RU2015118418A - Интегральная схема с матрицей сенсорных транзисторов, сенсорное устройство и способ измерения - Google Patents

Интегральная схема с матрицей сенсорных транзисторов, сенсорное устройство и способ измерения Download PDF

Info

Publication number
RU2015118418A
RU2015118418A RU2015118418A RU2015118418A RU2015118418A RU 2015118418 A RU2015118418 A RU 2015118418A RU 2015118418 A RU2015118418 A RU 2015118418A RU 2015118418 A RU2015118418 A RU 2015118418A RU 2015118418 A RU2015118418 A RU 2015118418A
Authority
RU
Russia
Prior art keywords
integrated circuit
region
transistor
transistors
channel
Prior art date
Application number
RU2015118418A
Other languages
English (en)
Other versions
RU2650087C2 (ru
Inventor
Йохан Хендрик КЛОТВИЙК
Марлен МЕСХЕР
ГРАФ Паскаль ДЕ
Боут МАРСЕЛИС
Original Assignee
Конинклейке Филипс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Н.В. filed Critical Конинклейке Филипс Н.В.
Publication of RU2015118418A publication Critical patent/RU2015118418A/ru
Application granted granted Critical
Publication of RU2650087C2 publication Critical patent/RU2650087C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4148Integrated circuits therefor, e.g. fabricated by CMOS processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

1. Интегральная схема (100), содержащая:полупроводниковую подложку (110);изолирующий слой (120) поверх упомянутой подложки;первый транзистор (140а) на упомянутом изолирующем слое, содержащий открытую функционализированную область (146а) канала между областью (142а) истока и областью (144) стока, предназначенную для восприятия аналита в среде;второй транзистор (140b) на упомянутом изолирующем слое, содержащий открытую область (146b) канала между областью (142b) истока и упомянутой областью (144) стока, предназначенную для восприятия потенциала упомянутой среды, причем упомянутая область стока является общей для упомянутого первого транзистора и упомянутого второго транзистора; игенератор (150) напряжения смещения, проводящим образом связанный с полупроводниковой подложкой, для подачи напряжения смещения на упомянутые первый и второй транзисторы, при этом упомянутый генератор напряжения смещения является реагирующим на упомянутый второй транзистор.2. Интегральная схема (100) по п. 1, в которой упомянутая функционализированная область (146а) канала функционализирована связывающим слоем для связывания представляющего интерес аналита (148).3. Интегральная схема (100) по п. 1, в которой упомянутая функционализированная область (146а) канала функционализирована путем химической модификации упомянутой области канала.4. Интегральная схема (100) по п. 1, дополнительно содержащая матрицу транзисторов, содержащую множество упомянутых первых транзисторов (146а) и по меньшей мере один из упомянутых вторых транзисторов (146b).5. Интегральная схема (100) по п. 2, дополнительно содержащая матрицу транзисторов, содержащую множество упомянутых первых транзисторов (146а) и по меньшей мере один из упомянутых вторых

Claims (20)

