RU2015136685A - Способ определения изменяющихся во времени термомеханических напряжений и/или градиентов напряжения по толщине стенок металлических тел - Google Patents

Способ определения изменяющихся во времени термомеханических напряжений и/или градиентов напряжения по толщине стенок металлических тел Download PDF

Info

Publication number
RU2015136685A
RU2015136685A RU2015136685A RU2015136685A RU2015136685A RU 2015136685 A RU2015136685 A RU 2015136685A RU 2015136685 A RU2015136685 A RU 2015136685A RU 2015136685 A RU2015136685 A RU 2015136685A RU 2015136685 A RU2015136685 A RU 2015136685A
Authority
RU
Russia
Prior art keywords
measurement
transit time
ultrasound
ultrasonic transducers
thickness
Prior art date
Application number
RU2015136685A
Other languages
English (en)
Other versions
RU2649220C2 (ru
Inventor
Ирис АЛЬТПЕТЕР
Ральф ЧУНКИ
Ханс-Георг ХЕРРМАН
Йохен КУРЦ
Герд ДОБМАН
Герхард ХЮБШЕН
Штеффен БЕРГХОЛЬЦ
Юрген РУДОЛЬФ
Original Assignee
Арефа Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Арефа Гмбх filed Critical Арефа Гмбх
Publication of RU2015136685A publication Critical patent/RU2015136685A/ru
Application granted granted Critical
Publication of RU2649220C2 publication Critical patent/RU2649220C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/25Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
    • G01L1/255Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons using acoustic waves, or acoustic emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0025Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of elongated objects, e.g. pipes, masts, towers or railways
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/023Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil
    • G01N27/025Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil a current being generated within the material by induction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Claims (8)

1. Способ определения изменяющихся во времени термомеханических напряжений и/или градиентов напряжения по толщине стенок металлических тел (1), в частности трубопроводов, причем согласно указанному способу измеряют температуру по меньшей мере в одном месте измерения на наружной поверхности тела (1) и осуществляют дополнительные измерения с использованием электромагнитных ультразвуковых преобразователей (3-6) в области указанного места измерения для определения напряжений и/или градиентов напряжения по толщине стенки тела (1) посредством измеренной температуры на основании результатов дополнительных измерений,
при этом на основании измеренной температуры устанавливают температурную кривую между внутренней поверхностью и наружной поверхностью и используют ее для определения напряжений и/или градиентов напряжения по толщине стенки тела (1) на основании результатов дополнительных измерений.
2. Способ по п. 1, отличающийся тем, что измерения времени прохождения ультразвука, амплитуды и/или сопротивления вихревым токам осуществляют с использованием электромагнитных ультразвуковых преобразователей (3-6), причем напряжения и/или градиенты напряжения определяют путем анализа результатов измерений времени прохождения ультразвука, амплитуды и/или сопротивления вихревым токам в сочетании с измеренной температурой или определенной температурной кривой.
3. Способ по п. 2, отличающийся тем, что определение напряжений и/или градиентов напряжения выполняют на основе многослойной модели (9) стенки тела (1), которая использует определенную температурную кривую и полученную на ее основе кривую напряжения, а также использует в качестве входных переменных (8) измеренные значения, с поправкой на температуру, времени прохождения ультразвука, амплитуд и сопротивлений вихревым токам и выдает связанные со слоями значения времени прохождения ультразвука, амплитуды, сопротивления вихревым токам и кривые напряжения в качестве выходных переменных (10), причем связанные со слоями кривые напряжения определяют путем итерационной оптимизации многослойной модели на основе связанных со слоями значений времени прохождения ультразвука, амплитуд и сопротивлений вихревым токам.
4. Способ по любому из пп. 1-3, отличающийся тем, что две линейно поляризованные поперечные волны, которые перпендикулярны друг к другу, испускают перпендикулярно в стенку тела (1) в каждом случае с использованием электромагнитных ультразвуковых преобразователей (5, 6) для измерения значений времени прохождения ультразвука и амплитуд в эхо-импульсном режиме.
5. Способ по п. 4, отличающийся тем, что во время измерения на трубе, представляющей собой тело (1), одна из поперечных волн оказывается линейно поляризована в осевом направлении трубы, а другая поперечная волна оказывается линейно поляризована в окружном направлении трубы.
6. Способ по п. 4, отличающийся тем, что в отдельном приемопередающем устройстве дополнительно использованы две пары электромагнитных ультразвуковых преобразователей (3-4), которые создают волны Рэлея или горизонтально поляризованные поперечные волны, причем эти две пары расположены в месте измерения под углом 90° по отношению друг к другу.
7. Способ по п. 1, отличающийся тем, что электромагнитные ультразвуковые преобразователи (3-6) используют во нескольких местах измерения, распределенных по наружной поверхности.
RU2015136685A 2013-02-28 2014-02-20 Способ определения изменяющихся во времени термомеханических напряжений и/или градиентов напряжения по толщине стенок металлических тел RU2649220C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013003500.7A DE102013003500B4 (de) 2013-02-28 2013-02-28 Verfahren zur Erfassung zeitlich veränderlicher thermomechanischer Spannungen und/oder Spannungsgradienten über die Wanddicke von metallischen Körpern
DE102013003500.7 2013-02-28
PCT/EP2014/000457 WO2014131499A1 (de) 2013-02-28 2014-02-20 Verfahren zur erfassung zeitlich veränderlicher thermomechanischer spannungen und/oder spannungsgradienten über die wanddicke von metallischen körpern

