RU2036849C1 - Способ подавления микроорганизмов и биообрастаний в водных системах - Google Patents

Способ подавления микроорганизмов и биообрастаний в водных системах Download PDF

Info

Publication number
RU2036849C1
RU2036849C1 SU925011764A SU5011764A RU2036849C1 RU 2036849 C1 RU2036849 C1 RU 2036849C1 SU 925011764 A SU925011764 A SU 925011764A SU 5011764 A SU5011764 A SU 5011764A RU 2036849 C1 RU2036849 C1 RU 2036849C1
Authority
RU
Russia
Prior art keywords
microorganisms
water
bacteria
biofilms
sedentary
Prior art date
Application number
SU925011764A
Other languages
English (en)
Inventor
Белл Тейс Алан
Ледер Джонатан
Original Assignee
Юнион Карбайд Кемикалз энд Пластикс Технолоджи Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юнион Карбайд Кемикалз энд Пластикс Технолоджи Корпорейшн filed Critical Юнион Карбайд Кемикалз энд Пластикс Технолоджи Корпорейшн
Application granted granted Critical
Publication of RU2036849C1 publication Critical patent/RU2036849C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N35/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/605Compositions for stimulating production by acting on the underground formation containing biocides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N35/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
    • A01N35/04Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical containing aldehyde or keto groups, or thio analogues thereof, directly attached to an aromatic ring system, e.g. acetophenone; Derivatives thereof, e.g. acetals
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/02Agents for preventing deposition on the paper mill equipment, e.g. pitch or slime control
    • D21H21/04Slime-control agents

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paper (AREA)
  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Steroid Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Display Devices Of Pinball Game Machines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

Использование подавление микроорганизмов и биобрастаний в водных системах при производстве бумаги и во вторичных процессах извлечения нефти из отходов. Сущность: способ заключается в подаче ортофталевого альдегида в водные системы, чувствительные к загрязнению бактериями. Ортофталевый альдегид вводят в количестве 0,5 - 1000 частей/млн, индивидуально или совместно с глутаровым альдегидом или формальдегидом. 2 з.п. ф-лы, 5 табл.

