RU2015124128A - Компенсация неидеальной поверхности рефлектора в системе спутниковой связи - Google Patents

Компенсация неидеальной поверхности рефлектора в системе спутниковой связи Download PDF

Info

Publication number
RU2015124128A
RU2015124128A RU2015124128A RU2015124128A RU2015124128A RU 2015124128 A RU2015124128 A RU 2015124128A RU 2015124128 A RU2015124128 A RU 2015124128A RU 2015124128 A RU2015124128 A RU 2015124128A RU 2015124128 A RU2015124128 A RU 2015124128A
Authority
RU
Russia
Prior art keywords
satellite
amplitudes
reflector
phases
signals
Prior art date
Application number
RU2015124128A
Other languages
English (en)
Other versions
RU2647559C2 (ru
Inventor
Чандра С. КОДУРУ
Кихён Кевин СО
Мурат Е. ВЕЙСОГЛУ
Грег БУШЕ
Original Assignee
Зе Боинг Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зе Боинг Компани filed Critical Зе Боинг Компани
Publication of RU2015124128A publication Critical patent/RU2015124128A/ru
Application granted granted Critical
Publication of RU2647559C2 publication Critical patent/RU2647559C2/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/148Reflecting surfaces; Equivalent structures with means for varying the reflecting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2658Phased-array fed focussing structure

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aerials With Secondary Devices (AREA)
  • Radio Relay Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Claims (23)