Publications (2)

Publication Number Publication Date
RU2015136685A true RU2015136685A (ru) 2017-04-03
RU2649220C2 RU2649220C2 (ru) 2018-03-30

Family

ID=50277177

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015136685A RU2649220C2 (ru) 2013-02-28 2014-02-20 Способ определения изменяющихся во времени термомеханических напряжений и/или градиентов напряжения по толщине стенок металлических тел

Country Status (10)

Country Link
US (1) US9903840B2 (ru)
EP (1) EP2962096B1 (ru)
JP (1) JP6362625B2 (ru)
CN (1) CN105229460B (ru)
CA (1) CA2920314C (ru)
DE (1) DE102013003500B4 (ru)
ES (1) ES2750601T3 (ru)
RU (1) RU2649220C2 (ru)
SI (1) SI2962096T1 (ru)
WO (1) WO2014131499A1 (ru)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015226311A1 (de) 2015-12-21 2017-06-22 BestSensAG Überwachung von Gleitringdichtung
DE102019206993B4 (de) * 2019-05-14 2021-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur zerstörungsfreien Prüfung an über den Umfang von Bauteilen umlaufenden Wandungen
CN110108402B (zh) * 2019-05-20 2021-08-06 北京工业大学 一种用于金属薄板中应力分布测量的非线性Lamb波混频方法
US11231311B2 (en) 2019-05-31 2022-01-25 Perceptive Sensor Technologies Llc Non-linear ultrasound method and apparatus for quantitative detection of materials
CN110828011B (zh) * 2019-11-04 2021-11-23 广东核电合营有限公司 核电厂管道热疲劳监测系统
CN111751032B (zh) * 2020-06-30 2021-08-31 中国石油天然气集团有限公司 一种基于阵列探头的超声法应力测量方法
CN112326782B (zh) * 2020-11-06 2022-06-21 爱德森(厦门)电子有限公司 一种涡流和声阻抗检测传感器及其制作方法
WO2022120074A1 (en) 2020-12-02 2022-06-09 Perceptive Sensor Technologies Llc Variable angle transducer interface block
WO2022120259A1 (en) 2020-12-04 2022-06-09 Perceptive Sensor Technologies, Inc. Apparatus, system, and method for the detection of objects and activity within a container
US11585690B2 (en) 2020-12-04 2023-02-21 Perceptive Sensor Technologies, Inc. Multi-path acoustic signal improvement for material detection
CA3201085A1 (en) 2020-12-04 2022-06-09 Lazar Bivolarsky Acoustic temperature measurement in layered environments
US11604294B2 (en) 2020-12-04 2023-03-14 Perceptive Sensor Technologies, Inc. Determining layer characteristics in multi-layered environments
US11549839B2 (en) 2020-12-04 2023-01-10 Perceptive Sensor Technologies, Inc. Systems and methods for determining floating roof level tilt and characterizing runoff
US11788904B2 (en) 2020-12-04 2023-10-17 Perceptive Sensor Technologies, Inc. Acoustic temperature measurement in layered environments
EP4256282A1 (en) 2020-12-04 2023-10-11 Perceptive Sensor Technologies, Inc. Multi-bounce acoustic signal material detection
US11536696B2 (en) 2020-12-04 2022-12-27 Perceptive Sensor Technologies, Inc. In-wall multi-bounce material property detection and acoustic signal amplification
US11946905B2 (en) 2020-12-30 2024-04-02 Perceptive Sensor Technologies, Inc. Evaluation of fluid quality with signals
CN112903157B (zh) * 2021-01-19 2021-11-09 吉林大学 基于纵向模态超声导波的圆管型结构的应力监测方法
CN112945476B (zh) * 2021-02-09 2022-08-16 马丽娟 小型压力容器微量气体泄漏应急超声检测系统及方法
CN113137912B (zh) * 2021-06-01 2022-08-02 中国石油大学(华东) 一种磁结构耦合的管道形变分析方法
DE102021128132B3 (de) 2021-10-28 2022-06-30 Framatome Gmbh Überwachungssystem zum Überwachen einer mechanischen Ermüdung eines Metallrohrs eines Kraftwerks, Kraftwerk, Benutzung und zugehöriges Verfahren
WO2023154514A1 (en) 2022-02-11 2023-08-17 Perceptive Sensor Technologies, Inc. Acoustic signal detection of material composition in static and dynamic conditions
CN114878041B (zh) * 2022-05-06 2023-09-01 中国石油大学(华东) 一种利用双向超声探头测量在役油气管道应力的方法
WO2024091308A1 (en) 2022-07-19 2024-05-02 Perceptive Sensor Technologies, Inc. Acoustic signal material identification with nanotube couplant

