RU2053845C1 - Способ получения катализатора стереоспецифической полимеризации пропилена - Google Patents

Способ получения катализатора стереоспецифической полимеризации пропилена Download PDF

Info

Publication number
RU2053845C1
RU2053845C1 RU93047043A RU93047043A RU2053845C1 RU 2053845 C1 RU2053845 C1 RU 2053845C1 RU 93047043 A RU93047043 A RU 93047043A RU 93047043 A RU93047043 A RU 93047043A RU 2053845 C1 RU2053845 C1 RU 2053845C1
Authority
RU
Russia
Prior art keywords
ether
catalyst
toluene
complex
ticl
Prior art date
Application number
RU93047043A
Other languages
English (en)
Other versions
RU93047043A (ru
Inventor
Г.Д. Букатов
В.А. Захаров
С.А. Сергеев
Е.Е. Вермель
В.Е. Никитин
Г.П. Толстов
А.Г. Постоев
С.Г. Ковалев
В.Л. Кузнецов
И.Б. Тихонов
В.В. Зыков
Original Assignee
Институт катализа им.Г.К.Борескова СО РАН
Специальное конструкторско-технологическое бюро катализаторов с опытным заводом
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт катализа им.Г.К.Борескова СО РАН, Специальное конструкторско-технологическое бюро катализаторов с опытным заводом filed Critical Институт катализа им.Г.К.Борескова СО РАН
Priority to RU93047043A priority Critical patent/RU2053845C1/ru
Application granted granted Critical
Publication of RU2053845C1 publication Critical patent/RU2053845C1/ru
Publication of RU93047043A publication Critical patent/RU93047043A/ru

Links

Images

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Сущность изобретения: катализатор получают путем взаимодействия комплексов четыреххлористого титана с эфиром и диэтилалюминийхлорида с эфиром в углеводородном растворителе, состоящего из алканола и толуола или циклогексана в количестве не менее 5 об.% указанных циклических углеводородов путем равномерного дозирования раствора комплекса диэтилалюминийхлорида с эфиром в раствор комплекса четыреххлористого титана с эфиром. 5 з. п. ф-лы, 1 табл.

