RU2060513C1 - Способ распознавания местоположения объекта - Google Patents

Способ распознавания местоположения объекта Download PDF

Info

Publication number
RU2060513C1
RU2060513C1 SU5067448A RU2060513C1 RU 2060513 C1 RU2060513 C1 RU 2060513C1 SU 5067448 A SU5067448 A SU 5067448A RU 2060513 C1 RU2060513 C1 RU 2060513C1
Authority
RU
Russia
Prior art keywords
signal
wave signal
signals
sensors
information processing
Prior art date
Application number
Other languages
English (en)
Inventor
Олег Евгениевич Антонов
Максим Олегович Антонов
Original Assignee
Олег Евгениевич Антонов
Максим Олегович Антонов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Евгениевич Антонов, Максим Олегович Антонов filed Critical Олег Евгениевич Антонов
Priority to SU5067448 priority Critical patent/RU2060513C1/ru
Application granted granted Critical
Publication of RU2060513C1 publication Critical patent/RU2060513C1/ru

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Использование: в автоматике, вычислительной технике, радиолокации. Сущность изобретения: устанавливают не менее трех датчиков в заранее известных точках, периодически всенаправленно излучают кодированный волновой сигнал излучателем, расположенным на объекте сигнал принимают все датчики, формируют свои маркерные сигналы, передают их в центр обработки информации, где принимают сигнал излучателя и маркерные сигналы датчиков, их идентифицируют, измеряют разность времен прихода между сигналами датчиков и между сигналами датчиков и излучателя, по разности времен вычисляют местоположение объекта и передают координаты на объект по линии связи. 4 ил.

