RU2015102528A - Слэб-лазер и усилитель и способ использования - Google Patents

Слэб-лазер и усилитель и способ использования Download PDF

Info

Publication number
RU2015102528A
RU2015102528A RU2015102528A RU2015102528A RU2015102528A RU 2015102528 A RU2015102528 A RU 2015102528A RU 2015102528 A RU2015102528 A RU 2015102528A RU 2015102528 A RU2015102528 A RU 2015102528A RU 2015102528 A RU2015102528 A RU 2015102528A
Authority
RU
Russia
Prior art keywords
crystal
laser
specified
light energy
frequency range
Prior art date
Application number
RU2015102528A
Other languages
English (en)
Other versions
RU2650807C2 (ru
RU2650807C9 (ru
Inventor
Мартин А. СТЮАРТ
Стивен Л. КАННИНГЕМ
Original Assignee
Мартин А. СТЮАРТ
Стивен Л. КАННИНГЕМ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мартин А. СТЮАРТ, Стивен Л. КАННИНГЕМ filed Critical Мартин А. СТЮАРТ
Publication of RU2015102528A publication Critical patent/RU2015102528A/ru
Publication of RU2650807C2 publication Critical patent/RU2650807C2/ru
Application granted granted Critical
Publication of RU2650807C9 publication Critical patent/RU2650807C9/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/024Arrangements for cooling, heating, ventilating or temperature compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08027Longitudinal modes by a filter, e.g. a Fabry-Perot filter is used for wavelength setting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08095Zig-zag travelling beam through the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1623Solid materials characterised by an active (lasing) ion transition metal chromium, e.g. Alexandrite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1625Solid materials characterised by an active (lasing) ion transition metal titanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1631Solid materials characterised by a crystal matrix aluminate
    • H01S3/1633BeAl2O4, i.e. Chrysoberyl
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1631Solid materials characterised by a crystal matrix aluminate
    • H01S3/1636Al2O3 (Sapphire)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1666Solid materials characterised by a crystal matrix borate, carbonate, arsenide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1223Basic optical elements, e.g. light-guiding paths high refractive index type, i.e. high-contrast waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

1. Лазерное устройство, содержащее:плоский кристалл; иматериал резонаторного фильтра, обеспеченный по меньшей мере на одной стороне этого кристалла и выполненный с возможностью приема световой энергии от источника света таким образом, что этот материал резонаторного фильтра преобразует световую энергию, принятую в первом частотном диапазоне, в световую энергию во втором частотном диапазоне, который поглощается плоским кристаллом, причемплоский кристалл выполнен с возможностью приема падающего светового пучка на одном своем конце под одним углом, а также с возможностью испускания усиленного лазерного пучка из указанного одного конца под любым другим углом, отличным от указанного одного угла, или испускания усиленного лазерного пучка, линейно смещенного от падающего светового пучка после поглощения световой энергии указанной второй частоты.2. Устройство по п. 1, в котором плоский кристалл снабжен поверхностью обратного отражения, которая находится не под углом 90° к горизонтальной оси плоского кристалла.3. Устройство по п. 1, в котором указанная отражающая поверхность содержит покрытие из диоксида кремния или диэлектрическую многослойную стопу в 1/4 длины волны, содержащую настроенную или частотно-избирательную характеристику для лазерного пучка, но прозрачную для светового излучения накачки.4. Устройство по любому из пп. 1-3, в котором плоский кристалл выполнен таким образом, что выходящий лазерный пучок, испущенный плоским кристаллом, отделен на некоторый угол или расстояние от входящего пучка световой энергии от источника.5. Устройство по любому из пп. 1-3, в котором первая частота находится в диапазоне частот ультрафиолетового

Claims (126)

