RU2070086C1 - Способ выделения серы из газа, содержащего сероводород - Google Patents

Способ выделения серы из газа, содержащего сероводород Download PDF

Info

Publication number
RU2070086C1
RU2070086C1 SU925011073A SU5011073A RU2070086C1 RU 2070086 C1 RU2070086 C1 RU 2070086C1 SU 925011073 A SU925011073 A SU 925011073A SU 5011073 A SU5011073 A SU 5011073A RU 2070086 C1 RU2070086 C1 RU 2070086C1
Authority
RU
Russia
Prior art keywords
gas
stage
regeneration
activated carbon
catalyst
Prior art date
Application number
SU925011073A
Other languages
English (en)
Inventor
Рольке Дитрих
Корнел Петер
Лелл Райнер
Штетцер Клаус
Нойрот Габриэле
Original Assignee
Металлгезелльшафт АГ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Металлгезелльшафт АГ filed Critical Металлгезелльшафт АГ
Application granted granted Critical
Publication of RU2070086C1 publication Critical patent/RU2070086C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0456Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process the hydrogen sulfide-containing gas being a Claus process tail gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)

Abstract

Изобретение относится к способам очистки газов от H2S с получением элементарной серы. Сущность способа заключается в том, что к газу, из которого удаляют серу и который содержит H2S и водяной пар, добавляют кислород, так чтобы газ содержал на 1 мол. H2S от 1 до 20 мол. O2. С температурами в области от 50 до 180oС пропускают газ через активный уголь, причем активный уголь насыщается элементарной серой и по меньшей мере также 3 мас.% серной кислоты. Целесообразно, чтобы газ, из которого удаляют серу, в котором содержание H2S составляет по меньшей мере 100 ч/м при температурах от 100 до 180oС, проходил сначала через предварительную каталитическую очистку, причем элементарную серу адсорбируют на богатом оксидами металлов, например оксидами Al, Ti катализаторе. К выходящему из предварительной очистки газу примешивают кислород и подают газ при температурах от 50 до 180oС для удаления остаточной серы через активный уголь. Регенерацию обработанного катализатора и активного угля осуществляют продувкой H2S-содержащим газом в 2 ступени, первую из которых проводят при 100-180oС, а вторую - при 200-400oС. 3 з.п. ф-лы, 2 ил.