Description

Изобретение относится к автоматике, вычислительной технике и может быть использовано для определения положения подвижных объектов, например летательных аппаратов, судов, автомобилей, а также монтажа с помощью манипуляторов.
Известен способ определения координат подвижного объекта, включающий установку не менее трех датчиков волнового сигнала в заранее известных точках, периодическое всенаправленное излучение кодированного волнового сигнала излучателем, расположенным на объекте, прием этого сигнала всеми датчиками, передача сигналов от каждого датчика в центр обработки информации, идентификация сигналов наземным центром обработки информации, определение наземным центром обработки информации, имеющим известные координаты, разности времен прихода между сигналами, вычисление по ним местоположения объекта (см. Европейский патент, N 0169538, кл. G 06 К 11/06, 1986).
Наиболее близким к изобретению является способ определения положения подвижного объекта, включающий установку не менее трех датчиков волнового сигнала в заранее заданных точках, периодическое всенаправленное излучение кодированного волнового сигнала излучателем, расположенным на объекте, прием этого сигнала всеми датчиками, передача принятых сигналов от каждого датчика в центр обработки информации, определение наземным центром обработки информации, имеющим известные координаты, разностей времен прихода между сигналами, вычисление по этим разностям местоположения объекта (см. патент Франции N 2088386, кл. G 01 S 1/00, 1972).
Сущность изобретения состоит в том, что после приема кодированного волнового сигнала каждым датчиком формируют маркерный сигнал данного датчика, в центр обработки информации передают маркерные сигналы всех датчиков, осуществляют прием кодированного волнового сигнала излучателя, после чего идентифицируют все принятые сигналы в центре обработки информации, разность времен прихода сигналов определяют между сигналом излучателя и маркерным сигналом каждого датчика, а также между маркерными сигналами пар датчиков, после вычисления местоположения объекта информация о нем передается по соответствующей линии связи на объект.
Это позволяет повысить точность вычисления местоположения объекта, повысить мобильность системы, установить датчики в местах, где кабельная связь между ними и центром обработки информации затруднительна.
На фиг. 1 изображен пример взаимного расположения излучателя волнового сигнала 1, датчиков 2-4, центра 5 обработки информации; на фиг. 2 схема возможной реализации излучателя волнового сигнала задающего радиомаяка; на фиг. 3 схема возможной реализации датчика переизлучающего радиомаяка; на фиг. 4 схема возможной реализации центра обработки информации.
Предлагаемый способ может быть осуществлен следующим образом. Излучатель волнового сигнала задающий радиомаяк дециметрового диапазона, излучающий фазокодоманипулированный сигнал. Задающий радиомаяк (см. фиг. 2) содержит: модуль 5 формирователя сигнала, СВЧ-модуль 6 передатчика. При этом модуль 5 содержит таймер 7, блок 8 постоянной памяти, фазовый модулятор 9, генератор 10 опорного напряжения. СВЧ-модуль 6 передатчика содержит генератор 11 несущей частоты, смеситель 12, полосовой фильтр 13, усилитель 14, штыревую антенну 15, источник питания 16.
Датчик (см. фиг. 3) содержит СВЧ-модуль 17 приемника, модуль 18 оптимального обнаружителя, модуль 19 формирователя сигнала, СВЧ-модуль 20 передатчика, при этом СВЧ-модуль 17 приемника содержит штыревую антенну 21, усилитель-ограничитель 22, генератор 23 несущей частоты, смеситель 24. Модуль 18 оптимального обнаружителя содержит полосовой фильтр 25, усилитель-ограничитель 26, генератор 27 опорного напряжения, фазовый демодулятор 28, согласованный фильтр 29, блок 30 сравнения с порогом. Модуль 19 формирователя сигнала содержит блок 31 постоянной памяти кода данного маяка, генератор 32 опорного напряжения, фазовый модулятор 33. СВЧ-модуль 20 передатчика содержит генератор 34 несущей частоты, смеситель 35, полосовой фильтр 36, усилитель 37. Датчик содержит также штыревую антенну 38, блок питания 39.
Центр обработки информации (см. фиг. 4) содержит СВЧ-модуль 40 приемника, модуль 41 оптимального обнаружения, модуль 42 измерителя разности времен прихода сигналов, ЦВМ 43, линию связи 44. Модуль 41 содержит задающий радиомаяк 45, переизлучающие радиомаяки 46, 47. Блоки 45-47 отличаются только настройкой согласованных фильтров под свои сигналы. Состав блока 40 идентичен блоку 17. Модуль 42 состоит из набора идентичных измерителей разности времен прихода сигналов 48-50.
Аппаратура работает следующим образом. В задающем радиомаяке (см. фиг. 2) сигнал таймера 7 разрешает считывание с блока 8 хранящегося в нем кода (может быть реализован в виде ППЗУ К573РР1). Код поступает на фазовый модулятор 9, на который подается сигнал с генератора 10 опорного напряжения. В фазовом модуляторе 9 формируется фазокодоманипулированный сигнал, который подается на смеситель 12, сигнал с генератора 11 несущей частоты также подается на смеситель 12. В смесителе 12 происходит перенос сигнала на несущую частоту. С выхода смесителя 12 сигнал подается на полосовой фильтр 13, который отфильтровывает сигнал с зеркальной частотой. С выхода фильтра 13 сигнал подается на усилитель 14, где усиливается и подается на штыревую антенну 15. С антенны 15 происходит всенаправленное излучение фазокодоманипулированного радиосигнала.
Блок питания 16 обеспечивает требуемые значения напряжения и частоты тока. В датчике фазокодоманипулированный сигнал принимается на штыревую антенну 21 и подается на усилитель-ограничитель 22, с выхода которого сигнал поступает на смеситель 24, на который также подается сигнал с генераторра 23 несущей частоты. В смесителе 24 сигнал переносится на промежуточную частоту. С выхода смесителя сигнал поступает на полосовой фильтр 25, где фильтруется сигнал с зеркальной частотой, а затем на усилитель-ограничитель 26, с которого сигнал поступает на фазовый демодуляторр 28, на который также поступает сигнал с генератора 27 опорного напряжения. В фазовом демодуляторе 28 выделяется кодовый сигнал на видеочастоте. С выхода фазового демодулятора 28 сигнал поступает на согласованный фильтр, с выхода которого на блок 30 сравнения с порогом, при превышении которого формируется в блоке 31 постоянной памяти код данного маяка. Блок питания 39 обеспечивает требуемые значения напряжения и частоты тока. В центре обработки информации (см. фиг. 4) измеренную разность времени прихода сигналов подаются на ЦВМ, где по ним вычисляется координаты задающего радиомаяка, которые и передаются по линии связи на объект.

