1,0-4,0, алюминий 4,0-6,0, бор 0,0005-0,07; цирконий 0,01-0,10, церий 0,002-0,025, иттрий или скандий 0,0013-0,0085, никель остальное при соблюдении условия: % Ce : % иттрия или скандия = 1,5-3,0. 1 табл.

Description

Предлагаемое изобретение относится к композиции литейного жаропрочного сплава на никелевой основе, предназначенного для изготовления отливок, например рабочих и сопловых лопаток газотурбинных двигателей, с равноосной и направленной структурой, работающих в условиях высоких температур и напряжений.
Возрастающие требования к материалам высоконагруженных авиационных двигателей потребовали разработки литейных жаропрочных сплавов на никелевой основе, длительно работающих при температурах до 1050oC в качестве лопаток турбины. Это связано с тем, что повышение рабочих температур одно из основных направлений увеличения мощности газотурбинного двигателя. За счет подбора определенного соотношения легирующих компонентов: вольфрама, хрома, ниобия, титана, алюминия и др. удалось получить сплавы с весьма высокими жаропрочными свойствами (пределом длительной прочности и пределом ползучести).
Однако с возрастанием рабочих температур в газотурбинном двигателе интенсифицируется процесс теплопередачи от рабочей среды к лопаткам газовой турбины и увеличивается теплонапряженность. Это приводит к тому, что в общем числе повреждений лопаток газовой турбины, вызываемых процессами ползучести, статическими, циклическими, ударными и другими нагрузками, возрастает относительная доля повреждений от термоциклических нагрузок (термической усталости). При этом термоциклические повреждения поверхностных слоев лопаток обычно является причиной возникновения первых очагов разрушения, инициирующих дальнейшее развитие трещин от действия статических и циклических усилий.
Таким образом, работоспособность материала лопаток высоконагруженных газотурбинных двигателей определяется требуемым уровнем не только жаропрочных, но и термоусталостных свойств, поскольку в газотурбинных двигателях основная роль принадлежит нестационарным режимам, при которых в лопатках создаются экстремальные напряжения и тепловые состояния, оказывающие определяющее влияние на процесс разрушения.
Известен литейный жаропрочный сплав по патенту США N 4459160, кл. 148-3 от 10.07.1984.
Сплав имеет следующий химический состав (% мас.):
Углерод 0,015-0,05
Хром 8-10
Кобальт 3-7
Вольфрам 9-11
Тантал 2,25-3,2
Титан 1,7-2,6
Алюминий 5,25-2,75
Гафний 0-0,5
Бор 0-0,01
Цирконий 0-0,05
Никель Остальное
Как показали дополнительные исследования, данный сплав имеет довольно высокий уровень жаропрочных свойств: при температуре 975oC и напряжении 20 кгс/мм2 время до разрушения составляет 70-110 часов. Однако данный сплав обладает невысокими термоусталостными свойствами.
Наиболее близким по составу к предлагаемому сплаву является литейный жаропрочный сплав MAR-M200 по патенту Великобритании N 917818. Сплав имеет следующий химический состав (% мас.):
Углерод 0,02-0,30
Хром 6-17
Кобальт 2-15
Вольфрам 9-14
Молибден до 3
Ниобий 0,25-3
Титан до 5
Алюминий 2-8
Железо до 5
Бор 0,001-0,20
Цирконий 0,001-0,20
Никель Остальное.
Анализ свойств сплава, приведенных в примерах описания патента N 917818 показывает, что при температуре 1038oC 100-часовой предел длительной прочности на лучших плавках равен 10,5-12 кгс/мм2. Дополнительная проверка показала, что время до разрушения при 975oC и напряжении 20 кгс/мм2 составляет 80-120 часов, а при 1050oC и напряжении 11 кгс/мм2 100-150 часов. При комнатной температуре предел прочности этого сплава равен 85-105 кгс/мм2, относительное удлинение 2,5-4% Как видно, сплав MAR-М200 имеет довольно высокий уровень жаропрочных свойств, однако, как показали дополнительные исследования, термоусталостные характеристики сплава при циклическом характере теплового и механического воздействия невысокие. Число циклов до разрушения (долговечность) при испытании на термоусталость составило 150-200 циклов (режим термического цикла: Тмакс=1000oC, Тмин=500oC, выдержка τ при Тмакс=7 мин, упругопластическая деформация De=1,0%). Нестационарные температурные поля, возникающие при многократных пусках и остановках газотурбинных двигателей, вызывали в лопатках из данного сплава высокие уровни термических напряжений, приводящих к появлению на лопатках термоусталостных трещин.
Таким образом, требовалось разработать литейный жаропрочный сплав, который сочетал бы в себе высокий уровень жаропрочных и термоусталостных свойств для успешного применения в современных высоконагруженных газотурбинных двигателях.