Description

Изобретение относится к способу удаления серы из газа, содержащего H2S и водяной пар, при помощи активного угля с образованием элементарной серы, которая откладывается на активном угле и удаляется при регенерации.
Известен способ выделения серы из H2S-содержащих газов различной природы, в соответствии с которым в очищаемый газ вводят кислород в количестве 1-20 молей на 1 моль H2S и полученную смесь при 50-180oС пропускают через активный уголь, в результате чего на активном угле образуется слой элементарной серы, содержащей по меньшей мере 3% мас. серной кислоты.
Причем количество серной кислоты на всей поверхности активного угля может составлять предпочтительно от 5 приблизительно до 50 вес. В результате этого не возникает никаких трудностей при регенерации активного угля. Чаще всего подведенный к активному углю газ содержит от 500 до 5000 ч/м (частиц на миллион) H2S (1).
Наиболее близким к заявленному изобретению является способ удаления серы из H2S-содержащих газов, включающий две стадии очистки, первую из которых осуществляют при 120-200oС на активированном угле, а на второй стадии газ с остаточным содержанием H2S смешивают с O2-содержащим газом и повторно пропускают через 2 слоя активированного угля при температуре <200oС. Далее насыщенный элементарной серой активированный уголь подвергают регенерации при 350-550oС продувкой инертным газом, не содержащим O2, CO2, H2O (2).
Усовершенствование изобретения заключается в том, что газ, из которого удаляют серу и содержание H2S + SO2 в котором составляет по меньшей мере 1000 ч/м, сначала подают при температурах от 100 до 180oС на стадию предварительной каталитической очистки, при этом образующуюся элементарную серу адсорбируют на богатом оксидом металла катализаторе, затем к H2S-содержащему газу со стадии предварительной очистки примешивают кислород и газ при температурах от 50 до 180o для удаления остаточной серы пропускают через активный уголь.
В качестве катализатора предварительной очистки газа применяются прежде всего вещества, которые состоят главным образом из Al2O3 или TiO2. Эти катализаторы дополнительно могут быть пропитаны приблизительно 0,5-5 мас. железа, кобальта или никеля.
Насыщенный элементарной серой и серной кислотой активный уголь можно регенерировать различным образом. Один путь заключается в том, что активный уголь при температурах от 100 до 400oС обрабатывают не содержащим кислорода газом, который может обладать восстановительными свойствами, например водород, метан или H2S. Предпочтительный способ заключается в том, что насыщенный элементарной серой и H2SO4 активный уголь для регенерации обрабатывают частичным или общим потоком H2S-содержащего газа, из которого удаляют серу, при температурах от 100 до 400oС. При этом сначала восстанавливают серную кислоту до элементарной серы или частично также до двуокиси серы (H2SO4 + 3H2S 4S + 4H2 или 3H2SO4 + H2S 4SO2 + 4H2O) и после этого элементарную серу удаляют с тем же газом в парообразном состоянии. Рекомендуется на первой стадии регенерации, на которой восстанавливают серную кислоту, H2S-содержащий газ с температурой от 100 до 180oC, которую он имеет при удалении серы, пропускают через насыщенный активный уголь. На второй стадии регенерации, при которой находящуюся еще на активном угле элементарную серу удаляют с тем же газом, применяют обычно температуры в области от 200 до 400oС.
Если способ осуществляют с предварительной очисткой, то следует регенерировать также богатый оксидами металлов катализатор. В этом случае целесообразно пропускать используемый для регенерации восстановительный газ через насыщенный уголь и через богатый оксидами металлов катализатор и по меньшей мере одну часть газа направлять в циркуляцию. При этом восстановительный газ можно направлять сначала через активный уголь или же через богатый оксидами металлов катализатор.
Возможности усовершенствования способа поясняются при помощи чертежей. Фиг.1 показывает технологическую схему с одновременной очисткой газа и регенерацией, фиг.2 один вариант конечной очистки.
Содержащий H2S газ, из которого удаляют серу, подводят по фиг.1 в трубопровод 1. Он содержит SO2 и также водяной пар и наряду с ними может содержать еще другие соединения серы, как СOS и CS2. Газ поступает, например, с установки Клауса и имеет преимущественно температуру от 120 до 180oС. С этой повышенной температурой газ направляют полностью или частично через трубопровод сначала на предварительную очистку 3 со стационарным слоем катализатора, содержащего оксиды металлов. В качестве основной компоненты катализатор предварительной очистки 3 содержит Al2O3 или TiO2. На этом катализаторе осаждается элементарная сера (2H2S + SO2 3S + 2H2O).
Частично очищенный газ, выходящий из предварительной очистки 3 по трубопроводу 4, имеет во многих случаях содержание H2S в пределах от 500 до 3000 ч/м. В этот газ через трубопровод 5 подают дозированное количество воздуха. Конечная стадия очистки 6 содержит слой из зернистого активного угля, который имеет размеры зерен в области от 1 до 6 мм и ВЕТ-поверхность в области от 500 до 1500 м2/г. Стремятся к тому, чтобы на этом активном угле на конечной стадии очистки 6 при температуре от 100 до 180oС и преимущественно от 130 до 160o образовался слой из элементарной серы и по меньшей мере из 3 мас. серной кислоты. В большинстве случаев массовое соотношение элементарной серы к серной кислоте в слое активного угля лежит в области от 20:1 до 1:2. Очищенный газ с содержанием H2S обычно максимально 20 ч/м и преимущественно 8 ч/м стекает по трубопроводу 7. Содержание SO2 в очищенном газе лежит максимально ≈600 ч/м и преимущественно ≈200 ч/м.
Правая часть фиг.1 показывает регенерацию отработанного катализатора 3а, который применяют в предварительной очистке 3, и насыщенного активного угля 6а конечной очистки 6. В данном случае применяют для регенерации частичный поток подведенного по трубопроводу 1 H2S-содержащего газа, который отводят по трубопроводу 8. Служащий для регенерации газ поступает в трубопровод 9, подается воздуходувкой 10 через трубопровод 11 к байпасному трубопроводу 12 с открытым вентилем 13 и направляется через трубопроводы 14 и 14а в слой отработанного катализатора на основе активного угля 6а. Если требуется, через трубопровод 15 примешивают восстановительный посторонний газ, например богатый H2S газ. В трубопроводе 14а температура лежит в области от 120 до 180oС и преимущественно от 130 до 160oС. Для регулирования температуры служит подогреватель 6, через который, благодаря более или менее открытому вентилю 17, при соответственно отрегулированном вентиле 13 можно направлять частичный поток газа, который нагревают и примешивают к газу трубопровода 12.
На первой стадии регенерации при температурах от 120 до 180oС в слое активного угля 6а стремятся к тому, чтобы имеющуюся как часть нагрузки серную кислоту полностью или в значительной степени восстановить до элементарной серы.
Отходящий газ направляют через трубопровод 8 к слою катализатора 3а и оттуда через трубопровод 9 и через холодильник 20 обратно к трубопроводу 19. Частичный поток газа можно выводить через трубопровод 21 из цикла и примешивать к обрабатываемому газу трубопровода 2.
Для удаления нагрузки элементарной серы с катализатором 3а и 6а останавливают приток газа через трубопровод 15 и повышают температуру в газе трубопроводов 14 и 14а до 200-400oС и предпочтительно минимально 300oС. Этого достигают в результате того, что газ по трубопроводу 15 направляют через подогреватель 16 и дросселируют байпас 19. Содержащий элементарную серу газ трубопровода 18 пропускают через богатый окисями металлов катализатор 3а и здесь также удаляют нагрузку элементарной серы. Для удаления элементарной серы из газа служит холодильник 20, в котором конденсируют элементарную серу и удаляют через трубопровод 22.
Фиг. 2 показывает применение двух слоев 23 и 24 с активным углем для конечной очистки. При этом воздух направляют как через трубопровод 5 перед впуском газа через трубопровод 5а в первый слой 23, так и через трубопровод 5а в зону 25 между слоями 23 и 24. В трубопроводе 5а молярное соотношение H2S O2 составляет около 1:1-3, и в зоне 25 поддерживают молярное соотношение H2 O2 около 1:3-19, в пересчете на содержание H2S в трубопроводе 5. В промежуточной зоне 25 содержание H2S в газе уже в значительной степени снизилось.
Пример. При осуществлении способа по фиг.1 обрабатывают отходящий газ из установки Клауса в количестве 7545 нм3/час, который подают через трубопровод 1. На стадии предварительной очистки 3 применяют Al2O3-катализатор, который пропитан 1 мас. никеля. Время пребывания газа на этой стадии составляет 6 секунд и на активном угле на конечной стадии очистки 6 3 секунды. Через трубопровод 5 подводят 120 нм3/час воздуха с температурой 135oС.
Таблица дает данные газовых смесей в различных трубопроводах, при этом слои 5а и 3а находятся на первой стадии регенерации, причем серную кислоту восстанавливают на активном угле 6а. При начале регенерации активный уголь насыщен 5 мас. H2SO4.
Очищенный газ трубопровода 7 содержит еще 0,02 об. SO2 и 8 ппм H2S. Чтобы удалить элементарную серу со слоев 3а и 6а, газ в трубопроводе 14 нагревают до 320oС и останавливают газовый поток трубопровода 15. В холодильнике 20 получают при 135oС всего 3200 кг серы во время цикла регенерации.