Description

Изобретение относится к способам получения катализаторов стереоспецифической полимеризации на основе треххлористого титана.
Известен способ получения катализатора на основе треххлористого титана [1] в три стадии:
восстановление TiCl4 алюминийорганическим соединением при низкой температуре;
обработка полученной коричневой модификации TiCl3 простым эфиром;
термообработка полученного продукта в присутствии TiCl4.
Этот способ впервые обеспечил возможность получения катализатора с высокой активностью, высокой стереоспецифичностью и хорошей морфологией порошка получаемого полимера. Недостатками данного способа являются:
большая длительность процесса синтеза;
большой расход растворителя;
невысокая термостабильность катализатора при его хранении.
Позже появились многочисленные патенты, описывающие более простые способы получения подобных катализаторов в две или одну стадию.
Один из примеров такого способа описан в [2] Согласно этому способу катализатор готовят взаимодействием четыреххлористого титана с комплексом алюминийорганического соединения (например, диэтилалюминийхлорида) с алифатическим эфиром (например, диизоамиловым). Взаимодействие проводят при температурах от -10 до 60оС малом отношении TiCl4/Al-R ≥1,8 и соотношении алифатический эфир/AlEt2Cl 2-5. Образующийся при этом осадок затем выдерживается при 20-100оС в течение 1-24 ч. Один из недостатков этого способа приготовления заключается в том, что он не дает возможности регулирования размера частиц в достаточно широкой области.
Несмотря на большое количество способов получения TiCl3, только в небольшом количестве патентов показана возможность регулирования размера частиц катализатора. Следует отметить, что размер и форма частиц катализатора определяют размер и форму частиц образующегося на нем полимера согласно известному явлению репликации частиц катализатора в растущей на ней полимерной частице. Регулирование размеров частиц полимера важно в производстве полиолефинов. В частности, уменьшение размера частиц полимера улучшает его отмывку от остатков катализатора и сушку от растворителя (в суспензионном процессе). В то же время появление слишком мелкой фракции полимера нежелательно из-за ее уноса при центрифугировании суспензии полимера и при сушке полимера, а также из-за ее слипаемости в случае производства блок-сополимера. Поэтому для разных технологий процесса полимеризации и получения различных арок полимера необходимо иметь оптимальный размер частиц полимера, что достигается регулированием размера частиц катализатора. Ниже описывается ряд известных способов, в которых показана возможность регулирования размеров частиц катализатора.
Известен способ получения катализатора [3] путем восстановления TiCl4 алюминийорганическим соединением в присутствии алифатического эфира и галоидароматического соединения, например, хлорбензола, 1,2,4-трихлорбензола и др. Данный способ позволяет путем изменения содержания галоидароматического соединения регулировать размеры частиц катализатора в широких пределах от 10 до 1000 мкм. Недостатком данного способа является низкий насыпной вес получаемого полимера 0,24-0,32 г/см3.
Известен более сложный способ тех же авторов [4] в котором наряду с использованием галоидароматического соединения применен способ температурной закалки в сочетании с дополнительной химической обработкой. В этом способе после смешения при комнатной температуре TiCl4, дибутилового эфира и диэтилалюминийхлорида в среде смеси, состоящей из хлорбензола и гексана, дважды производится нагрев системы с определенной скоростью до 60оС и последующее немедленное охлаждение до 20оС. При этом в охлажденную систему добавляют смесь TiCl4 и дибутилового эфира. Затем реакционную систему нагревают до 80оС и выдерживают при этой температуре 1 ч. В результате получают катализаторы со средним размером частиц 40-400 мм, которые позволяют получать порошок полипропилена с более высоким насыпным весом 0,40-0,45 г/см3. Недостатками способа являются сравнительно невысокая активность (75-93 гПП/(г ·кат· ч· атм)), невысокий насыпной вес полимера и сложная методика синтеза.
Наиболее близким по технической сущности к настоящему изобретению является способ получения треххлористого титана восстановлением TiCl4 алюминийорганическим соединением в присутствии простого эфира в среде алифатического углеводорода [2,5-прототип] В данном способе регулирование среднего размера частиц катализатора от 10 до 43 мкм осуществляется путем изменения содержания эфира в системе и перераспределения содержания эфира в смесях с TiCl4 и AlEt2Cl. Катализаторы, получаемые по данному способу, имеют высокую активность и высокую стереоспецифичность. Недостатком данного способа является то, что при уменьшении среднего размера частиц сильно снижается насыпной вес получаемого полимера. Так, в примерах 5 и 12 прототипа [2] при среднем размере частиц катализатора 10 и 15 мкм насыпной вес полимера составил 0,30 и 0,40 г/см3, соответственно, что не удовлетворяет требованиям промышленного использования. Только для катализаторов со средним размером частиц 24-43 мкм насыпной вес полимера имеет удовлетворительные показатели 0,44-0,49 г/см3 [2,5]
