RU2016123351A - Способ измерения насыщенности защемленным газом в образце горной породы - Google Patents

Способ измерения насыщенности защемленным газом в образце горной породы Download PDF

Info

Publication number
RU2016123351A
RU2016123351A RU2016123351A RU2016123351A RU2016123351A RU 2016123351 A RU2016123351 A RU 2016123351A RU 2016123351 A RU2016123351 A RU 2016123351A RU 2016123351 A RU2016123351 A RU 2016123351A RU 2016123351 A RU2016123351 A RU 2016123351A
Authority
RU
Russia
Prior art keywords
saturation
gas
rock sample
measuring
values
Prior art date
Application number
RU2016123351A
Other languages
English (en)
Inventor
Никола Джованни БОНА
Original Assignee
Эни С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эни С.П.А. filed Critical Эни С.П.А.
Publication of RU2016123351A publication Critical patent/RU2016123351A/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/241Earth materials for hydrocarbon content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/081Making measurements of geologic samples, e.g. measurements of moisture, pH, porosity, permeability, tortuosity or viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/616Specific applications or type of materials earth materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Remote Sensing (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Claims (17)

1. Способ (100) измерения насыщенности защемленным газом в образце горной породы, включающий следующие стадии:
насыщение (101) объема пор указанного образца горной породы водой;
выполнение первого этапа (102) формирования изображений, допускающего мысленное дробление образца на множество субобразцов и измерение содержания воды каждого субобразца для получения множества значений пористости для указанного множества субобразцов, причем указанное множество значений пористости образует карту пористости указанного образца;
воздействие на указанный образец горной породы, насыщенный водой, с помощью центрифугирования (103) в воздушной среде при заранее заданной скорости центрифугирования в воздушной среде;
выполнение второго этапа (104) формирования изображений для получения первого множества значений насыщенности газом Sg в соответствующих субобразцах, причем указанное первое множество значений насыщенности газом образует карту начальной насыщенности газом Sgi указанного образца;
воздействие на указанный образец горной породы с помощью центрифугирования (105) в водной среде при заранее заданной скорости центрифугирования в водной среде;
выполнение третьего этапа (106) формирования изображений для получения второго множества значений насыщенности газом для соответствующих субобразцов, причем указанное второе множество значений насыщенности газом образует карту насыщенности газом Sg указанного образца;
вычисление (107) множества значений чисел Бонда, соответствующих указанному центрифугированию (105) в водной среде для каждого из указанных субобразцов;
сопоставление (108) каждому субобразцу указанной измеренной насыщенности газом Sg с указанной измеренной начальной насыщенностью газом Sgi и с указанными вычисленными значениями чисел Бонда с формированием гриады Sgi-Sg-Nb для каждого субобразца;
установление (109) значения числа Бонда, выше которого насыщенность газом Sg начинает уменьшаться, причем указанное установленное значение соответствует критическому числу Бонда;
выбор (110) значений начальной насыщенности газом Sgi и значений насыщенности газом Sg, соответствующих значениям чисел Бонда, которые ниже значения указанного критического числа Бонда, причем выбранные значения насыщенности газом Sg представляют соответствующие значения насыщенности защемленным газом Sgr.
2. Способ (100) измерения насыщенности защемленным газом в образце горной породы по п. 1, в котором указанный этап центрифугирования (105) в водной среде, указанный третий этап (106) формирования изображений, указанный этап вычисления (107) чисел Бонда Nb, указанный этап соотнесения (108) повторяют заранее заданное число раз М.
3. Способ (100) измерения насыщенности защемленным газом в образце горной породы по п. 1, в котором указанный образец горной породы располагают в ячейке, причем указанная ячейка содержит фиксирующее устройство, расположенное между основанием указанной ячейки и указанным образцом, при этом указанное фиксирующее устройство монтируют для удерживания указанного образца горной породы на заранее заданном расстоянии от дна указанной ячейки.
4. Способ (100) измерения насыщенности защемленным газом в образце горной породы по пп. 1-3, в котором указанные этапы формирования изображений выполняют с помощью одномерного или трехмерного томографического анализа.
5. Способ (100) измерения насыщенности защемленным газом в образце горной породы по пп. 1-3, в котором указанные этапы формирования изображений выполняют с помощью ядерного магнитного резонанса (ЯМР).
6. Способ (100) измерения насыщенности защемленным газом в образце горной породы по пп. 1-3, в котором указанные этапы формирования изображений выполняют с помощью гамма-лучевого анализа.
7. Способ (100) измерения насыщенности защемленным газом в образце горной породы по пп. 1-3, в котором указанные этапы формирования изображений выполняют с помощью рентгеновского анализа.
RU2016123351A 2013-11-28 2014-11-27 Способ измерения насыщенности защемленным газом в образце горной породы RU2016123351A (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT001986A ITMI20131986A1 (it) 2013-11-28 2013-11-28 Metodo per la misurazione della saturazione in gas intrappolato in un campione di roccia
ITMI2013A001986 2013-11-28
PCT/IB2014/066391 WO2015079402A1 (en) 2013-11-28 2014-11-27 Method for measuring the trapped gas saturation in a rock sample