Description

Изобретение относится к способам борьбы с загрязнениями микроорганизмов, включая обработку воды, производство целлюлозы и бумаги и заводнение нефтеносного пласта.
Загрязнение микроорганизмов связано с осаждением микробов или образованием биопленок фактически на любой поверхности, погруженной в водную среду. В системах водяного охлаждения биопленки снижают скорость теплопередачи и загрязняют трубопроводы и теплообменные трубы, в результате значительно увеличивается сопротивление трению и потребляется большое количество энергии для накачки жидкости. Во вторичных процессах добычи нефти из отходов, которые включают в себя заводнение нефтеносного пласта, биопленки могут вызвать забивание нефтеносной свиты. Также известно, что возникновение сильной коррозии может быть результатом образования кислот, связанного с ростом биопленок определенных бактерий. Эти биопленки часто состоят из бактерий, выделяющих сульфат, которые анаэробно размножаются в воде, причем часто в присутствии масла и природных газов.
Известен способ подавления микроорганизмов в водных системах, включающий обработку окислительными биоцидами: хлором, бромом, двуокисью хлора, хлоризоциануратами и галоидсодержащими гидантонами. Также они включают в себя безокислительные биоциды: четвертичные соединения аммония, изотиазолоны, альдегиды, пара-аминбензойные кислоты и органосоединения серы.
Обычно названные биоциды применяют для уничтожения планктонных микроорганизмов в системах циркуляции воды, например, в башенных холодильниках и в аппаратах для пастеризации. До настоящего времени мало исследовали эффективность биоцидов на сидячих микроорганизмах. Современные исследования показывают, что многие, широко применяемые биоциды, являются сравнительно неэффективными против сидячих микроорганизмов.
Известно, что только несколько безокислительных биоцидов являются эффективными в уничтожении сидячих микроорганизмов в определенных биопленках. Известно, что против таких сидячих микроорганизмов являются эффективными изотиазолоны, формальдегид и глутаровый альдегид.
Таким образом, существует необходимость в создании такого биоцида, который будет эффективным в уничтожении сидячих микроорганизмов и который можно применять при уровнях концентрации ниже тех, при которых используют известные биоциды.
Настоящее изобретение касается способа борьбы с загрязнением водной системы микроорганизмами, который заключается в подаче ортофталевого альдегида в водную систему в количестве 0,5-1000 частей/млн. Обнаружено, что ортофталевый альдегид является особенно эффективным в уничтожении сидящих микроорганизмов, присутствующих в различных водных средах, чувствительных к загрязнению бактериями, причем в этом отношении он более эффективен, чем другие известные биоциды.
Ортофталевый альдегид имеет формулу
Figure 00000001
CHO и для кратности его дальше будут называть иногда как "ОРА".
На практике ОРА применяют в водной системе в "количестве, эффективном против микробов", т.е. по меньшей мере требуется минимальное количество ортофталевого альдегида для уничтожения или по существу исключения роста микроорганизмов, которые прилипают к стенкам или другим поверхностям конструкции системы. Конкретное требуемое количество ОРА изменяется в зависимости от множества факторов, включая типы сидячих микроорганизмов. Время контакта между ОРА и микроорганизмом и водной системой, в которой применяют ОРА.
Обычно ортофталевый альдегид применяют до 5 мас. Однако, ввиду его эффективности в качестве биоцида против сидячих микроорганизмов ОРА применяют в малом количестве, например, от примерно 0,5 до ≈1000 частей/млн. (РРМ) и обычно ≈5-500 частей/млн. Концентрация ОРА, превышающая 5 мас. (50000 частей/млн. ), которая является пределом растворимости ОРА в воде при температуре 25оС, может достигаться при применении смешивающегося с водой совместного растворителя, например, смешиваемых с водой гликолей, спиртов, фуранов и простых эфиров. Типичные сорастворителями для применения в способе согласно этому изобретению являются этиленгликоль, метанол, этанол и тетрагидрофуран. Обычно, когда применяют сорастворимость, то предпочтительны сорастворители с более высокой температурой кипения как, например, этиленгликоль.
Хотя глутаровый альдегид и формальдегид являются предпочтительными биоцидами для уничтожения или исключения роста сидячих микроорганизмов, однако было обнаружено, что ортофталевый альдегид является более эффективным, чем любой из этих биоцидов для уничтожения или исключения роста сидячих микроорганизмов. Однако должно быть ясно, что ОРА можно применять в способе согласно этому изобретению в комбинации с одним или несколькими биоцидами, как например, глутаровый альдегид, формальдегид и другие биоциды. Типичными такими другими биоцидами являются: хлор, бром, двуокись хлора, хлоризоцианураты, галоид содержащие гидантоины, четвертичные соединения аммония, изотиазолоны, парааминобензойные кислоты и органические соединения серы.