1. Интегральная схема (100), содержащая:
полупроводниковую подложку (110);
изолирующий слой (120) поверх упомянутой подложки;
первый транзистор (140а) на упомянутом изолирующем слое, содержащий открытую функционализированную область (146а) канала между областью (142а) истока и областью (144) стока, предназначенную для восприятия аналита в среде;
второй транзистор (140b) на упомянутом изолирующем слое, содержащий открытую область (146b) канала между областью (142b) истока и упомянутой областью (144) стока, предназначенную для восприятия потенциала упомянутой среды, причем упомянутая область стока является общей для упомянутого первого транзистора и упомянутого второго транзистора; и
генератор (150) напряжения смещения, проводящим образом связанный с полупроводниковой подложкой, для подачи напряжения смещения на упомянутые первый и второй транзисторы, при этом упомянутый генератор напряжения смещения является реагирующим на упомянутый второй транзистор.
2. Интегральная схема (100) по п. 1, в которой упомянутая функционализированная область (146а) канала функционализирована связывающим слоем для связывания представляющего интерес аналита (148).
3. Интегральная схема (100) по п. 1, в которой упомянутая функционализированная область (146а) канала функционализирована путем химической модификации упомянутой области канала.
4. Интегральная схема (100) по п. 1, дополнительно содержащая матрицу транзисторов, содержащую множество упомянутых первых транзисторов (146а) и по меньшей мере один из упомянутых вторых транзисторов (146b).
5. Интегральная схема (100) по п. 2, дополнительно содержащая матрицу транзисторов, содержащую множество упомянутых первых транзисторов (146а) и по меньшей мере один из упомянутых вторых транзисторов (146b).
6. Интегральная схема (100) по п. 4, в которой каждый из упомянутых первых транзисторов (146а) функционализирован отдельно.
7. Интегральная схема (100) по п. 5, в которой каждый из упомянутых первых транзисторов (146а) функционализирован отдельно.
8. Интегральная схема (100) по любому из пп. 1-7, в которой каждая область (146а, 146b) канала содержит нанопроволоку или нанотрубку.
9. Интегральная схема (100) по п. 8, в которой нанопроволока содержит или состоит из кремниевой нанопроволоки.
10. Интегральная схема (100) по п. 8, в которой нанотрубка содержит или состоит из углеродной нанотрубки.
11. Интегральная схема (100) по любому из пп. 1-7, в которой каждая область (146а, 146b) канала покрыта оксидной пленкой (540).
12. Интегральная схема (100) по п. 8, в которой каждая область (146а, 146b) канала покрыта оксидной пленкой (540).
13. Интегральная схема (100) по п. 9, в которой каждая область (146а, 146b) канала покрыта оксидной пленкой (540).
14. Интегральная схема (100) по п. 10, в которой каждая область (146а, 146b) канала покрыта оксидной пленкой (540).
15. Сенсорное устройство, содержащее отделение для образца и интегральную схему (100) по любому из пп. 1-14, при этом первый транзистор (140а) и второй транзистор (140b) открыты для воздействия в упомянутом отделении для образца.
16. Сенсорное устройство по п. 15, в котором упомянутое отделение для образца содержит проточный канал.
17. Сенсорное устройство по п. 15 или 16, дополнительно содержащее процессор обработки сигналов, отдельно связанный с соответствующими первым и вторым транзисторами (140а, 140b).
18. Способ измерения представляющего интерес аналита в среде, содержащий:
обеспечение интегральной схемы (100) по любому из пп. 1-14;
подвергание упомянутого первого транзистора (140а) и упомянутого второго транзистора (140b) воздействию среды, потенциально включающей в себя упомянутый аналит;
восприятие потенциала среды с использованием второго транзистора (140b); и
регулирование напряжения смещения, подаваемого на подложку, в ответ на упомянутый воспринятый потенциал упомянутой среды.
19. Способ по п. 18, дополнительно содержащий:
измерение тока сток-исток, протекающего через первый транзистор (140а), вслед за упомянутым этапом регулирования напряжения смещения; и
выведение присутствия упомянутого аналита из упомянутого измеренного тока сток-исток.
20. Способ по п. 19, в котором упомянутый этап измерения осуществляют в течение периода времени, когда потенциал упомянутой среды является постоянным.
RU2015118418A 2012-10-16 2013-10-11 Интегральная схема с матрицей сенсорных транзисторов, сенсорное устройство и способ измерения RU2650087C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261714400P 2012-10-16 2012-10-16
US61/714,400 2012-10-16
PCT/IB2013/059296 WO2014060916A1 (en) 2012-10-16 2013-10-11 Integrated circuit with sensing transistor array, sensing apparatus and measuring method

Publications (2)

Publication Number Publication Date
RU2015118418A true RU2015118418A (ru) 2016-12-10
RU2650087C2 RU2650087C2 (ru) 2018-04-06