Publications (1)

Publication Number Publication Date
RU2016123351A true RU2016123351A (ru) 2018-01-10

Family

ID=50001127

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016123351A RU2016123351A (ru) 2013-11-28 2014-11-27 Способ измерения насыщенности защемленным газом в образце горной породы

Country Status (7)

Country Link
US (1) US20170023540A1 (ru)
EP (1) EP3074762A1 (ru)
CN (1) CN105793698B (ru)
IT (1) ITMI20131986A1 (ru)
RU (1) RU2016123351A (ru)
SA (1) SA114360069B1 (ru)
WO (1) WO2015079402A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908470B (zh) * 2017-04-25 2018-08-24 北京青檬艾柯科技有限公司 一种核磁共振高温高压岩石驱替系统及其方法
US11680888B2 (en) 2017-04-26 2023-06-20 Green Imaging Technologies, Inc. Methods of nuclear magnetic resonance measurement of crushed porous media
CN107941838B (zh) * 2017-11-14 2019-08-23 西安石油大学 一种二氧化碳驱油过程中沥青质沉淀对孔喉分布影响的定量评价方法
CN109959672B (zh) * 2017-12-22 2021-06-15 中国石油大学(北京) 一种二氧化碳置换页岩甲烷的定量评价方法及其应用
CN108760564B (zh) * 2018-06-29 2024-04-19 河海大学 用于测试非饱和砂土中气体持久性的实验装置
CN108896589B (zh) * 2018-07-25 2020-06-30 中国科学院武汉岩土力学研究所 一种含气土样中气泡大小分布均匀性的评价方法
CN113252719B (zh) * 2020-02-11 2024-03-26 中国石油天然气股份有限公司 储层气水相渗曲线的测试方法及装置
US11768144B2 (en) 2020-04-17 2023-09-26 Green Imaging Technologies Inc. Methods of NMR measurement of crushed porous media