Водные системы, которые обрабатывают способом согласно изобретению, представляют собой системы, способные поддерживать рост сидячих микроорганизмов. Такие системы могут содержать широкий спектр сидячих микроорганизмов, включая бактерии, дрожжи, грибки, плесень и морские водоросли.
Быстрое уничтожение микроорганизмов особенно важно в промышленных процессах, в которых время контакта между биоцидом и микроорганизмом сравнительно непродолжительное. Примеры таких процессов включают в себя: (1) обработка охлаждающей воды и суспензий на бумажных фабриках, на которых часть воды периодически теряется или удаляется и заменяется свежей водой, таким образом биоцид теряется в течение нескольких часов после его добавки; (2) заводнение нефтеносного пласта, при котором биоцид используют в нерециркуляционной системе; (3) смазки для конвейеров. Такие системы могут иметь время контакта меньше, чем четыре часа.
Помимо скорости уничтожения микроорганизмов во многих процессах также важна степень уничтожения в условиях продолжительного контакта. Примеры включают в себя: (1) контроль загрязнения микроорганизмами в рециркулирующих промышленных водных средах как, например, жидкость или металлообработки или теплопередающая среда; (2) уничтожение микроорганизмов в замкнутых водных системах, например, системы кондиционирования воздуха, воздушные промывочные аппараты, системы водяного охлаждения.
Примеры, следующие ниже, представлены для иллюстрации изобретения. Все части и проценты даны по массе.
Обозначения:
ppm части на миллион по массе воды,
GA глутаровый альдегид,
FA формальдегид,
TGE триптоный экстракт глюкозы,
SRB выделяющая сульфат бактерия.
Для культивирования различных типов микроорганизмов, применяемых в примерах, используют следующие способы.
Образование аэробных биопленок на пеницилиндрах из нержавеющей стали способ А.
20 мл стерильного бульона Bacto TGE помещают в стерильную чашку Петри (15х100 мм), добавляют 10 мл испытываемых аэробных организмов, культивированных в течение 24 ч. Затем стерильные пеницилиндры (с наружным диаметром 10 мм, внутренним диаметром 7 мм, длиной 10 мм) помещают в зараженную среду. Цилиндры укладывают в чашу на один конец или на одну сторону. Затем чашку Петри, содержащую цилиндры, выдерживают в термостате при температуре 37оС в течение 48 ч. После этого цилиндры отдельно удаляют асептически при помощи пинцетов на стерильную фильтровальную бумагу и промывают три раза путем погружения в стерильный соляной раствор. Этот способ применяют, чтобы проверить, что испытывались только организмы, прочно прикрепленные в биопленке.
Затем два цилиндра, покрытые биопленкой, осторожно опускают в отдельные 10 мл испытательные трубы, содержащие растворы биоцида различной концентрации. Через один час и четыре часа времени контакта цилиндр асептически переносят в свежую трубку с бульоном TGE и подвергают завихрению в течение 30 с для удаления всех сидячих организмов. Полученную суспензию последовательно разбавляют и делают посев на чашку Петри, применяя агаровую среду TGE, для подсчета количества. Плоскодонные чашки Петри выдерживают в термостате в течение 48 ч при температуре 37оС до подсчитывания.
Образование биопленки бактерий, выделяющих сульфат, на цилиндрах из мягкой стали способ В.
Среду, содержащую SRB, приготовили следующим образом:
14,5 г бульона Bacto Sulfate API Broth (Difco Labs) и 2,0 г агара Bacto Agar (Difco Labs) добавляют в 100 мл дистиллированной воды. Раствор нагревают и перемешивают до растворения всех компонентов. Также готовят 1%-ный раствор тиогликолята натрия в дистиллированной воде. Затем оба раствора выдерживают в автоклаве при температуре 121оС в течение 30 мин. После охлаждения в смесь добавляют 5 г раствора тиогликолята натрия.
Пеницилиндры из мягкой стали (с наружным диаметром 10 мм, внутренним диаметром 7 мм и длиной 10 мм) очищают, выдерживая их в течение 10 мин, в 0,5% соляной кислоте. Затем цилиндры промывают три раза дистиллированной водой и высушивают до их применения.
Бутылку емкостью 4 унций с винтовой пробкой продувают аргоном для удаления кислорода, закрывают пробкой и затем обрабатывают в автоклаве. После охлаждения в эту бутылку добавляют 100 мл стерильной среды SRB. Затем добавляют очищенные цилиндры вместе с 10 мл культуры SRB, выдерживают в течение пяти дней. Все операции проводят в условиях постоянного потока аргона для уменьшения уровней содержания кислорода. Затем бутылку выдерживают в термостате в течение 7-14 дней (в зависимости от применяемой среды SRB) при температуре 37оС. После этого цилиндры отдельно удаляют асептически с применением пинцета и промокают стерильной фильтровальной бумагой.
Затем два цилиндра, покрытые биопленкой, осторожно опускают в отдельные 10 мл испытательные трубки неаэрированных раствором биоцида различной концентрации. Все растворы биоцида и контрольные растворы содержат 30 частей/млн. поверхностно-активного вещества неионного нонилфенолэтоксилата (TERGITOL
Figure 00000002