Целью изобретения является получение катализатора полимеризации пропилена с регулируемым размером частиц в области ниже 20 мкм, который позволяет получать полимер с высоким насыпным весом. Найдено, что при проведении взаимодействия эфирных комплексов TiCl4 и AlEt2Cl в среде смешанного растворителя, состоящего из алифатического углеводорода (в дальнейшем алкана) и толуола или циклогексана, можно регулировать средний размер частиц катализатора в интервале 6-23 мкм с сохранением высокого насыпного веса получаемого полимера. При этом катализатор обладает высокой активностью и высокой стереоспецифичностью. Поставленная цель достигается тем, что катализатор стереоспецифической полимеризации пропилена получают путем взаимодействия комплексов TiCl4 с эфиром и диэтилалюминийхлорида с эфиром в углеводородном растворителе, причем взаимодействие указанных комплексов проводят в среде углеводородного растворителя, состоящего из алканов и толуола или циклогексана в количестве не менее 5 об. указанных циклических углеводородов, путем равномерного дозирования раствора комплекса диэтилалюминийхлорида с эфиром в раствор комплекса четыреххлористого титана с эфиром.
В качестве эфира предпочтительно используют диизоамиловый эфир.
В комплексах молярное отношение эфира к четыреххлористому титану составляет 0,1-0,5, а молярное отношение эфира к диэтилалюминийхлориду составляет 0,6-2,0.
Взаимодействие указанных комплексов проводят в течение 2-10 ч при температуре 25-40оС с последующей выдержкой системы при температуре 80-110оС.
Толуол или циклогексан используют для приготовления раствора комплекса четыреххлористого титана с эфиром или для комплекса диэтилалюминийхлорида с эфиром или обоих указанных комплексов, при общем содержании толуола или циклогексана в углеводородном растворителе свыше 5%
Содержание толуола или циклогексана в углеводородной смеси составляет предпочтительно от 5 до 60 об.
Отличительными признаками способа получения катализатора согласно изобретению являются использование в качестве растворителя смеси алканов с толуолом или циклогексаном при содержании последних выше 5 об. при равномерном дозировании раствора комплекса диэтилалюминийхлорида с эфиром в раствор комплекса четыреххлористого титана с эфиром.
Катализатор согласно изобретению получают следующим образом. Готовят растворы комплекса TiCl4 с эфиром и AlEt2Cl и эфиром в смешанном растворителе, содержащем алкан и толуол или циклогексан, при содержании толуола или циклогексана в растворителе свыше 5 об. Раствор комплекса TiCl4 с эфиром загружают в реактор, нагревают до 25-40оС и затем в реактор при перемешивании в течение 3-10 ч дозируют раствор комплекса AlEt2Cl с эфиром. По окончании дозировки реакционную систему выдерживают при температуре дозировки в течение 0-1 ч, затем повышают температуру системы в течение 2-4 ч до 80-110оС и выдерживают при этой температуре 2-3 ч. После осаждения твердого осадка маточный раствор декантируют и полученный катализатор промывают несколько раз углеводородным растворителем (гексан, гептан).
Катализатор, полученный согласно изобретению, имеет высокую активность 133-165 гПП/(г кат·ч· атм) и высокую стереоспецифичность более 96% Средний размер частиц катализатора можно регулировать в интервале 6-23 мкм взаимодействием эфирных комплексов TiCl4 и AlEt2Cl в среде комбинированного растворителя. При этом средний размер частиц полимера при выходе 2 кгПП/г кат. изменяется в интервале 100-400 мкм. Полимер имеет высокий насыпной вес 0,465-0,490 г/см3.
П р и м е р 1. В стеклянном реакторе готовят раствор комплекса TiCl4 с диизоамиловым эфиром (ДИАЭ) в толуоле, последовательно загружая 46 мл толуола, 48,2 мл TiCl4 и 31 мл ДИАЭ. К данному раствору при 35оС и при постоянном перемешивании в течение 4 ч дозируют раствор комплекса 15,5 мл диэтилалюминийхлорида (ДЭАХ) с 31 мл ДИАЭ в 103 мл гептана. Доля толуола в суммарной смеси растворителя составляет 31 об. По окончании дозировки реакционная среда перемешивается при 35оС в течение 1 ч, затем нагревается до 90оС в течение 3 ч и выдерживается при этой температуре в течение 2 ч. Твердый продукт отстаивают, декантируют жидкую фазу, а твердую фазу промывают 5 раз по 150 мл гептана. Получают катализатор со средним размером частиц 10 мкм.
Испытание катализатора проводят следующим образом. В автоклав объемом 1 л при 25-30оС вводят 250 мл гексана, 0,24 г ДЭАХ, 100 мл водорода, 0,032 г полученного катализатора. Поднимают давление пропилена до 6 ати, а температуру до 70оС. Через 2 ч содержимое автоклава выгружают и фильтруют. Получают 60,6 г порошка полипропилена (ПП). Из гексана после выпаривания выделяют растворимую фракцию полимера в количестве 0,94 г (атактический ПП). Полимер имеет средний размер частиц d50, равный 165 мкм, и насыпную плотность 0,482 г/см3.
Активность катализатора равна 160 г ПП/(г кат ·ч· атм). Свойства катализатора и получаемого полимера приведены в таблице. Здесь же для корректного сравнения размеров частиц катализатора даны значения среднего размера частиц ПП, приведенные к одному и тому же выходу полимера, равному 2 кг на 1 г катализатора (d прив 50 ). Данная величина получена по известному соотношению:
d прив 50 d50(2000/G)1/3, где g выход полимера в г ПП на 1 г катализатора.
П р и м е р 2 (сравнительный). Получение катализатора и проведение полимеризации проводят, как в примере 1, но для приготовления раствора комплекса TiCl4 с эфиром вместо толуола используют 46 мл гептана. Получают катализатор со средним размером частиц 20 мкм.
П р и м е р 3. Катализатор приготовлен аналогично примеру 1, но в комплексе с четыреххлористым титаном использовано 26 мл ДИАЭ и 72 мл толуола, а в комплексе с 13,3 мл ДЭАХ использовано 26 мл ДИАЭ и 54 мл гептана. Стадия дозирования комплекса ДЭАХ с эфиром проведена при 25оС.