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2770772A (en) * 1952-07-29 1956-11-13 Int Standard Electric Corp Detection of leaks in vacuum apparatus
US3411073A (en) * 1965-07-01 1968-11-12 Gen Electric Gas detector having inlet orifice for linear operation of the detector
US3823372A (en) * 1972-11-06 1974-07-09 Univ California Method and apparatus for measuring the total surface area concentration of particles entrained in a gas
US4868500A (en) * 1988-06-08 1989-09-19 Phillips Petroleum Company Method for determining properties of liquid-containing porous media using nuclear magnetic resonance imaging
GB9021257D0 (en) * 1990-09-29 1990-11-14 Guilfoyle David N Method and apparatus for measuring the flow of a fluid through porous media by echo planar imaging
US5200699A (en) * 1991-09-25 1993-04-06 Phillips Petroleum Company Evaluation of liquid-containing samples using nuclear magnetic resonance
US6032101A (en) * 1997-04-09 2000-02-29 Schlumberger Technology Corporation Methods for evaluating formations using NMR and other logs
CA2524993C (en) * 2004-10-29 2014-10-14 University Of New Brunswick Methods and apparatus for measuring capillary pressure in a sample
US8436609B2 (en) * 2007-10-05 2013-05-07 Exxonmobil Upstream Research Company Method and apparatus for detection of a liquid under a surface
WO2010003236A1 (en) * 2008-07-08 2010-01-14 University Of New Brunswick Spin echo spi methods for quantitative analysis of fluids in porous media
WO2010013743A1 (ja) * 2008-08-01 2010-02-04 国立大学法人大阪大学 偏極キセノンガスの濃縮方法、偏極キセノンガスの製造供給装置及びmriシステム
US8710836B2 (en) * 2008-12-10 2014-04-29 Nanomr, Inc. NMR, instrumentation, and flow meter/controller continuously detecting MR signals, from continuously flowing sample material
CN101929973B (zh) * 2009-06-22 2012-10-17 中国石油天然气股份有限公司 裂缝储层含油气饱和度定量计算方法
GB2489205B (en) * 2011-03-14 2014-08-20 Schlumberger Holdings Examining porous samples
CN102262041B (zh) * 2011-04-20 2013-03-13 中国石油天然气股份有限公司 一种基于多谱孔隙结构分析的饱和度确定方法
RU2593438C2 (ru) * 2011-11-11 2016-08-10 Эксонмобил Апстрим Рисерч Компани Способ разведки и система для обнаружения углеводородов
CN102565112B (zh) * 2011-12-14 2014-11-26 中国石油天然气股份有限公司 煤层气中游离气含量的测算方法
US9201026B2 (en) * 2012-03-29 2015-12-01 Ingrain, Inc. Method and system for estimating properties of porous media such as fine pore or tight rocks
CN102954978B (zh) * 2012-11-13 2016-04-20 中国地质大学(北京) 一种煤岩裂缝发育过程的核磁共振成像观测装置及方法

Also Published As

Publication number Publication date
SA114360069B1 (ar) 2016-05-16
EP3074762A1 (en) 2016-10-05
CN105793698A (zh) 2016-07-20
CN105793698B (zh) 2017-10-13
US20170023540A1 (en) 2017-01-26
WO2015079402A1 (en) 2015-06-04
ITMI20131986A1 (it) 2015-05-29

Similar Documents

Publication Publication Date Title
RU2016123351A (ru) Способ измерения насыщенности защемленным газом в образце горной породы
CN105927218B (zh) 一种陆相泥页岩储层含气量预测方法及装置
US10234372B2 (en) NMR analysis system and method for porous media
RU2008104516A (ru) Автоматическое изменение последовательности ямр импульсов с целью оптимизации отношения сигнал/помеха на основе анализа в реальном времени
CN103018148B (zh) 一种测量煤芯孔隙度的方法
RU2016151983A (ru) Уменьшение артефактов движения с помощью многоканальных сигналов ФПГ
RU2017124030A (ru) Магнитно-резонасная проекционная визуализация
RU2014142029A (ru) Способ восстановления магнитно-резонансного изображения с обнаружением дыхательного движения во время дискретизации центральной и переферийной областей k-пространства
RU2020128589A (ru) Способы и системы для определения объемной плотности, пористости и распределения размера пор подповерхностной формации
RU2014145357A (ru) Способ определения геомеханических параметров образца породы
CN105719433B (zh) 一种基于孔内地震波的超前预报方法
RU2016103323A (ru) Оценка интервала глубин ствола скважины по фрагментам породы
RU2015135815A (ru) Устойчивая к металлам mr визуализация
NO20064016L (no) Asimut gruppering av tetthets- og porositetsdata fra en jordformasjon
CN106323833B (zh) 岩心孔隙度测量方法及装置
CN111337408A (zh) 一种利用低场核磁共振设备测试岩石裂缝孔隙度的方法
CN106644879B (zh) 一种确定岩心不同孔隙组分渗透率贡献值的方法及装置
Soroush et al. Evaluation of rock properties using ultrasonic pulse technique and correlating static to dynamic elastic constants
US11255990B2 (en) Internal structure detection system
CN105223616A (zh) 一种页岩储层的孔隙纵横比反演方法
US20150059444A1 (en) Scanned 1-D gas analysis camera having a line pixel weighted for wind speed
CN105004747B (zh) 一种核磁共振测量煤芯平均孔隙压缩系数的方法
ES2926864T3 (es) Dispositivo y proceso de calibración
CN104866706A (zh) 碳酸盐岩渗透率确定方法及装置
CN109000599B (zh) 针对封闭充水溶洞的体积测量系统及方法