NP-4, Юнион Карбайд Кемиклз энд Пластикс, Компани, Инк. Донбари, СТ). Через один час и четыре часа времени контакта цилиндр удаляют промокнув стерильной фильтровальной бумагой и помещают в ампулу SRB (CSiS Laboratories, Tulsa, OК). Затем ампулу подвергают обработке ультразвуком (Модель 12 Brausonic) в течение 30 с для удаления сидячих организмов. Полученный раствор последовательно разбавляют в дополнительных ампулах SRB для перечисления. До считывания содержимое ампул выращивают в течение 28 ч при температуре 37оС. Как показатель роста применяют чернение ампул.
Рост планктонных бактерий, выделяющих сульфат способ С.
Основной штамм испытываемой бактерии SRB выращивают в ампуле SRB в течение 4 дней при температуре 37оС. Затем ампулу продувают аргоном в течение примерно 30 с для удаления избыточного сероводорода. После этого в каждую ампулу SRB ряда вносят 0,1 мл этого основного штамма. Ампулы выдерживают в термостате при температуре 37оС в течение 4 дней. Затем каждую из этих ампул продувают аргоном. Готовят соответствующие основные растворы биоцида, таким образом добавки 0,1-1,0 мл обеспечивают требуемую концентрацию биоцида в каждой ампуле SRB. После 1 ч и 4 ч времени контакта из каждой ампулы удаляют 1 мл аликвоты и вводят в ампулы с свежими бактериями SRB. Затем эти ампулы последовательно разбавляют для перечисления.
Для уменьшения ошибки все сообщенные ниже уровни концентрации времени контакта испытывают дважды, а результаты усредняют. Полученные результаты показали уменьшение количества микроорганизмов в сравнении с контрольными цилиндрами, обработанными подобным образом без применения биоцида.
П р и м е р 1. Результаты в зависимости от биопленок аэробных бактерий.
Во всех экспериментах с аэробными биопленками используют взятые из нефтеносного пласта аэробные бактерии. Эта культура содержит в основном виды бактерий Pseudomonas. Биопленки получают, следуя указанному способу А. Соответствующие образцы обрабатывают перечисленными ниже биоцидами различной концентрации и после 1 ч и 4 ч времени контакта подсчитывают количество бактерий.
Результаты следующие (табл. 1).
Этот пример показывает, что ортофталевый альдегид превосходит по эффективности глутаровый альдегид и формальдегид.
П р и м е р 2. Результаты в зависимости от биопленок аэробных бактерий.
С ортофталевым альдегидом сравнивают четыре альдегида ароматического ряда для определения их эффективности в уничтожении организмов, содержащихся в биопленках. Выбранные соединения: салициловый альдегид (SA); орто-4 окси-3 метоксибензальдегид (OVA); 2,3-дигидроксибензальдегид (ДНВ); и 2-карбоксибензальдегид. На основании минимальной концентрации ингибитора (МIC), указанного в табл. 2, можно предположить, что SA, OVA и ДНВ по существу соответствуют ортофталевому альдегиду, тогда как СВ менее эффективен.
Соответствующие образцы пяти соединений испытывают на сидячих микроорганизмах, вкрапленных в биопленки. Биопленка состояла из различных микроорганизмов, но содержала в основном виды Рseudomonas, выращенные с применением способа А.
После 1 и 4 ч контакта подсчитывают количество организмов.
Результаты представлены в табл. 3.
Этот пример показывает эффективность ортофталевого альдегида против сидячих микроорганизмов в биопленках, даже, когда другие альдегиды применяют при уровнях превышающих в четыре раза концентрациюортофталевого альдегида.
П р и м е р 3. Результаты в зависимости от биопленок сидячих анаэробных бактерий.
Культуру SRB получают из затопленной водой нефтяной скважины на Аляске. Затем бактерии выращивают на стенках стальных пеницилиндров, применяя описанный способ В. Затем соответствующие образцы контактируют с глутаровым альдегидом, формальдегидом или ортофталевым альдегидом в течение 1 и 4 ч, при этом получены следующие результаты (табл. 4).
Как и в испытаниях на аэробных пленках эти данные указывают на то, что неожиданно низкая концентрация ортофталевого альдегида (10 част./млн.) может полностью уничтожить все сидячие анаэробные организмы, содержащиеся в биопленке, в течение 4 часов. Для достижения такого же уровня эффективности потребуется значительно выше концентрация любого глутарового альдегида или формаль- дегида.
П р и м е р 4. Результаты испытаний на планктонных анаэробных бактериях.
Следуя способу С, выращивают такой же образец планктонных бактерий SRB, которые применяли в примере 3. Соответствующие образцы бактерий обрабатывают различными концентрациями ортофталевого альдегида, причем в каждом случае записывают уменьшение количества бактерий.
Результаты испытаний представлены в табл.5.
Лучшая эффективность ортофталевого альдегида (ОРА) в уничтожении сидячих микроорганизмов является очевидной из сравнения результатов примеров 3 и 4. Результаты таблицы 5 (пример 4) показывают, что полное уничтожение планктонных микроорганизмов РВ не достигает при таких высоких концентрациях биоцида ОРА как, например, 500 частей/млн. С другой стороны, когда его применяют для обработки сидячих микроорганизмов как в примере 3, то полное уничтожение микроорганизмом достигается при низких концентрациях ОРА, т.е. 10-50 частей/млн. Результаты примера 3 являются удивительными, поскольку обычно считают, что легче уничтожить планктонные организмы, чем микроорганизмы, содержащиеся в биопленках.