Claims (4)

1. Способ выделения серы из газа, содержащего сероводород и пары воды, включающий пропускание газа через катализатор при повышенной температуре в две стадии с использованием в качестве катализатора на второй стадии активированного угля, введение кислорода в газовую смесь перед подачей на вторую стадию и последующую регенерацию отработанных катализаторов продувкой восстановительным газом при повышенной температуре с последующим удалением серы с их поверхностей, отличающийся тем, что первую стадию процесса осуществляют на катализаторе, содержащем оксид алюминия или титана, при 100 - 180oC, перед подачей на вторую стадию в газовую смесь с температурой 50 180oC кислород вводят в количестве, обеспечивающем мольное соотношение H2S O2 1 1 20, при этом регенерацию отработанных катализаторов ведут исходным сероводородсодержащим газом, причем регенерацию активированного угля проводят в две стадии, первую из которых осуществляют при 100 180oC, а вторую при 200 400oC.
2. Способ по п. 1, отличающийся тем, что активированный уголь распределяют на двух слоях, через которые газ пропускают последовательно, и перед каждым слоем в газ вводят кислород.
3. Способ по п. 1, отличающийся тем, что к исходному газу, поступающему на стадию регенерации, добавляют обогащенный сероводородом газ.
4. Способ по п. 1, отличающийся тем, что часть восстановительного газа после стадии регенерации смешивают с газом, поступающим на первую стадию процесса.
SU925011073A 1991-03-26 1992-03-17 Способ выделения серы из газа, содержащего сероводород RU2070086C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4109892A DE4109892C2 (de) 1991-03-26 1991-03-26 Verfahren zur Entfernung von Schwefelwasserstoff aus Gasen mittels Aktivkohle
DEP4109892.7 1991-03-26

Publications (1)

Publication Number Publication Date
RU2070086C1 true RU2070086C1 (ru) 1996-12-10

Family

ID=6428231

Family Applications (1)