Поставленная задача была достигнута тем, что литейный жаропрочный сплав на основе никеля, содержащий углерод, хром, кобальт, вольфрам, молибден, ниобий, титан, алюминий, бор, цирконий, дополнительно содержит церий и один элемент из группы, включающей иттрий и скандий, при следующем соотношении компонентов в сплаве, мас.
Углерод 0,05-0,20
Хром 7,0-14,0
Кобальт 8,0-15,0
Вольфрам 9,0-12,0
Молибден 0,7-0,3
Ниобий 0,5-4,0
Титан 1,0-4,0
Алюминий 4,0-6,0
Бор 0,005-0,07
Цирконий 0,01-0,10
Церий 0,002-0,025
Один элемент из группы, включающей иттрий и скандий 0,0013-0,0085
Никель Остальное
и при соблюдении условия, что отношение концентрации церия в сплаве к концентрации в нем одного элемента из группы, включающей иттрий и скандий, составляет 1,5-3,0.
Нами было установлено, что термоусталостные свойства литейного жаропрочного сплава на основе никеля зависят от формы первичных карбидов МС, образующихся в металле в процессе кристаллизации отливки. В случае, если карбиды выделяются в виде неблагоприятной грубой дендритной формы (шрифтовые карбиды), то при этом термоусталостные свойства невысокие. Напротив, если карбиды имеют глобулярную форму, то вышеуказанные характеристики заметно повышаются.
Нами было установлено, что при введении в жаропрочные никелевые сплавы редкоземельных металлов (РЗМ), они могут взаимодействовать с углеродом сплава и образовывать при кристаллизации расплава зародыши, на которых как на подложке РЗМ-С образуются карбиды МС, параметры решеток которых наиболее близки к параметрам решетки карбида с РЗМ.
Однако не все РЗМ могут образовывать при кристаллизации расплава зародыши в виде карбидов РЗМ. Так, карбиды Ce2C3 образуются при температуре ниже 1000oC, т. е. ниже температуры солидуса сплава, которая равна 1310oC и поэтому, вероятно, не могут являться зародышами для образования карбидов МС. В этом случае образуются карбиды шрифтовой морфологии.
Нами было установлено, что в случае введения в данный сплав одного элемента из группы, включающей иттрий и скандий при соблюдении вышеуказанного условия, в металле образуются карбиды глобулярной формы. Карбид YC и карбид ScC образуются при температуре свыше 1500oC, т.е. температуры ликвидуса сплава, равной 1380oC. Образующиеся в расплаве карбиды YC или ScC являются, вероятно, подложкой для зарождения на них при кристаллизации карбидов МС, что облегчает более ранние условия их зарождения и способствует выделению карбидов МС в благоприятной глобулярной форме.
За счет создания в металле с иттрием или скандием карбидов МС глобулярной формы повышаются термоусталостные свойства сплава. Это связано, вероятно, с тем, что литые детали с глобулярной формой карбидов МС имеют наиболее удачную структуру с точки зрения сопротивления термическим нагрузкам: структура материала с карбидами глобулярной формы обладает высокой сопротивляемостью начала развития трещин термоусталости, тогда как карбиды игольчатой (шрифтовой) формы, по свей видимости, представляют собой концентраторы напряжений и являются источником зарождения такой термоусталостной трещины.
Роль РЗМ церия, иттрия и скандия при этом различная. Церий вводится в сплав для повышения жаропрочных свойств. Являясь поверхностно-активным металлом и располагаясь на границах раздела упрочняющих фаз g-γ′, а также на границах зерен, церий замедляет диффузионные процессы в сплаве при высоких температурах и тем самым повышает жаропрочные свойства. Одновременно церий является хорошим раскислителем и десульфуратором, обеспечивая нейтрализацию в металле вредных примесей кислорода и серы. Такая двоякая роль церия в сплаве требует повышенного его количества при введении в металл. В отличие от церия, введение в сплав в сочетании с ним иттрия или скандия позволяет образовывать в расплаве зародыши подложки из карбида YC или ScC, на которых при кристаллизации образуются.
первичные карбиды МС глобулярной формы, т.е. иттрий и скандий имеют одноцелевое назначение.
Нами установлено, что количество вводимого иттрия или скандия должно быть в 1,5-3,0 раза меньше, чем количество вводимого церия. Только при таком соотношении можно обеспечить в сплаве сочетание хороших жаропрочных и термоусталостных свойств, что практически подтверждается проведенными экспериментами.