Claims (3)

1. СПОСОБ ПОДАВЛЕНИЯ МИКРООРГАНИЗМОВ И БИООБРАСТАНИЙ В ВОДНЫХ СИСТЕМАХ, включающий введение биоцида, отличающийся тем, что в качестве биоцида используют ортофталевый альдегид.
2. Способ по п.1, отличающийся тем, что ортофталевый альдегид вводят в количестве 0,5 1000,0 млн- 1.
3. Способ по п.1, отличающийся тем, что ортофталевый альдегид вводят совместно с глутаровым альдегидом или формальдегидом.
SU925011764A 1991-09-30 1992-05-15 Способ подавления микроорганизмов и биообрастаний в водных системах RU2036849C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/767,810 US5128051A (en) 1991-09-30 1991-09-30 Method for the control of biofouling
US767810 2004-01-29

Publications (1)

Publication Number Publication Date
RU2036849C1 true RU2036849C1 (ru) 1995-06-09

Family

ID=25080661

Family Applications (1)

Application Number Title Priority Date Filing Date
SU925011764A RU2036849C1 (ru) 1991-09-30 1992-05-15 Способ подавления микроорганизмов и биообрастаний в водных системах

Country Status (20)

Country Link
US (1) US5128051A (ru)
EP (1) EP0535301B1 (ru)
JP (1) JPH0623368A (ru)
KR (1) KR100188794B1 (ru)
CN (1) CN1046685C (ru)
AT (1) ATE135333T1 (ru)
AU (1) AU647352B2 (ru)
BR (1) BR9201828A (ru)
CA (1) CA2068765C (ru)
CZ (1) CZ147092A3 (ru)
DE (1) DE69208993T2 (ru)
EC (1) ECSP920834A (ru)
ES (1) ES2084211T3 (ru)
FI (1) FI104532B (ru)
MX (1) MX9202317A (ru)
NO (1) NO300794B1 (ru)
PL (1) PL294567A1 (ru)
RU (1) RU2036849C1 (ru)
SK (1) SK147092A3 (ru)
TW (1) TW201264B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664302C2 (ru) * 2013-01-25 2018-08-16 Кемира Ойй Композиция биоцида и способ обработки воды
RU2778837C2 (ru) * 2017-07-18 2022-08-25 Конинклейке Филипс Н.В. Световоды с покрытием для использования в воде