Family

ID=49911749

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015118418A RU2650087C2 (ru) 2012-10-16 2013-10-11 Интегральная схема с матрицей сенсорных транзисторов, сенсорное устройство и способ измерения

Country Status (7)

Country Link
US (1) US10302590B2 (ru)
EP (1) EP2909616A1 (ru)
JP (1) JP6353454B2 (ru)
CN (1) CN104737008B (ru)
BR (1) BR112015008211B1 (ru)
RU (1) RU2650087C2 (ru)
WO (1) WO2014060916A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797976B2 (en) * 2013-12-11 2017-10-24 Taiwan Semiconductor Manufacturing Company Biosensor calibration system and related method
US10067070B2 (en) * 2015-11-06 2018-09-04 Applied Materials, Inc. Particle monitoring device
CN109414936B (zh) * 2016-09-23 2021-04-02 惠普发展公司,有限责任合伙企业 流体喷射装置和颗粒检测器
US10447202B2 (en) 2017-02-08 2019-10-15 Texas Instruments Incorporated Apparatus for communication across a capacitively coupled channel
JP6740949B2 (ja) * 2017-03-31 2020-08-19 日立金属株式会社 ガスセンサ
US11531027B2 (en) * 2017-12-01 2022-12-20 University Of Florida Research Foundation, Inc. Low cost disposable medical sensor fabricated on glass, paper or plastics
FR3077926B1 (fr) * 2018-02-15 2023-04-14 St Microelectronics Crolles 2 Sas Dispositif de detection, en particulier incorpore dans un ph-metre, et procede de realisation correspondant.
BR112021005243A2 (pt) * 2018-09-21 2021-06-15 Teralytic Inc. plataforma de fusão de sensores multimodal, extensível, para sensoriamento remoto de terreno proximal
CN114674897B (zh) * 2022-03-28 2023-06-06 深圳大学 一种用于检测单细胞外pH值的探针型有机电化学晶体管传感器及其制备方法、检测方法
EP4332562A1 (en) * 2022-09-02 2024-03-06 IQ Biozoom Sp. z o.o. A mesfet biosensor and a biosensing kit

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040136866A1 (en) 2002-06-27 2004-07-15 Nanosys, Inc. Planar nanowire based sensor elements, devices, systems and methods for using and making same
US20060263255A1 (en) * 2002-09-04 2006-11-23 Tzong-Ru Han Nanoelectronic sensor system and hydrogen-sensitive functionalization
RU2257567C1 (ru) * 2004-05-19 2005-07-27 Воронежский государственный технический университет Твердотельный интегральный датчик газов
US20060188934A1 (en) * 2005-02-22 2006-08-24 Ying-Lan Chang System and method for implementing a high-sensitivity sensor with improved stability
TWI287041B (en) * 2005-04-27 2007-09-21 Jung-Tang Huang An ultra-rapid DNA sequencing method with nano-transistors array based devices
FR2886459B1 (fr) 2005-05-31 2007-08-24 Thales Sa Reseau de transistors fet a nanotube ou nanofil semi-conducteur et dispositif electronique correspondant, pour la detection d'analytes
US8349604B2 (en) 2006-06-15 2013-01-08 University Of South Florida Nano-based device for detection of disease biomarkers and other target molecules
KR100799577B1 (ko) * 2006-08-31 2008-01-30 한국전자통신연구원 가스 및 생화학물질 감지용 센서 제조 방법과 그 센서를포함하는 집적회로 및 그 제조 방법
WO2008063901A1 (en) * 2006-11-17 2008-05-29 Trustees Of Boston University Nanochannel-based sensor system for use in detecting chemical or biological species
IL189576A0 (en) * 2008-02-18 2008-12-29 Technion Res & Dev Foundation Chemically sensitive field effect transistors for explosive detection
WO2009124111A2 (en) * 2008-04-01 2009-10-08 Trustees Of Boston University Glucose sensor employing semiconductor nanoelectronic device
CN102132153B (zh) * 2008-08-25 2014-08-20 Nxp股份有限公司 减小电子设备中的电容性充电
TWI383144B (zh) 2008-09-23 2013-01-21 Univ Nat Chiao Tung 感測元件、製造方法及其生物檢測系統
US20100219085A1 (en) 2009-02-27 2010-09-02 Edwards Lifesciences Corporation Analyte Sensor Offset Normalization
WO2010120297A1 (en) 2009-04-15 2010-10-21 Hewlett-Packard Development Company, L.P Nanowire sensor having a nanowire and electrically conductive film
KR101217576B1 (ko) 2009-09-22 2013-01-03 한국전자통신연구원 바이오 센서 및 그의 구동 방법
US8368123B2 (en) * 2009-12-23 2013-02-05 Nokia Corporation Apparatus for sensing an event