П р и м е р 4. Катализатор готовят аналогично примеру 1, но в комплексе с TiCl4 в качестве растворителя использовано 46 мл смеси гептана с толуолом при содержании толуола 50 об. и температура дозирования комплекса ДЭАХ с эфиром и перемешивании реакционной среды по окончании дозирования составляет 40оС.
П р и м е р 5. Катализатор готовят аналогично примеру 1, но в комплексе с TiCl4 использовано 17,3 мл ДИАЭ, а в комплексе с ДЭАХ 44,7 мл ДИАЭ. В качестве растворителей для обоих комплексов использована смесь гептана с толуолом при содержании толуола 25 об.
П р и м е р 6. Катализатор готовят аналогично примеру 5, но в комплексе с TiCl4 в качестве растворителя использовано 60 мл толуола, а в комплексе с ДЭАХ 90 мл гептана. Средний размер частиц катализатора составил 13,5 мкм.
П р и м е р 7 (сравнительный). Катализатор готовят аналогично примеру 6, но в комплексе с TiCl4 в качестве растворителя используют 60 мл гептана. Условия этого сравнительного примера соответствуют условиям прототипа (пример 4, ссылка [5]). Получают катализатор со средним размером частиц 28 мкм.
П р и м е р 8. Катализатор готовят аналогично примеру 6, но в комплексе с TiCl4 в качестве растворителя используют 60 мл циклогексана.
П р и м е р 9. Катализатор готовят аналогично примеру 8, но в комплексе с TiCl4 в качестве растворителя используется смесь 30 мл циклогексана и 30 мл гептана. Средний размер частиц катализатора составил 23 мкм.
П р и м е р 10. Катализатор готовят аналогично примеру 9, но в комплексе с ДЭАХ вместо гептана в качестве растворителя используют смесь 45 мл гептана и 45 мл циклогексана. Доля циклогексана в смеси растворителей составляет 50 об.
П р и м е р 11. Катализатор готовят как в примере 8, но для приготовления комплекса эфира с ДЭАХ используется 90 мл циклогексана, и температура выдержки составляет 80оС.
П р и м е р 12. Катализатор готовят аналогично примеру 10, но в комплексе с TiCl4 используют 8,9 мл ДИАЭ, а в комплексе с ДЭАХ 51,1 мл ДИАЭ.
П р и м е р 13. Катализатор готовят аналогично примеру 1, но в комплексе с TiCl4 используют 44,6 мл ДИАЭ, в комплексе с ДЭАХ 15,2 мл ДИАЭ, а в качестве растворителя того и другого комплекса используют гептановую фракцию с содержанием толуола 5 об.
П р и м е р 14. Катализатор готовят аналогично примеру 6, но для приготовления раствора комплекса TiCl4 с эфиром используют гептан, а для приготовления раствора комплекса ДЭАХ с эфиром используют смесь 60 мл толуола и 30 мл гептана. Доля толуола в суммарной смеси растворителя составляет 40% как в примере 6.
П р и м е р 15. В реактор объемом 3,2 м3 загружают 240 л TiCl4, 180 л толуола, 180 л гептановой фракции с содержанием толуола 5 об. и 130 л ДИАЭ. Раствор полученного комплекса нагревают до 35оС. В реакторе объемом 0,6 м3 готовят раствор комплекса 72 кг ДЭАХ и 130 л ДИАЭ в 256 л гептановой фракции. Доля толуола в суммарной смеси растворителей составляет 33% Раствор комплекса ДЭАХ с ДИАЭ дозируют в течение 8 ч к раствору комплекса TiCl4 с ДИАЭ при 35оС. По окончании дозировки реакционная смесь перемешивается при 35оС в течение 1 ч, затем нагревается в течение 3 ч до 90оС и выдерживается при этой температуре в течение 2 ч. Затем перемешивание прекращается, твердый продукт осаждается, а жидкая фаза из реактора декантируется. Твердый продукт промывают несколько раз гептановой фракцией и получают суспензию катализатора.
В автоклав объемом 1,5 л в токе пропилена загружается 1 л гептановой фракции, 2 г ДЭАХ и 0,07 г полученного катализатора. В автоклав вводится 200 мл водорода, давление пропилена и температура в реакторе поднимается до 5,5 ати и 70оС, соответственно. Через 5 ч полимеризации из автоклава выгружают и фильтруют 341 г порошка ПП, который имеет средний размер частиц 245 мкм и насыпной вес 0,481 г/см3. Количество атактического полимера составило 6,5 г.
П р и м е р 16. Катализатор готовят и испытывают аналогично примеру 15, но для приготовления раствора комплекса TiCl4 с ДИАЭ используют 360 л толуола, и температура выдержки составляет 100оС. Получают катализатор со средним размером частиц 65 мкм.
П р и м е р 17. Катализатор готовят аналогично примеру 15, но для приготовления раствора комплекса с TiCl4 используют 360 л гептановой фракции с содержанием толуола 5 об. Получают катализатор со средним размером частиц 19 мкм.
Из приведенных примеров видно, что введение в растворитель толуола или циклогексана уже в небольших количествах (15-20% пр. 4 и 9) позволяет существенно уменьшить средний размер частиц катализатора и, соответственно, полимера по сравнению с примерами, когда в качестве растворителя используется только алкан (сравнительные пр. 2 и 7 согласно прототипу). Чем выше содержание толуола или циклогексана, тем меньше размер частиц получаемого полимера. При высоком содержании толуола (до 60%) средний размер частиц полимера составляет 100-130 мкм, что в 2,7-3,3 раза ниже, чем в отсутствии толуола (пр. 3, 16 и пр. 2). При этом важно отметить, что при снижении размеров частиц катализатора менее 15 мкм (пр. 1, 6, 17) насыпной вес полимера имеет высокие значения, в то время как, согласно известному решению [2] при снижении размеров частиц катализатора до 10-15 мкм насыпной вес полимера существенно уменьшается (пример 5 и 12 прототипа [2]). Данные приведены в таблице.