1. Лазерное устройство, содержащее:
плоский кристалл; и
материал резонаторного фильтра, обеспеченный по меньшей мере на одной стороне этого кристалла и выполненный с возможностью приема световой энергии от источника света таким образом, что этот материал резонаторного фильтра преобразует световую энергию, принятую в первом частотном диапазоне, в световую энергию во втором частотном диапазоне, который поглощается плоским кристаллом, причем
плоский кристалл выполнен с возможностью приема падающего светового пучка на одном своем конце под одним углом, а также с возможностью испускания усиленного лазерного пучка из указанного одного конца под любым другим углом, отличным от указанного одного угла, или испускания усиленного лазерного пучка, линейно смещенного от падающего светового пучка после поглощения световой энергии указанной второй частоты.
2. Устройство по п. 1, в котором плоский кристалл снабжен поверхностью обратного отражения, которая находится не под углом 90° к горизонтальной оси плоского кристалла.
3. Устройство по п. 1, в котором указанная отражающая поверхность содержит покрытие из диоксида кремния или диэлектрическую многослойную стопу в 1/4 длины волны, содержащую настроенную или частотно-избирательную характеристику для лазерного пучка, но прозрачную для светового излучения накачки.
4. Устройство по любому из пп. 1-3, в котором плоский кристалл выполнен таким образом, что выходящий лазерный пучок, испущенный плоским кристаллом, отделен на некоторый угол или расстояние от входящего пучка световой энергии от источника.
5. Устройство по любому из пп. 1-3, в котором первая частота находится в диапазоне частот ультрафиолетового излучения, а вторая частота является частотой, меньшей, чем частоты ультрафиолетового излучения.
6. Система, содержащая множество лазерных устройств по любому из пп. 1-3, сформированных в ряд световых усилителей таким образом, что выход пучка усилительного лазера предыдущего лазера из указанных лазерных устройств работает в качестве входа в последующий лазер из указанных лазерных устройств.
7. Устройство по любому из пп. 1-3, дополнительно содержащее множество гибких держателей, выполненных с возможностью удержания компонентов указанного устройства и в то же время допускающих тепловое расширение по меньшей мере одного из компонентов указанного устройства.
8. Устройство по любому из пп. 1-3, в котором материал резонаторного фильтра содержит фторид тербия, легированный самарием.
9. Устройство по любому из пп. 1-3, в котором плоский кристалл содержит александрит, легированный хромом.
10. Устройство по любому из пп. 1-3, дополнительно содержащее систему для циркуляции охлаждающей жидкости, выполненную с возможностью циркуляции охлаждающей жидкости в указанном устройстве для охлаждения плоского кристалла и/или материала резонаторного фильтра посредством циркуляции этой охлаждающей жидкости между этими плоским кристаллом и материалом резонаторного фильтра.
11. Устройство по любому из пп. 1-3, в котором указанный один конец обеспечен под острым углом к одной примыкающей стороне плоского кристалла, а также под углом, отличным от прямого, к противоположной примыкающей стороне плоского кристалла.
12. Устройство по п. 1, в котором плоский кристалл содержит сапфир, легированный титаном.
13. Устройство по п. 1, в котором указанная пластина является прямоугольной пластиной.
14. Устройство по п. 1, в котором указанная пластина имеет длину больше, чем ширину, а множество источников света также имеют длину больше, чем ширину, при этом источники света расположены таким образом, что линия вдоль длин источников света не является параллельной линии вдоль длин пластин.
15. Устройство по п. 1, дополнительно содержащее по меньшей мере один резонаторный отражатель для отражения светового излучения, испущенного по меньшей мере одним источником света в указанное устройство.
16. Устройство по п. 1, в котором резонаторный отражатель выполнен содержащим по меньшей мере один канал для приема охлаждающей жидкости от охлаждающей подсистемы для охлаждения указанного устройства.
17. Устройство по п. 1, дополнительно содержащее по меньшей мере одно уплотнение для отделения одного или более охлаждающих каналов друг от друга.
18. Устройство по п. 1, в котором указанное по меньшей мере одно уплотнение обеспечено в контакте с резонаторным отражателем и либо с пластиной, либо с материалом резонаторного фильтра.
19. Устройство по п. 1, дополнительно содержащее по меньшей мере водяной коллектор, смонтированный на периметре указанного устройства для поддержания охлаждающей подсистемы для охлаждения указанного устройства.
20. Устройство по п. 1, дополнительно содержащее по меньшей мере один коллектор, смонтированный на указанном устройстве для поддержания охлаждающей подсистемы для охлаждения указанного устройства.
21. Устройство по п. 1, в котором указанное устройство выполнено таким образом, что указанная пластина испускает множество параллельных лазерных пучков.
22. Система для усиления светового излучения, содержащая множество лазерных устройств по любому из пп. 1-5 и 7-21, расположенных последовательно.
23. Лазерное устройство, содержащее:
плоский кристалл;
источник света, обеспечивающий световую энергию, включая ультрафиолетовый частотный диапазон, и
материал резонаторного фильтра, содержащий фторид тербия, легированный самарием, при этом указанный материал обеспечен по меньшей мере на одной стороне плоского кристалла и выполнен с возможностью приема световой энергии от источника света и возможностью преобразования указанной световой энергии в первом ультрафиолетовом частотном диапазоне в световую энергию во втором частотном диапазоне видимого света для поглощения плоским кристаллом для усиления лазерного пучка, при этом
плоский кристалл выполнен с возможностью испускания усиленного лазерного пучка из конца.