Also Published As

Publication number Publication date
JP6353454B2 (ja) 2018-07-04
US10302590B2 (en) 2019-05-28
CN104737008B (zh) 2017-06-09
EP2909616A1 (en) 2015-08-26
JP2016502644A (ja) 2016-01-28
WO2014060916A1 (en) 2014-04-24
BR112015008211A2 (pt) 2017-07-04
US20150276667A1 (en) 2015-10-01
CN104737008A (zh) 2015-06-24
BR112015008211B1 (pt) 2020-05-19
RU2650087C2 (ru) 2018-04-06

Similar Documents

Publication Publication Date Title
RU2015118418A (ru) Интегральная схема с матрицей сенсорных транзисторов, сенсорное устройство и способ измерения
JP2016502644A5 (ru)
JP6357502B2 (ja) Isfetアレイをテストする方法及び装置
Zhang et al. Sweat biomarker sensor incorporating picowatt, three-dimensional extended metal gate ion sensitive field effect transistors
Milgrew et al. Matching the transconductance characteristics of CMOS ISFET arrays by removing trapped charge
Sawada et al. Highly sensitive ion sensors using charge transfer technique
JP2020073910A (ja) イオン感応性電荷蓄積回路および方法
US11008611B2 (en) Double gate ion sensitive field effect transistor
Lee et al. A highly responsive silicon nanowire/amplifier MOSFET hybrid biosensor
Milgrew et al. The fabrication of scalable multi-sensor arrays using standard CMOS technology [chemical sensors]
KR101217576B1 (ko) 바이오 센서 및 그의 구동 방법
WO2010125717A1 (ja) 化学センサ
Jeon et al. Scaling and graphical transport-map analysis of ambipolar Schottky-barrier thin-film transistors based on a parallel array of Si nanowires
US20230408441A1 (en) Ion sensing device
RU2015118350A (ru) Интегральная схема с нанопроводными датчиками на полевых транзисторах, изготовленных химическим методом, сенсорное устройство, способ измерения и способ изготовления
Prodromakis et al. A novel design approach for developing chemical sensing platforms using inexpensive technologies
Hammond et al. Performance and system-on-chip integration of an unmodified CMOS ISFET
Sinha et al. Modeling and simulation of ISFET microsensor for different sensing films
Schwartz et al. DNA detection with top–down fabricated silicon nanowire transistor arrays in linear operation regime
Rani et al. ISFET pH sensor characterization: towards biosensor microchip application
Khanna et al. Design and development of a novel high-transconductance pH-ISFET (ion-sensitive field-effect transistor)-based glucose biosensor
RU2015118120A (ru) Интегральная схема с нанопроводниковыми датчиками, измерительное устройство, способ измерения и способ изготовления
JP2007278760A (ja) 化学・物理現象検出装置
Panahi et al. Open-Gate Junction Field Effect Transistor (OG-JFET) for Life Science Applications: Design, Implementation, and Characterization
Huang et al. Development of a low-hysteresis and high-linearity extended gate field-effect transistor-based chloride ion-sensitive microsensor