Действительно, как нами было установлено, иттрий или скандий образуют в расплаве подложки из карбидов YC, ScC только в том случае, если они находятся в растворе, в свободном несвязанном состоянии. В случае присутствия в сплаве повышенного (более 0,0085%) количества иттрия или скандия элемент образует в металле соединения в виде оксидов и интерметаллидов, при этом зародыши из карбидов YC или ScC не образуются: при кристаллизации выделяются карбиды шрифтовой морфологии, термоусталостные свойства металла остаются на низком уровне, т. е. как у металла, в который иттрий или скандий вообще не вводили.
Пример.
Сплав выплавляют в вакуумных индукционных печах при разрежении 10-2-10-3 мм рт.ст. и заливают в чугунные кокили. Полученные заготовки переплавляют в вакуумных порционных печах и заливают горячие оболочковые формы, приготовленные по выплавляемым моделям. Таким образом получают отливки с равноосной структурой. Однако из предлагаемого сплава можно получать отливки и с направленной структурой. В этом случае полученные после вакуумной индукционной плавки заготовки переплавляют в проходных методических печах или плавильно-заливочных установках направленной кристаллизации.
В вакуумной индукционной печи емкостью 100 кг были выплавлены различные композиции предлагаемого сплава. Химический состав, структура карбидов МС и свойства сплава с равноосной и направленной структурой приведены в таблице. Плавки 1-8 были выплавлены при соблюдении соотношения компонентов в предлагаемом сплаве и при соблюдении условия: Ce Y(Sc) 1,5 3,0. Плавки 1-6 выплавлены с равноосной структурой, плавки 7,8 с направленной структурой.
Как видно, все восемь плавок имеют высокие жаропрочные свойства при температурах 975 и 1050oC и высокие термоусталостные свойства.
Плавки 9, 10 были выплавлены также при соблюдении соотношения компонентов в предлагаемом сплаве, но с отклонением условия Се: Y ниже нижнего (1,2) и выше верхнего (3,5) значений. В этом случае, как и ранее получены высокие жаропрочные свойства сплава, однако термоусталостные свойства сплава заметно снизились.
Для сравнения была выплавлена плавка 11 в соответствии с прототипом - патентом Великобритании N 917818 по среднему составу с равноосной структурой. Видно, что жаропрочные свойства данной плавки находятся на уровне жаропрочности плавок 1-6, однако термоусталостные свойства получены низкие (п= 200 циклов). Во все плавки, в которые ввели иттрий или скандий в заявленном соотношении в структуре наблюдались карбиды глобулярной формы: в плавке 11, а также в плавках 9, 10, в которых было нарушено заявленное соотношение между церием и иттрием (скандием), наблюдались карбиды МС шрифтовой (игольчатой) формы.
Жаропрочные свойства предлагаемого сплава в отливках с равноосной структурой следующие:
время до разрушения при температуре 975oC и напряжении 20 кгс/мм2 составляет 90-135 часов, при температуре 975oC и напряжении 23 кгс/мм2 время до разрушения составляет 60-70 часов, при температуре 1050oC и напряжении 11 кгс/мм2 105-160 часов, т.е. как у известного сплава. При комнатной температуре предел прочности сплава составляет 89-105 кгс/мм2, относительное удлинение 4,0-7,5% ударная вязкость 1,5-3,0 кгс м/см2. Жаростойкость по привесу за время 300 часов при 1000oC составляет 7-9 г/м2. Число циклов до разрушения долговечность при испытании на термоусталость равно 620-700 циклов (режим термического цикла: Tмакс=1000oC, Tминим=500oC, выдержка при Тмакс-7 мин, упругопластическая деформация Δε=1,0%
Жаропрочные свойства предлагаемого сплава в отливках с направленной структурой следующие:
время до разрушения при температуре 975oC и напряжении 20 кгс/мм2 составляет 195-210 часов, при температуре 975oC и напряжении 23 кгс/мм2 125-135 часов, при температуре 1050oC и напряжении 11 кгс/мм2 220-240 часов. Число циклов до разрушения - долговечность при испытании на термоусталость равно 1250-1350 циклов. Дополнительное повышение термоусталостных свойств связано с особенностями характера разрушения сплава, отлитого методом направленной кристаллизации, при которой границы зерен вытянуты в продольном направлении и поэтому трещина развивается всегда по телу зерна.
Таким образом, предлагаемый сплав обладает высокой термической усталостью, в 3-4 раза превышающей сплав-прототип по патенту Великобритании N 917818, а по уровню жаропрочности он находится на уровне прототипа. За счет более высокой термической усталости предлагаемого сплава можно в 2-3 раза увеличить ресурс работы двигателей, например рабочих и сопловых лопаток газотурбинных авиационных двигателей.