Claims (6)

1. СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА СТЕРЕОСПЕЦИФИЧЕСКОЙ ПОЛИМЕРИЗАЦИИ ПРОПИЛЕНА путем взаимодействия комплексов четыреххлористого титана с эфиром и диэтилалюминийхлорида с эфиром в углеводородом растворителе, отличающийся тем, что взаимодействие указанных комплексов проводят в среде углеводородного растворителя, состоящего из алканов и толуола или циклогексана с содержанием последних не менее 5 об.%, путем равномерного дозирования раствора комплекса диэтилалюминийхлорида с эфиром в раствор комплекса четыреххлористого титана с эфиром.
2. Способ по п. 1, отличающийся тем, что в качестве эфира используют диизоамиловый эфир.
3. Способ по п.1, отличающийся тем, что в комплексах молярное отношение эфира к четыреххлористому титану составляет 0,1-0,5, а молярное отношение эфира к диэтилалюминийхлориду - 0,6 - 2,0.
4. Способ по п.1, отличающийся тем, что толуол или циклогексан используют для приготовления раствора комплекса четыреххлористого титана с эфиром или для комплекса диэтилалюминийхлорида с эфиром или обоих указанных комплексов при общем содержании толуола или циклогексана в углеводородном растворителе не менее 5%.
5. Способ по п.1, отличающийся тем, что взаимодействие указанных комплексов проводят в течение 2 - 10 ч при 25 - 40oС с последующей выдержкой системы при 80 - 110oС.
6. Способ по п.1, отличающийся тем, что содержание толуола или циклогексана в углеводородной смеси составляет 5 - 70 об.%.
RU93047043A 1993-10-01 1993-10-01 Способ получения катализатора стереоспецифической полимеризации пропилена RU2053845C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93047043A RU2053845C1 (ru) 1993-10-01 1993-10-01 Способ получения катализатора стереоспецифической полимеризации пропилена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93047043A RU2053845C1 (ru) 1993-10-01 1993-10-01 Способ получения катализатора стереоспецифической полимеризации пропилена