1. Система (200), содержащая
формирователь (224) пучков, выполненный с возможностью измерения амплитуд и фаз сигналов, отраженных от рефлектора (220) спутника (202), причем эти амплитуды и фазы формируют первую совокупность результатов измерения, и
вычислительное устройство (226), выполненное с возможностью расчета корреляционной матрицы элементов как функции от указанной первой совокупности результатов измерения, причем корреляционная матрица элементов представляет диаграмму излучения облучающего элемента рефлектора (220),
причем формирователь (224) пучков выполнен с возможностью создания диаграммы направленности сформированного пучка, отрегулированной на основании указанной корреляционной матрицы элементов, что обеспечивает компенсацию неидеальной поверхности рефлектора (220).
2. Система (200) по п. 1, в которой диаграмма направленности сформированного пучка представляет собой функцию от диаграммы направленности облучателя и весовых коэффициентов пучка, а формирователь (224) пучков выполнен с возможностью создания диаграммы направленности сформированного пучка как функции от весовых коэффициентов пучка, отрегулированных на основании указанной корреляционной матрицы элементов.
3. Система (200) по п. 1, в которой формирователь пучков (224) выполнен с возможностью измерения амплитуд и фаз по мере того, как происходит поворот спутника (202) с предварительно определенной скоростью в предварительно определенном диапазоне.
4. Система (200) по п. 1, в которой формирователь пучков (224) дополнительно выполнен с возможностью направления сигналов на спутник (202) для отражения от рефлектора (220), причем спутник (202) выполнен с возможностью приема этих сигналов через фидерные линии связи (210) в антенне (228) фидерной линии связи, при этом обеспечена возможность поворота антенны (228) фидерной линии связи в обратном направлении при повороте спутника (202).
5. Система (200) по п. 1, в которой спутник (202) выполнен с возможностью приема сигналов через фидерные линии связи (210), а формирователь (224) пучков содержит первый и второй формирователи пучков, причем первый формирователь пучков выполнен с возможностью измерения амплитуд и фаз сигналов, отраженных от рефлектора, а второй формирователь пучков выполнен с возможностью измерения амплитуд и фаз сигналов, прошедших через платформу (216) связи спутника (202) и вернувшихся обратно через фидерные линии (210) связи, независящие от рефлектора (220), при этом указанные соответствующие амплитуды и фазы формируют вторую совокупность результатов измерения, а вычислительное устройство дополнительно выполнено с возможностью расчета корреляционной матрицы элементов как функции от указанной второй совокупности результатов измерений.
6. Система (200) по п. 1, в которой формирователь пучков (224) содержит первый и второй формирователи пучков, причем первый формирователь пучков выполнен с возможностью измерения амплитуд и фаз сигналов, отраженных от рефлектора (220),
причем первый и второй формирователи пучков выполнены с возможностью измерения первой и второй амплитуд и фаз вторых сигналов, принятых в соответствующих формирователях из первого и второго формирователей пучков от спутника (202) через фидерные линии (210) связи, при этом спутник (202) принимает вторые сигналы через фидерные линии связи (210), независящие от рефлектора (220), а указанные соответствующие первая и вторая амплитуды формируют первую и вторую совокупности результатов измерений, причем вычислительное устройство выполнено с возможностью расчета результата измерения разницы как функции от разницы между указанными первой и второй совокупностями результатов измерений и дополнительно с возможностью расчета корреляционной матрицы элементов как функции от указанных первой и второй совокупностей результатов измерений и результата измерения разницы.
7. Способ, согласно которому
измеряют амплитуды и фазы сигналов, отраженных от рефлектора (220) спутника (202), причем амплитуды и фазы формируют первую совокупность результатов измерения,
рассчитывают корреляционную матрицу элементов как функцию от указанной первой совокупности результатов измерения, причем корреляционная матрица элементов представляет диаграмму излучения облучающего элемента рефлектора (220), и
регулируют диаграмму направленности сформированного пучка формирователя (224) пучков на основании указанной корреляционной матрицы элементов, что обеспечивает компенсацию неидеальной поверхности рефлектора (220).
8. Способ по п. 7, согласно которому диаграмма направленности сформированного пучка представляет собой функцию от диаграммы направленности облучателя и весовых коэффициентов пучка, при этом регулирование диаграммы направленности сформированного пучка включает регулирование весовых коэффициентов пучка на основании указанной корреляционной матрицы элементов.
9. Способ по п. 7, согласно которому амплитуды и фазы измеряют по мере поворота спутника с предварительно определенной скоростью в предварительно определенном диапазоне.
10. Способ по п. 7, согласно которому дополнительно направляют сигналы на спутник (202) для отражения от рефлектора (220), причем спутник (202) принимает сигналы через фидерные линии связи в антенне (228) фидерной линии связи, которую поворачивают в обратном направлении по мере поворота спутника (202).
11. Способ по п. 7, согласно которому спутник (202) принимает сигналы через фидерные линии (210) связи, причем согласно способу дополнительно:
измеряют амплитуды и фазы сигналов, прошедших через платформу (216) связи спутника (202) и вернувшихся обратно через фидерные линии (210) связи, независящие от рефлектора (220), причем указанные соответствующие амплитуды и фазы формируют вторую совокупность результатов измерения, при этом корреляционная матрица элементов дополнительно рассчитана как функция от указанной второй совокупности результатов измерений.
12. Способ по п. 7, согласно которому формирователь пучков (224) содержит первый и второй формирователи пучков, причем согласно способу дополнительно
измеряют первые и вторые амплитуды и фазы вторых сигналов, принятых в соответствующих формирователях из первого и второго формирователей пучков от спутника (202) через фидерные линии (210) связи, причем спутник (202) принимает вторые сигналы через фидерные линии (210) связи, независящие от рефлектора (220), а соответствующая первая и вторая амплитуды формируют первую и вторую совокупности результатов измерений, и
рассчитывают результат измерения разницы как функцию от разницы между указанными первой и второй совокупностями результатов измерений,
при этом корреляционная матрица элементов дополнительно рассчитана как функция от указанных первой и второй совокупностей результатов измерений и результата измерения разницы.
RU2015124128A 2013-03-13 2014-02-18 Компенсация неидеальной поверхности рефлектора в системе спутниковой связи RU2647559C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/798,342 2013-03-13
US13/798,342 US9293820B2 (en) 2013-03-13 2013-03-13 Compensating for a non-ideal surface of a reflector in a satellite communication system
PCT/US2014/016949 WO2014189570A2 (en) 2013-03-13 2014-02-18 Compensating for a non-ideal surface of a reflector in a satellite communication system

Publications (2)

Publication Number Publication Date
RU2015124128A true RU2015124128A (ru) 2017-04-20
RU2647559C2 RU2647559C2 (ru) 2018-03-16

Family

ID=51525168

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015124128A RU2647559C2 (ru) 2013-03-13 2014-02-18 Компенсация неидеальной поверхности рефлектора в системе спутниковой связи

Country Status (6)