Claims (1)

  1. Литейный жаропрочный сплав на основе никеля для деталей газотурбинных двигателей с равноосной и направленной структурой, содержащий углерод, хром, кобальт, вольфрам, молибден, ниобий, титан, алюминий, бор и цирконий, отличающийся тем, что он дополнительно содержит церий и один элемент, выбранный из группы, содержащей иттрий и скандий, при следующем соотношении компонентов, мас.
    Углерод 0,05 0,2
    Хром 7,0 14,0
    Кобальт 8,0 15,0
    Вольфрам 9,0 12,0
    Молибден 0,7 3,0
    Ниобий 0,5 4,0
    Титан 1,0 4,0
    Алюминий 4,0 6,0
    Бор 0,005 0,07
    Цирконий 0,01 0,10
    Церий 0,002 0,025
    Один элемент из группы, включающей иттрий и скандий 0,0013 0,0085
    Никель Остальное
    при условии Ce одного элемента из группы, включающей иттрий и скандий 1,5 3,0.
RU93041275/02A 1993-08-17 1993-08-17 Литейный жаропрочный сплав на основе никеля RU2070597C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93041275/02A RU2070597C1 (ru) 1993-08-17 1993-08-17 Литейный жаропрочный сплав на основе никеля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93041275/02A RU2070597C1 (ru) 1993-08-17 1993-08-17 Литейный жаропрочный сплав на основе никеля

Publications (2)

Publication Number Publication Date
RU93041275A RU93041275A (ru) 1996-09-27
RU2070597C1 true RU2070597C1 (ru) 1996-12-20

Family

ID=20146584

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93041275/02A RU2070597C1 (ru) 1993-08-17 1993-08-17 Литейный жаропрочный сплав на основе никеля

Country Status (1)