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687659B1 (fr) * 1992-02-24 1994-08-26 Texel Procede de traitement de la flore contaminant les circuits papetiers mettant en óoeuvre des bacteries.
US5368749A (en) * 1994-05-16 1994-11-29 Nalco Chemical Company Synergistic activity of glutaraldehyde in the presence of oxidants
FR2718923B1 (fr) * 1994-04-25 1996-05-31 Sogeval Composition désinfectante en solution aqueuse renfermant de l'orthophtalaldéhyde.
AT404592B (de) * 1996-11-26 1998-12-28 Chemie Linz Gmbh Verfahren zur herstellung von wässrigen o-phthalaldehyd-glutaraldehydlösungen
US5936001A (en) * 1998-01-21 1999-08-10 Ethicon, Inc. Disinfecting and sterilizing concentrate containing an aromatic dialdehyde and a neutral pH buffering system
GB9805550D0 (en) * 1998-03-16 1998-05-13 Univ London Antifouling agent
DE19937300A1 (de) * 1999-08-06 2001-02-22 Henkel Ecolab Gmbh & Co Ohg Biofilmvermeidung
EP1235046B1 (en) 1999-11-26 2011-10-05 JFE Engineering Corporation Thermal storage material using hydrate and thermal storage device therefor, and production method of the thermal storage material
US6810957B2 (en) * 2001-11-14 2004-11-02 Bechtel Bwxt Idaho, Llc Well constructions with inhibited microbial growth and methods of antimicrobial treatment in wells
WO2003102474A1 (fr) * 2002-05-31 2003-12-11 Jfe Engineering Corporation Dispositif de production de bouillie d'hydrate
US20040071592A1 (en) * 2002-10-10 2004-04-15 Ioana Annis Fast dissolving solid ortho-phthalic aldehyde formulations
US20050238732A1 (en) * 2003-12-19 2005-10-27 Kaitao Lu Carbonated germicide with pressure control
US20050136086A1 (en) * 2003-12-19 2005-06-23 Rafael Herruzo Efficacy enhancers for germicides
US20050136118A1 (en) * 2003-12-19 2005-06-23 Wu Su-Syin S. Distribution and preparation of germicidal compositions
US7390837B2 (en) * 2004-01-30 2008-06-24 Ethicon, Inc. Germicidal compositions containing phenylmalonaldehyde-type compounds, or mixtures of phenylmalonaldehyde-type compounds and phthalaldehydes, and methods of using such compositions for disinfection or sterilization
US7476767B2 (en) * 2004-01-30 2009-01-13 Ethicon, Inc. Alpha-hydroxy sulfonate aldehydes, germicidal compositions containing the alpha-hydroxy sulfonate aldehydes, or mixtures of alpha-hydroxy sulfonate aldehydes and phthalaldehydes, and methods of using the compounds or compositions for disinfection or sterilization
US20050171215A1 (en) * 2004-01-30 2005-08-04 Ethicon, Inc. Germicidal compositions containing halogenated phthalaldehyes, and methods of using such compositions for disinfection or sterilization
US6891069B1 (en) 2004-01-30 2005-05-10 Ethicon, Inc. Synthesis of 4-substituted phthalaldehyde
US20050171216A1 (en) * 2004-01-30 2005-08-04 Zhu Peter C. Germicidal compositions containing phthalaldehyde mixtures and methods of using such compositions for disinfection or sterilization
US8999315B2 (en) * 2004-07-15 2015-04-07 Nalco Company Bis-quaternary ammonium salt corrosion inhibitors
US7291649B2 (en) * 2005-06-29 2007-11-06 Ethicon, Inc. Forming germicidal aromatic dialdehydes with acetals
JP2008115141A (ja) * 2006-11-08 2008-05-22 K I Chemical Industry Co Ltd アメーバ殺滅剤
DE102007041991A1 (de) * 2007-09-05 2009-03-12 Fülling, Rainer, Dr. Verfahren zur Reinigung von Substraten durch Oxidationsmittel und Reduktionsmittel sowie die Verwendung von Oxidationsmitteln zur Oxidation von extrazellulären polymeren Substanzen
US20090184062A1 (en) * 2008-01-21 2009-07-23 Ppg Industries Ohio, Inc. Method for inhibiting biofilm growth
US20090203645A1 (en) * 2008-02-12 2009-08-13 Larry Kent Hall Broad Spectrum Disinfecting and Sterilizing Composition
JP5175583B2 (ja) * 2008-03-13 2013-04-03 アクアス株式会社 バイオフィルム剥離剤、及び、バイオフィルム剥離方法
US8162048B2 (en) 2008-09-09 2012-04-24 Tetra Technologies, Inc. Method of delivering frac fluid and additives
US8242176B2 (en) * 2009-09-09 2012-08-14 Howard Martin Biocidal aldehyde composition for oil and gas extraction
US9006216B2 (en) * 2009-09-09 2015-04-14 Howard Martin Biocidal aldehyde composition for oil and gas extraction
US20150157024A1 (en) * 2009-09-09 2015-06-11 Howard Martin Biocidal aldehyde composition for water management
US10213757B1 (en) 2015-10-23 2019-02-26 Tetra Technologies, Inc. In situ treatment analysis mixing system
JP6886327B2 (ja) * 2017-03-30 2021-06-16 花王株式会社 バイオフィルム形成抑制用組成物
JP6842338B2 (ja) * 2017-03-30 2021-03-17 花王株式会社 バイオフィルム形成抑制用組成物
EP3450626B1 (en) * 2017-08-29 2020-05-06 Kemira Oyj Method for controlling growth of microorganisms and/or biofilms in an industrial process
EP3450623B1 (en) 2017-08-29 2023-06-28 Kemira Oyj Method for controlling growth of microorganisms and/or biofilms in an industrial process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297224A (en) * 1980-06-04 1981-10-27 Great Lakes Chemical Corporation Method for the control of biofouling in recirculating water systems
EP0185612A1 (de) * 1984-12-10 1986-06-25 Sanitized Verwertungs A.-G. Desinfektion von Erdöl und Erdölprodukten und ihre Anwendung bei der Erdölförderung
US4851449A (en) * 1987-05-21 1989-07-25 Surgikos, Inc. Odorless aromatic dialdehyde disinfecting and sterilizing composition
US4847304A (en) * 1987-05-21 1989-07-11 Surgikos, Inc. Disinfecting and sterilizing composition
US4971999A (en) * 1987-05-21 1990-11-20 Johnson & Johnson Medical, Inc. Odorless aromatic dialdehyde disinfecting and sterilizing composition and method of using the same
GB8904844D0 (en) * 1989-03-03 1989-04-12 Albright & Wilson Biocidal compositions and treatments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент США N 4297224, кл. C 02F 1/76, 1/50, 1981. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664302C2 (ru) * 2013-01-25 2018-08-16 Кемира Ойй Композиция биоцида и способ обработки воды
RU2778837C2 (ru) * 2017-07-18 2022-08-25 Конинклейке Филипс Н.В. Световоды с покрытием для использования в воде