Country Link
US (1) US9293820B2 (ru)
EP (1) EP2973855B1 (ru)
JP (1) JP6306140B2 (ru)
KR (1) KR102110862B1 (ru)
RU (1) RU2647559C2 (ru)
WO (1) WO2014189570A2 (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9848370B1 (en) * 2015-03-16 2017-12-19 Rkf Engineering Solutions Llc Satellite beamforming
US10355774B2 (en) 2015-04-10 2019-07-16 Viasat, Inc. End-to-end beamforming system
PL3281309T3 (pl) 2015-04-10 2020-04-30 Viasat, Inc. Kształtowanie wiązki anteny naziemnej do komunikacji między węzłami dostępowymi a terminalami użytkowników połączonymi poprzez przekaźnik, taki jak satelita
US9577723B1 (en) 2015-08-10 2017-02-21 The Boeing Company Systems and methods of analog beamforming for direct radiating phased array antennas
US9705586B2 (en) * 2015-10-05 2017-07-11 Space Systems/Loral, Llc Satellite with transition beam size
US10158170B2 (en) 2016-01-25 2018-12-18 International Business Machines Corporation Two-dimensional scanning cylindrical reflector
US10142021B2 (en) * 2016-09-07 2018-11-27 Space Systems/Loral, Llc Satellite system using optical gateways and ground based beamforming
US10516216B2 (en) 2018-01-12 2019-12-24 Eagle Technology, Llc Deployable reflector antenna system
US10707552B2 (en) 2018-08-21 2020-07-07 Eagle Technology, Llc Folded rib truss structure for reflector antenna with zero over stretch
US10432308B1 (en) 2018-08-23 2019-10-01 Space Systems/Loral, Llc Satellite system using an RF GBBF feeder uplink beam from a gateway to a satellite, and using an optical ISL from the satellite to another satellite
CN115412991A (zh) * 2021-05-27 2022-11-29 中兴通讯股份有限公司 信息传输方法、反射设备、基站、系统、电子设备和介质

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508396B2 (ja) * 1990-10-09 1996-06-19 岩崎通信機株式会社 Xyプロッタ
RU2014681C1 (ru) * 1991-03-29 1994-06-15 Военная академия связи Адаптивная антенная решетка
US5434578A (en) * 1993-10-22 1995-07-18 Westinghouse Electric Corp. Apparatus and method for automatic antenna beam positioning
US5530449A (en) 1994-11-18 1996-06-25 Hughes Electronics Phased array antenna management system and calibration method
JP3305938B2 (ja) * 1995-11-16 2002-07-24 株式会社東芝 フェーズドアレイアンテナ装置
US5784030A (en) 1996-06-06 1998-07-21 Hughes Electronics Corporation Calibration method for satellite communications payloads using hybrid matrices
JPH1070494A (ja) * 1996-08-27 1998-03-10 N T T Ido Tsushinmo Kk 送信ダイバーシティ用送受信装置
JPH10160775A (ja) * 1996-11-26 1998-06-19 Jisedai Eisei Tsushin Hoso Syst Kenkyusho:Kk 衛星搭載アンテナパターンの測定方法
US5903549A (en) 1997-02-21 1999-05-11 Hughes Electronics Corporation Ground based beam forming utilizing synchronized code division multiplexing
US6055431A (en) * 1997-12-19 2000-04-25 The Aerospace Corporation Adaptive control of multiple beam communication transponders
US6421528B1 (en) 1999-04-29 2002-07-16 Hughes Electronics Corp. Satellite transmission system with adaptive transmission loss compensation
US6511020B2 (en) 2000-01-07 2003-01-28 The Boeing Company Method for limiting interference between satellite communications systems
US6823170B1 (en) 2000-07-26 2004-11-23 Ericsson Inc. Satellite communications system using multiple earth stations
US7369847B1 (en) 2000-09-14 2008-05-06 The Directv Group, Inc. Fixed cell communication system with reduced interference
US6810249B1 (en) 2000-09-19 2004-10-26 The Directv Group, Inc. Method and system of efficient spectrum utilization by communications satellites
FR2829297B1 (fr) 2001-09-06 2007-01-05 Cit Alcatel Reseau formateur de faisceaux, vehicule spatial, systeme associe et methode de formation de faisceaux
US7110716B2 (en) 2002-01-30 2006-09-19 The Boeing Company Dual-band multiple beam antenna system for communication satellites
US6993288B2 (en) 2002-07-17 2006-01-31 The Boeing Company Managing satellite fixed beam uplink using virtual channel assignments
US7177592B2 (en) 2003-05-30 2007-02-13 The Boeing Company Wireless communication system with split spot beam payload
US6954173B2 (en) 2003-07-02 2005-10-11 Raytheon Company Techniques for measurement of deformation of electronically scanned antenna array structures
US6961016B1 (en) * 2004-10-20 2005-11-01 Raytheon Company Estimating an antenna pointing error by determining polarization
US7599659B2 (en) 2005-03-10 2009-10-06 The Boeing Company Innovative combinational closed-loop and open-loop satellite user terminal power control system
US7643441B2 (en) 2006-03-17 2010-01-05 The Boeing Company System and method for adaptive information rate communication
US9014619B2 (en) 2006-05-30 2015-04-21 Atc Technologies, Llc Methods and systems for satellite communications employing ground-based beam forming with spatially distributed hybrid matrix amplifiers
US7787819B2 (en) 2006-08-25 2010-08-31 Space Systems / Loral, Inc. Ground-based beamforming for satellite communications systems
WO2008048807A2 (en) * 2006-10-06 2008-04-24 Viasat, Inc. Forward and reverse calibration for ground-based beamforming
US7834807B2 (en) * 2007-05-21 2010-11-16 Spatial Digital Systems, Inc. Retro-directive ground-terminal antenna for communication with geostationary satellites in slightly inclined orbits
DE102008057088B4 (de) * 2008-11-13 2014-07-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Reflektorantenne, insbesondere zum Empfangen und/oder Aussenden von Signalen von und/oder hin zu Satelliten
US8175542B2 (en) * 2009-04-22 2012-05-08 Broadcom Corporation Transceiver with plural space hopping phased array antennas and methods for use therewith
JP5768953B2 (ja) * 2010-08-02 2015-08-26 日本電気株式会社 通信衛星、較正システム、及びアレーアンテナの較正方法
US8981993B2 (en) 2011-04-27 2015-03-17 Telefonaktiebolaget L M Ericsson (Publ) Beamforming methods and apparatuses
US9160434B2 (en) * 2011-10-28 2015-10-13 Broadcom Corporation RF transceiver with beamforming antenna and methods for use therewith