Application Number Title Priority Date Filing Date
SU925011073A RU2070086C1 (ru) 1991-03-26 1992-03-17 Способ выделения серы из газа, содержащего сероводород

Country Status (5)

Country Link
US (1) US5256384A (ru)
EP (1) EP0506160B1 (ru)
DE (2) DE4109892C2 (ru)
ES (1) ES2075588T3 (ru)
RU (1) RU2070086C1 (ru)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652826B1 (en) * 1989-06-23 2003-11-25 Xergy Processing Inc. Process for elimination of low concentrations of hydrogen sulfide in gas mixtures by catalytic oxidation
US5766567A (en) * 1990-02-13 1998-06-16 Elf Aquitaine Production Method for desulphurising a gaseous mixture containing H2 S and SO.sub.
CA2131987A1 (en) * 1993-01-21 1994-08-04 Richard A. Hayden Method for removing sulfide with catalytic carbon
FR2702675B1 (fr) * 1993-03-16 1995-04-28 Elf Aquitaine Procédé pour oxyder directement en soufre par voie catalytique, avec une sélectivité élevée, l'H2S contenu en faible concentration dans un gaz et catalyseur pour la mise en Óoeuvre de ce procédé.
CN1037068C (zh) * 1994-03-12 1998-01-21 湖北省化学研究所 常温硫化氢、硫氧化碳、二硫化碳转化吸收型脱硫剂及制备
DE19507440A1 (de) * 1995-03-03 1996-09-05 Metallgesellschaft Ag Verfahren zum Entschwefeln eines H2S enthaltenden Gases
CN1056587C (zh) * 1996-04-30 2000-09-20 李晓东 从含硫化氢气体中回收硫磺的工艺
US5925158A (en) * 1997-12-19 1999-07-20 Praxair Technology, Inc. Gas recycle for float glass system
US6017501A (en) * 1997-12-26 2000-01-25 Marathon Oil Company Disposal of hydrogen sulfide gas by conversion to sulfate ions in an aqueous solution
CA2318734C (en) * 1998-01-26 2007-07-03 Tda Research, Inc. Catalysts for the selective oxidation of hydrogen sulfide to sulfur
WO2003082455A2 (en) * 2002-03-25 2003-10-09 Tda Research, Inc. Catalysts and process for oxidizing hydrogen sulfide to sulfur dioxide and sulfur
US7060233B1 (en) 2002-03-25 2006-06-13 Tda Research, Inc. Process for the simultaneous removal of sulfur and mercury
EP1447124A1 (en) * 2003-02-04 2004-08-18 Gastec N.V. Supported catalyst system for removing sulfur compounds from gases
DE102008018698A1 (de) 2008-04-09 2009-10-22 Durtec Gmbh Neue mineralische Gasadsorber für Biogasanlagen
DE102011010525A1 (de) 2011-02-08 2012-08-09 Universität Rostock Verfahren zur Reinigung von Biogas, Rauchgas oder Flüssigkeiten, Adsorbens dafür, Filter, sowie Verwendung des Adsorptionsmittels
EP2514524A1 (en) 2011-04-21 2012-10-24 Research Institute of Petroleum Industry (RIPI) Nanocatalyst and process for removing sulfur compounds from hydrocarbons
CA2859254A1 (en) * 2013-08-13 2015-02-13 James M. Tour Low cost carbon materials for the capture of co2 and h2s from various environments
US10232342B2 (en) 2015-07-01 2019-03-19 William Marsh Rice University Method, synthesis, activation procedure and characterization of an oxygen rich activated porous carbon sorbent for selective removal of carbon dioxide with ultra high capacity
CN112999842B (zh) * 2019-12-20 2023-06-30 陕西青朗万城环保科技有限公司 一种微波诱导活性炭吸附蒸汽脱附硫化氢脱除装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA505889A (en) * 1954-09-21 G. Audas Francis Purification of industrial gases
DE1467100A1 (de) * 1962-01-20 1968-12-12 Pintsch Bamag Ag Verfahren zur Entfernung von Schwefelwasserstoff aus Gasen,Abgasen oder Abluft
DE1567774A1 (de) * 1966-09-07 1970-08-20 Pintsch Bamag Ag Verfahren zur Entschwefelung des Endgases aus Clausanlagen
US4141962A (en) * 1973-04-09 1979-02-27 Rhone-Progil Catalysts for treating gases containing sulphur compounds
DE2430909A1 (de) * 1974-06-27 1976-01-08 Adsorptionstech Lab Verfahren zur reinigung von clausofen-abgasen
US4263271A (en) * 1978-03-15 1981-04-21 Bergwerksverband Gmbh Process for eliminating hydrogen sulfide from gas mixtures
US4219537A (en) * 1978-10-31 1980-08-26 Foster Wheeler Energy Corporation Desulfurization and low temperature regeneration of carbonaceous adsorbent
DE3407884A1 (de) * 1984-03-03 1985-09-05 Laboratorium für Adsorptionstechnik GmbH, 6000 Frankfurt Verfahren zum entfernen von schwefeloxiden aus rauchgas mit regenerierbarer aktivkohle
DE3520166A1 (de) * 1985-06-05 1986-12-11 H. Krantz Gmbh & Co, 5100 Aachen Verfahren und anlage zur aktivkoksregenerierung und schwefelerzeugung
DE3529665A1 (de) * 1985-08-20 1987-02-26 Metallgesellschaft Ag Verfahren zum entfernen von schwefelwasserstoff aus abgasen
DE3535815A1 (de) * 1985-10-08 1987-04-09 Metallgesellschaft Ag Verfahren zum reinigen von schwefelwasserstoff und schwefeldioxid enthaltendem abgas
FR2589141B1 (fr) * 1985-10-25 1987-12-11 Elf Aquitaine Procede d'elimination des composes soufres contenus dans un gaz residuaire, notamment issu d'une usine a soufre claus, avec recuperation desdits composes sous la forme de soufre
DE3604750A1 (de) * 1986-02-14 1987-08-20 Steuler Industriewerke Gmbh Verfahren zur kontinuierlichen reduktion von schwefeldioxidhaltigen gasen zu schwefel und vorrichtung zur durchfuehrung des verfahrens
DE3739909A1 (de) * 1987-11-25 1989-06-08 Adsorptionstech Lab Verfahren zum regenerieren eines mit schwefelsaeure und wasser beladenen kohlenstoffhaltigen adsorbens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Патент ФРГ N 1507774, кл. C 01 B 17/04, 1971. 2. Патент ФРГ N 1667636, кл. C 01 B 17/04, 1972. *