Claims (1)

  1. Способ распознавания местоположения объекта, заключающийся в том, что устанавливают не менее трех датчиков волнового сигнала в заранее известных точках, периодически всенаправленно излучают кодированный волновой сигнал с помощью излучателя, установленного на объекте, принимают кодированный волновой сигнал всеми датчиками волнового сигнала, передают сигналы от каждого датчика волнового сигнала в центр обработки информации с известными координатами, идентифицируют сигналы, принятые центром обработки информации, определяют в центре обработки информации величины разностей времен прихода принятых сигналов и по ним вычисляют местоположение объекта, отличающийся тем, что после приема кодированного волнового сигнала от излучателя каждым датчиком волнового сигнала формируют маркерный сигнал данного датчика, передают в центр обработки информации маркерные сигналы всех датчиков волнового сигнала, принимают кодированный волновой сигнал от излучателя в центре обработки информации, после чего идентифицируют все принятые сигналы в центре обработки информации, величины разностей времен прихода сигналов определяют между кодированным волновым сигналом от излучателя и маркерным сигналом каждого датчика волнового сигнала, а также между маркерными сигналами пар датчиков волнового сигнала, после вычисления местоположения объекта информацию о нем передают по соответствующей линии связи на объект.
SU5067448 1992-10-06 1992-10-06 Способ распознавания местоположения объекта RU2060513C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5067448 RU2060513C1 (ru) 1992-10-06 1992-10-06 Способ распознавания местоположения объекта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5067448 RU2060513C1 (ru) 1992-10-06 1992-10-06 Способ распознавания местоположения объекта

Publications (1)

Publication Number Publication Date
RU2060513C1 true RU2060513C1 (ru) 1996-05-20

Family

ID=21615719

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5067448 RU2060513C1 (ru) 1992-10-06 1992-10-06 Способ распознавания местоположения объекта

Country Status (1)

Country Link
RU (1) RU2060513C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881905B2 (en) 2004-11-17 2011-02-01 Qualcomm Incorporated Method for ambiguity resolution in location determination
RU2465616C2 (ru) * 2006-12-14 2012-10-27 Дзе Боинг Компани Способ и устройство для трилатерации с использованием прогнозирования линий связи в пределах прямой видимости и фильтрации трасс в пределах прямой видимости до проведения измерений
WO2017091100A1 (ru) * 2015-11-26 2017-06-01 Акционерное Общество "Азовский Оптико-Механический Завод" Способ определения местоположения объекта навигации

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент Франции N 2088386, кл. G 01S 1/00, 1972. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881905B2 (en) 2004-11-17 2011-02-01 Qualcomm Incorporated Method for ambiguity resolution in location determination
RU2465616C2 (ru) * 2006-12-14 2012-10-27 Дзе Боинг Компани Способ и устройство для трилатерации с использованием прогнозирования линий связи в пределах прямой видимости и фильтрации трасс в пределах прямой видимости до проведения измерений
WO2017091100A1 (ru) * 2015-11-26 2017-06-01 Акционерное Общество "Азовский Оптико-Механический Завод" Способ определения местоположения объекта навигации

Similar Documents

Publication Publication Date Title
KR0154603B1 (ko) 공항면 지상주행 관제시스템
US5574469A (en) Locomotive collision avoidance method and system
US5075694A (en) Airborne surveillance method and system
US4910526A (en) Airborne surveillance method and system
US5374936A (en) Security system
US3544995A (en) Navigation method with the aid of satellites
EP0961134A1 (en) Moving object high-accuracy position locating method and system
US4380050A (en) Aircraft location and collision avoidance system
GB2155720A (en) Vehicle location system
AU744947B2 (en) Automatic airport information transmitting apparatus
US3824592A (en) Method and apparatus for measuring and indicating the distance, distance variation, or both between an automotive vehicle and an obstacle
JP4424272B2 (ja) 空港面監視システムおよびこれに用いる航跡統合装置
US3870993A (en) Distance measuring equipment for aircraft employing precision distance measuring means
RU2060513C1 (ru) Способ распознавания местоположения объекта
US5239310A (en) Passive self-determined position fixing system
RU2037838C1 (ru) Способ распознавания местоположения объекта
US4050069A (en) Transponder based landing system
GB1507050A (en) Interrogator/transponder systems
JPH0727570A (ja) 船舶交通サービスシステム
US6414632B1 (en) Monitoring of the phase angle of course and clearance signals in an instrument landing system
AU632280B2 (en) A synthetic aperture radar
CN221766195U (zh) 一种基于ads-b的飞行防撞系统
JP3515393B2 (ja) 航空機監視システムとその機上装置および地上装置
KR102704969B1 (ko) 전파 품질을 제공하는 시스템 및 방법
US2633568A (en) Craft identification device