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892914A (en) * 1958-07-02 1959-06-30 Magnetic Heating Corp Methods and apparatus for butt welding
SU1126866A1 (ru) * 1983-02-11 1984-11-30 Институт металлофизики АН УССР Ультразвуковой способ контрол макронапр жений в издели х
JPS61133857A (ja) * 1984-12-05 1986-06-21 Nippon Telegr & Teleph Corp <Ntt> 地下管路腐食診断方法及びその装置
SU1545950A3 (ru) * 1985-05-15 1990-02-23 Политехника-Варшавска (Инопредприятие) Способ определени степени износа наход щейс в эксплуатации конструкционной стали
JPS6271855A (ja) 1985-09-26 1987-04-02 Toshiba Corp タ−ビンロ−タの欠陥検出方法
JPH0676998B2 (ja) 1988-04-23 1994-09-28 株式会社酒井鉄工所 パルス反射法による超音波の往復時間精密測定法
SU1564529A1 (ru) * 1988-06-14 1990-05-15 Предприятие П/Я Р-6521 Ультразвуковой способ измерени механических напр жений в изделии
JPH0278951A (ja) * 1988-09-15 1990-03-19 Toshiba Corp 弾性定数測定装置
JPH02103430A (ja) * 1988-10-13 1990-04-16 Unyusho Senpaku Gijutsu Kenkyusho 超音波トモグラフィーを用いた試料の熱応力分布の評価方法および装置
SU1682909A1 (ru) * 1989-01-04 1991-10-07 Киевский государственный педагогический институт им.А.М.Горького Ультразвуковое устройство дл кинетических исследований сред
JPH02248824A (ja) * 1989-03-22 1990-10-04 Sumitomo Metal Ind Ltd 残留応力測定装置
JPH03219023A (ja) * 1990-01-24 1991-09-26 Hitachi Ltd 金属材料製の中空構造物の耐圧強化方法及びその装置並びにその方法により作成された耐圧中空構造物並びにその耐圧中空構造物の耐圧使用方法
US5172591A (en) * 1990-08-20 1992-12-22 Atlantic Richfield Company Oil well sucker rod load measurement
JPH05164631A (ja) * 1991-12-13 1993-06-29 Suzuki Motor Corp 応力測定方法及びその装置
US5750900A (en) * 1996-09-09 1998-05-12 Sonicforce, L.L.C. Acoustic strain gauge and assembly and method for measuring strain
JP3520440B2 (ja) * 1998-03-12 2004-04-19 作治 藏田 地中埋設物及び構造物内の配管路全体を総合危機予知警報センサとして使用する方法及び総合危機予知防災監視システム
JP4083382B2 (ja) 2000-12-11 2008-04-30 日本核燃料開発株式会社 核燃料集合体用部材の水素濃度測定方法
CA2538133A1 (en) * 2003-06-06 2004-12-16 Luna Innovations Method and apparatus for assessing a material
JP4747172B2 (ja) * 2005-07-06 2011-08-17 財団法人電力中央研究所 超音波探傷試験における傷高さ測定法並びに装置
JP4881212B2 (ja) * 2007-04-13 2012-02-22 株式会社東芝 材料厚さモニタリングシステムおよび材料厚さ測定方法
CN101281171B (zh) * 2008-05-21 2010-11-03 钢铁研究总院 高速线材电磁超声导波检测系统及其检测方法
JP2010236892A (ja) * 2009-03-30 2010-10-21 Toshiba Corp 超音波式応力測定装置及び超音波式応力測定方法
CN101710105B (zh) * 2009-09-24 2011-03-30 山东大学 多层包扎容器缺陷的声发射确定方法
DE102010019477A1 (de) * 2010-05-05 2011-11-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur zerstörungsfreien Materialuntersuchung mittels Ultraschall