Also Published As

Publication number Publication date
EP0506160B1 (de) 1995-06-28
US5256384A (en) 1993-10-26
DE59202650D1 (de) 1995-08-03
DE4109892A1 (de) 1992-10-01
EP0506160A1 (de) 1992-09-30
DE4109892C2 (de) 1994-12-22
ES2075588T3 (es) 1995-10-01

Similar Documents

Publication Publication Date Title
RU2070086C1 (ru) Способ выделения серы из газа, содержащего сероводород
CA1104068A (en) Pressure buildup technique in pressure swing adsorption process
KR100192690B1 (ko) 공기 분리 플랜트로부터 생성된 질소를 사용하여 후속 공정으로 의 공급원료 가스로부터 이산화탄소를 제거하는 방법
KR940006239B1 (ko) 일산화탄소 생성을 위한 통합적 방법
EP0496563B1 (en) Simultaneous removal of residual impurities and moisture from a gas
EP0060199B1 (en) Two-feed pressure swing adsorption process for enhancing the recovery of hydrogen in a feed gas
US6444185B1 (en) Process for recovering as sulfur the compounds H2S, SO2, COS and/or CS2 in a tail gas from a sulfur plant
US3864452A (en) Process for purifying sulfur compound contaminated gas streams
JPH031049B2 (ru)
JPH0250041B2 (ru)
JPH01172204A (ja) 混合ガスから炭酸ガスを吸着分離回収する方法
EP0952111B1 (en) CO2 purification system
US4522793A (en) Removing H2 S from natural gas using two-stage molecular sieves
JP2005525222A (ja) 水素と硫化水素を含むガス混合物の処理方法
US3284158A (en) Method of and apparatus for removing sulfur compounds from gases
US5229089A (en) Recovery of flammable materials from gas streams
RU2020118384A (ru) Способ и устройство для очистки гелия
CA2153256A1 (en) A packed bed and process for removal of residual mercury from gaseous hydrocarbons
JPS6317488B2 (ru)
CN107567350B (zh) 用于从气体物流中除去和回收h2s的改进方法
US4260590A (en) Recovery of salts of anthraquinone disulfonic acid in the Stretford process
RU2147918C1 (ru) Способ обессеривания газа, содержащего h2s
CN1074448C (zh) 浓缩和提纯高炉气中一氧化碳的变压吸附工艺
JPS59203625A (ja) 酸化窒素を含有する混合ガスから酸化窒素を圧力変化吸着によつて除去する方法
CN1107876A (zh) 从合成气中除去氮化合物的方法