Also Published As

Publication number Publication date
KR20150128690A (ko) 2015-11-18
RU2647559C2 (ru) 2018-03-16
EP2973855A2 (en) 2016-01-20
JP2016517656A (ja) 2016-06-16
WO2014189570A2 (en) 2014-11-27
US9293820B2 (en) 2016-03-22
WO2014189570A3 (en) 2015-02-26
KR102110862B1 (ko) 2020-05-15
JP6306140B2 (ja) 2018-04-04
EP2973855B1 (en) 2020-01-22
US20140266870A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
RU2015124128A (ru) Компенсация неидеальной поверхности рефлектора в системе спутниковой связи
CN106464390B (zh) 用于校准用于机动车的mimo雷达传感器的方法
GB2504890A (en) Enhanced position detector in laser tracker
JP2019516114A (ja) 時間領域波形マッチングによるレーザ測距システム及びその方法
US20160103210A1 (en) Laser radar device and radar image generating method
WO2007087329A3 (en) Systems and methods for detecting an image of an object by use of an x-ray beam having a polychromatic distribution
US10161770B2 (en) Flow meter with adaptable beam characteristics
CN106501793B (zh) 校准平板定标体与太赫兹光束夹角的装置和方法
RU2012143402A (ru) Способ и устройство для измерения геометрии профиля сферически изогнутых, в частности, цилиндрических тел
RU2013127127A (ru) Компенсация задержки
CN106842162A (zh) 一种有源雷达对消隐身系统及方法
IL273001B1 (en) Metrology method and instruments
WO2020112191A3 (en) System and method for determining geolocation of a signal source
EA201590605A1 (ru) Способ и кинематическая калибровочная система для измерения смещений и вибраций объектов и конструкций
CN104535974A (zh) 一种飞机雷达系统校靶装置及其使用方法
RU2014151392A (ru) Система транспортного средства для обнаружения затенения антены
JP5102403B1 (ja) レーダ試験装置
JP2010237069A (ja) レーダ反射断面積計測装置
CN203053853U (zh) 用于光谱设备的光束精确校准辅助装置
FR3042318A1 (fr) Procede de calibrage d'une antenne a balayage electronique sectorisee, et dispositif de mesure pour la mise en oeuvre d'un tel procede
Zhao et al. A high precision direction-finding method based on multi-baseline for target rescue
RU2526891C1 (ru) Способ измерения характеристик диаграммы направленности активной/пассивной фазированной антенной решетки
RU2309425C2 (ru) Способ калибровки радиопеленгатора-дальномера
RU2012141572A (ru) Способ определения координат источника радиоизлучения-постановщика ответной помехи и способ определения координат целей, облучаемых постановщиком ответной помехи
RU2483317C2 (ru) Устройство для измерения эффективной площади рассеяния крупногабаритных объектов