Also Published As

Publication number Publication date
AU1627192A (en) 1993-04-01
MX9202317A (es) 1993-12-01
KR100188794B1 (ko) 1999-06-01
ATE135333T1 (de) 1996-03-15
NO300794B1 (no) 1997-07-28
FI104532B (fi) 2000-02-29
CA2068765A1 (en) 1993-03-31
NO921925D0 (no) 1992-05-15
EP0535301A1 (en) 1993-04-07
ES2084211T3 (es) 1996-05-01
CN1046685C (zh) 1999-11-24
KR930005535A (ko) 1993-04-20
TW201264B (ru) 1993-03-01
BR9201828A (pt) 1993-04-13
ECSP920834A (es) 1993-01-29
SK147092A3 (en) 1994-04-06
CZ147092A3 (en) 1993-04-14
DE69208993T2 (de) 1996-07-25
FI922242A0 (fi) 1992-05-15
NO921925L (no) 1993-03-31
JPH0623368A (ja) 1994-02-01
US5128051A (en) 1992-07-07
CA2068765C (en) 1998-07-07
AU647352B2 (en) 1994-03-17
DE69208993D1 (de) 1996-04-18
CN1071146A (zh) 1993-04-21
PL294567A1 (en) 1993-04-05
EP0535301B1 (en) 1996-03-13
FI922242A (fi) 1993-03-31

Similar Documents

Publication Publication Date Title
RU2036849C1 (ru) Способ подавления микроорганизмов и биообрастаний в водных системах
JP5551705B2 (ja) 殺生物組成物および使用方法
BRPI0013130B1 (pt) composição e processo para controlar cescimento biológico em fluidos industriais
FI87038C (fi) Biocid blandning
JP5767233B2 (ja) 殺生物組成物および使用方法
JP2012528162A (ja) グルタルアルデヒド系殺生物組成物及び使用方法
US3608084A (en) Halogenated aliphatic nitriles for controlling the growth of aerobacter bacteria in industrial water systems
US4489098A (en) 2,2,3-Trihalopropionaldehydes as antimicrobial agents
EP0706759B1 (en) Control of oilfield biofouling
US4920141A (en) Synergistic biocides of certain nitroimidazoles and aldehydes
IL91851A (en) Micro-organism preparations containing 2, 2-dibromo-2-nitroethanol and methods for killing micro-organisms using them
EP0161361B1 (en) Microbicidal compositions containing hydroxypropyl methanethiolsulfonate
RU2559892C2 (ru) Борьба с биопленкой галогенированными амидами в качестве биоцидов
US3300373A (en) Method of controlling growth of microorganisms in industrial water systems
RU2501218C1 (ru) Синергетическая противомикробная композиция, содержащая глутаровый альдегид и диметоксан(2,6-диметил-1,3-диоксан-4-илацетат)
SU1125205A1 (ru) Способ предотвращени роста сульфатвосстанавливающих бактерий
Gaylarde et al. Control of Corrosive Biofilms by Blocides
JPH01197411A (ja) 工業用防菌剤
JP2008503341A (ja) 汚泥特性の改善
US8993638B2 (en) Brominated nitroalkanol compositions and their use as biocides
TW201922627A (zh) 在生物膜控制中表現協同作用的組合物
NO874171L (no) Baktericide blandinger inneholdende nitroimidazol-salter.