Country Link
RU (1) RU2070597C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454475C2 (ru) * 2008-03-14 2012-06-27 Сименс Акциенгезелльшафт Сплав на основе никеля и его применение, лопасть или лопатка турбины и газовая турбина
WO2018069666A1 (en) * 2016-10-12 2018-04-19 Oxford University Innovation Limited A nickel-based alloy
CN112226651A (zh) * 2020-10-16 2021-01-15 中国航发北京航空材料研究院 一种用于850℃的变形涡轮盘合金材料及制备工艺
RU2766197C1 (ru) * 2021-07-19 2022-02-09 Акционерное общество "Металлургический завод "Электросталь" Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него
RU2802841C1 (ru) * 2022-09-07 2023-09-04 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ВИАМ) Жаропрочный литейный сплав на никелевой основе и изделие, выполненное из него
US11761060B2 (en) 2018-12-04 2023-09-19 Alloyed Limited Nickel-based alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент Великобритании N 917818, 82(1) А, 1962. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454475C2 (ru) * 2008-03-14 2012-06-27 Сименс Акциенгезелльшафт Сплав на основе никеля и его применение, лопасть или лопатка турбины и газовая турбина
WO2018069666A1 (en) * 2016-10-12 2018-04-19 Oxford University Innovation Limited A nickel-based alloy
CN110225985A (zh) * 2016-10-12 2019-09-10 牛津大学创新有限公司 镍基合金
US11859267B2 (en) 2016-10-12 2024-01-02 Oxford University Innovation Limited Nickel-based alloy
CN110225985B (zh) * 2016-10-12 2024-01-02 牛津大学创新有限公司 镍基合金
US11761060B2 (en) 2018-12-04 2023-09-19 Alloyed Limited Nickel-based alloy
CN112226651A (zh) * 2020-10-16 2021-01-15 中国航发北京航空材料研究院 一种用于850℃的变形涡轮盘合金材料及制备工艺
RU2766197C1 (ru) * 2021-07-19 2022-02-09 Акционерное общество "Металлургический завод "Электросталь" Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него
RU2802841C1 (ru) * 2022-09-07 2023-09-04 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ВИАМ) Жаропрочный литейный сплав на никелевой основе и изделие, выполненное из него

Similar Documents

Publication Publication Date Title
JP7488423B2 (ja) 耐クリープ、長寿命ニッケル基変形高温合金、及び耐クリープ、長寿命ニッケル基変形高温合金の製造方法及び応用
US4789412A (en) Cobalt-base alloy having high strength and high toughness, production process of the same, and gas turbine nozzle
CN108384992A (zh) 一种高强度耐腐蚀镍基高温合金及其制造方法
US5478417A (en) Controlled thermal expansion superalloy
WO2015123918A1 (zh) 700℃等级超超临界燃煤电站用镍基高温合金及其制备
CN105112728B (zh) 一种700℃超超临界汽轮机转子用耐热合金及其制备方法
JP2818195B2 (ja) 耐硫化腐食性、耐酸化性ニッケル基クロム合金
WO2007119832A1 (ja) ガスタービン燃焼器用Ni基耐熱合金
CN110724826A (zh) 一种镍基高温合金的电渣重熔工艺
CN105543713A (zh) 微合金化的高强度抗氧化铁镍合金气阀钢材料及制备方法
JP4719583B2 (ja) 強度、耐食性及び耐酸化特性に優れた一方向凝固用ニッケル基超合金及び一方向凝固ニッケル基超合金の製造方法
CN110268078A (zh) 高温耐损伤超合金、由该合金制造的制品和制造该合金的方法
JP2955778B2 (ja) 制御熱膨張合金及びそれにより製造された製品
US2996379A (en) Cobalt-base alloy
RU2070597C1 (ru) Литейный жаропрочный сплав на основе никеля
EP1149181B1 (en) Alloys for high temperature service in aggressive environments
US5439640A (en) Controlled thermal expansion superalloy
JPH0346535B2 (ru)
US7306682B2 (en) Single-crystal Ni-based superalloy with high temperature strength, oxidation resistance and hot corrosion resistance
US8241560B2 (en) Nickel base superalloy and single crystal castings
TWI657147B (zh) 一種高應力鎳基合金
JPH07238349A (ja) 耐熱鋼
CA2334490A1 (en) Trinickel aluminide-base heat-resistant alloy
RU2186144C1 (ru) Никелевый жаропрочный сплав для монокристального литья и изделие, выполненное из этого сплава
RU2285059C1 (ru) Жаропрочный сплав на основе никеля и изделие, выполненное из этого сплава

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20070417

QB4A Licence on use of patent

Effective date: 20080512

QB4A Licence on use of patent

Effective date: 20090723

QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20110511