Also Published As

Publication number Publication date
DE102013003500A1 (de) 2014-08-28
WO2014131499A1 (de) 2014-09-04
ES2750601T3 (es) 2020-03-26
US20160003780A1 (en) 2016-01-07
SI2962096T1 (sl) 2019-12-31
JP6362625B2 (ja) 2018-07-25
RU2649220C2 (ru) 2018-03-30
CA2920314A1 (en) 2014-09-04
EP2962096A1 (de) 2016-01-06
DE102013003500B4 (de) 2015-05-28
US9903840B2 (en) 2018-02-27
CN105229460B (zh) 2018-03-30
JP2016513264A (ja) 2016-05-12
CA2920314C (en) 2021-03-02
EP2962096B1 (de) 2019-08-28
CN105229460A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
RU2015136685A (ru) Способ определения изменяющихся во времени термомеханических напряжений и/или градиентов напряжения по толщине стенок металлических тел
Kim et al. Generating and detecting torsional guided waves using magnetostrictive sensors of crossed coils
MX2017001126A (es) Caudalimetro de tiempo de transito de señal mejorada.
CN105301117A (zh) 一种用超声频散补偿原理检测空心圆柱体周向缺陷的方法
JP2006322902A5 (ru)
He et al. Research on pipeline damage imaging technology based on ultrasonic guided waves
Draudvilienė et al. Validation of dispersion curve reconstruction techniques for the A0 and S0 modes of Lamb waves
RU2019114195A (ru) Способ неразрушающего ультразвукового контроля клеевого соединения
ATE513229T1 (de) Verfahren zur bestimmung der entfernung zwischen zwei objekten
JP2013017721A5 (ru)
RU2598980C2 (ru) Ультразвуковой способ определения остаточных напряжений в сварных соединениях трубопроводов
ATE531320T1 (de) Anordnung und verfahren zur bestimmung der kombination von krümmungsradien und abständen an akustischen grenzflächen in messobjekten mittels ultraschall
Nishino An investigation of reflection coefficients of the T (0, 1) mode guided waves at axisymmetric defects and inverse problem analyses for estimations of defect shapes
Park Characterization of chemical sludge inside pipes using torsional guided waves
CN104614444B (zh) 一种提高电磁超声检测精度的方法
JP6542125B2 (ja) 複合材料で作られた部品を特性評価する方法
JP2013088118A (ja) ガイド波を用いた検査方法
RU2490606C1 (ru) Способ измерения скорости поверхностной ультразвуковой волны
RU2540942C1 (ru) Способ контроля за динамикой изменения толщины стенки контролируемого объекта
RU2014149696A (ru) Ультразвуковой способ измерения внутренних механических напряжений
马书义 et al. Experimental investigation of deformation damage detection in pipes using ultrasonic guided waves
WO2011089733A1 (ja) ガイド波を用いた検査方法
Kuwahara et al. Development of acoustic emission waveform simulation technique utilizing a sensor response and finite-difference time-domain method
Meignen et al. High frequency acoustic sensor dedicated to the high resolution measurement of mechanical properties
RU2013148225A (ru) Способ неразрушающего контроля дефектов с помощью поверхностных акустических волн

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20190813