Publications (2)

Publication Number Publication Date
RU2053845C1 true RU2053845C1 (ru) 1996-02-10
RU93047043A RU93047043A (ru) 1996-12-27

Family

ID=20148030

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93047043A RU2053845C1 (ru) 1993-10-01 1993-10-01 Способ получения катализатора стереоспецифической полимеризации пропилена

Country Status (1)

Country Link
RU (1) RU2053845C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент СССР N 504496, кл. C 08F 10/14, 1972. Патент США N 4110248, кл. C 08F 4/64, кл.B 01J 37/00, 1978. Патент США N 4235745, кл. C 08F 4/64, 1980. Патент США N 4284525, кл. C 08J 10/06, 1981. Патент США N 4199474, кл. C 08F 4/64, 1980. *

Similar Documents

Publication Publication Date Title
US4843049A (en) Catalyst component for polymerizing ethylene or copolymerizing ethylene with an alpha-olefin
KR950008153B1 (ko) 예비중합된 촉매의 효능을 증가시키는 방법
US4338424A (en) Multi-step gas-phase polymerization of olefins
US5324698A (en) New carrier catalyst for the polymerization of ethylene
US4506027A (en) Method of preparing a supported Ziegler-catalyst for the polymerization of alpha-olefins
JPS5827705A (ja) 重合触媒および方法
RU2320410C1 (ru) Способ приготовления катализатора и процесс полимеризации этилена с использованием этого катализатора
RU2094440C1 (ru) Способ получения твердого компонента катализатора (со)полимеризации этилена
US5413979A (en) Method for the preparation of a catalyst component for the polymerization of olefins, a polymerization catalyst component produced by the method and use of the same
JP2001510865A (ja) 高活性ポリエチレン触媒
HUT59703A (en) Process for stopping gas-phase polymerizing reaction
FI91968C (fi) -olefiinien polymerointiin tarkoitettu prokatalyyttikompositio, sen valmistus ja käyttö
CS264327B2 (en) Process for preparing solid catalyst for the polymerization of olefines
RU2053845C1 (ru) Способ получения катализатора стереоспецифической полимеризации пропилена
EP0771820A1 (en) Supported ziegler-natta catalysts for polyolefin production
JPS6166705A (ja) プロピレンの連続気相重合方法
US4269732A (en) Olefin polymerization catalysts
RU2346006C1 (ru) Катализатор и способ получения сверхвысокомолекулярного полиэтилена с использованием этого катализатора
NO173656B (no) Fremgangsmaate for fremstilling av katalysatorkomponenter for polymerisasjon av etylen med en relativt trang molekylvektsfordeling, og anvendelse av komponentene
JPH03121103A (ja) ポリオレフィンの製造方法
JP3253749B2 (ja) オレフィン重合触媒の製造方法
RU2185881C1 (ru) Способ получения катализатора для стереоспецифической полимеризации пропилена
RU2257264C1 (ru) Способ приготовления катализатора и процесс полимеризации этилена и сополимеризации этилена с альфа-олефинами с использованием этого катализатора
RU2176649C1 (ru) Способ получения сверхвысокомолекулярного полиэтилена
FI85276B (fi) Ny ziegler-natta -katalysatorkomponent, dess framstaellning och anvaendning.

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081002