24. Устройство по п. 23, дополнительно содержащее множество гибких держателей, выполненных с возможностью удержания компонентов указанного устройства и в то же время допускающих тепловое расширение по меньшей мере одного компонента этого устройства.
25. Устройство по любому из пп. 23 и 24, дополнительно содержащее систему для циркуляции охлаждающей жидкости, выполненную с возможностью циркуляции охлаждающей жидкости в указанном устройстве для охлаждения плоского кристалла и/или материала резонаторного фильтра посредством циркуляции этой охлаждающей жидкости между этими плоским кристаллом и материалом резонаторного фильтра.
26. Устройство по любому из пп. 23 и 24, в котором плоский кристалл содержит александрит, легированный хромом.
27. Устройство по любому из пп. 23 и 24, в котором усиленный лазерный пучок испускается из того же конца плоского кристалла, в который входит пучок источника в плоский кристалл для его усиления, таким образом, что испущенный лазерный пучок испускается из плоского кристалла под углом, отличным от угла, под которым пучок лазера источника входит в плоский кристалл, или из местоположения, отличного от местоположения, где пучок источника входит в плоский кристалл.
28. Устройство по п. 27, в котором указанный конец, не содержащий поверхность обратного отражения, обеспечен под острым углом к одной примыкающей стороне плоского кристалла, а также под углом, отличным от прямого, к противоположной примыкающей стороне плоского кристалла таким образом, что испущенный лазерный пучок испускается из плоского кристалла под углом, отличным от угла, под которым пучок лазера источника входит в плоский кристалл.
29. Устройство по п. 28, в котором указанный конец, не содержащий поверхность обратного отражения, обеспечен под острым углом к одной примыкающей стороне плоского кристалла, а также под углом, отличным от прямого, к противоположной примыкающей стороне плоского кристалла.
30. Устройство по п. 23, в котором плоский кристалл содержит сапфир, легированный титаном.
31. Устройство по п. 23, в котором указанная пластина является прямоугольной пластиной.
32. Устройство по п. 23, в котором указанная пластина имеет длину больше, чем ширину, а множество источников света также имеют длину больше, чем ширину, при этом источники света расположены таким образом, что линия вдоль длин источников света не является параллельной линии вдоль длин пластин.
33. Устройство по п. 23, дополнительно содержащее по меньшей мере один резонаторный отражатель для отражения светового излучения, испущенного по меньшей мере одним источником света в указанное устройство.
34. Устройство по п. 23, в котором резонаторный отражатель выполнен содержащим по меньшей мере один канал для приема охлаждающей жидкости от охлаждающей подсистемы для охлаждения указанного устройства.
35. Устройство по п. 23, дополнительно содержащее по меньшей мере одно уплотнение для отделения одного или более охлаждающих каналов друг от друга.
36. Устройство по п. 23, в котором указанное по меньшей мере одно уплотнение обеспечено в контакте с резонаторным отражателем и либо с пластиной, либо с материалом резонаторного фильтра.
37. Устройство по п. 23, дополнительно содержащее по меньшей мере водяной коллектор, смонтированный на периметре указанного устройства для поддержания охлаждающей подсистемы для охлаждения указанного устройства.
38. Устройство по п. 23, дополнительно содержащее по меньшей мере один коллектор, смонтированный на указанном устройстве для поддержания охлаждающей подсистемы для охлаждения указанного устройства.
39. Устройство по п. 23, в котором указанное устройство выполнено таким образом, что указанная пластина испускает множество параллельных лазерных пучков.
40. Лазерное устройство, содержащее:
плоский кристалл;
источник света, обеспечивающий световую энергию, включая часть в ультрафиолетовом частотном диапазоне и часть в частотном диапазоне видимого света; и
материал резонаторного фильтра, по существу прозрачный для частотного диапазона видимого света; при этом материал резонаторного фильтра обеспечен по меньшей мере на одной стороне плоского кристалла и выполнен с возможностью приема световой энергии от источника света и с возможностью преобразования указанной световой энергии в первом ультрафиолетовом частотном диапазоне в световую энергию в преобразованном частотном диапазоне, меньшем, чем указанный ультрафиолетовый частотный диапазон, для поглощения плоским кристаллом, причем
источник света и материал резонаторного фильтра расположены таким образом, что по меньшей мере часть световой энергии в частотном диапазоне видимого света передается через резонаторный фильтр на плоский кристалл, а также
плоский кристалл выполнен с возможностью поглощения части указанной части световой энергии в частотном диапазоне видимого света, переданной через резонаторный фильтр, а также с возможностью поглощения части световой энергии в преобразованном частотном диапазоне для усиления лазерного пучка, испускаемого из слэб-лазера.
41. Устройство по п. 40, в котором плоский кристалл содержит александрит, легированный хромом.
42. Устройство по любому из пп. 40 и 41, в котором материал резонаторного фильтра содержит фторид тербия, легированный самарием.
43. Устройство по любому из пп. 40 и 41, в котором усиленный лазерный пучок испускается из того же конца плоского кристалла, в который входит пучок источника в плоский кристалл для его усиления, таким образом, что испущенный лазерный пучок испускается из плоского кристалла под углом, отличным от угла, под которым пучок лазера источника входит в плоский кристалл.
44. Устройство по п. 40, в котором плоский кристалл содержит сапфир, легированный титаном.
45. Устройство по п. 40, в котором указанная пластина является прямоугольной пластиной.
46. Устройство по п. 40, в котором указанная пластина имеет длину больше, чем ширину, а множество источников света также имеют длину больше, чем ширину, при этом источники света расположены таким образом, что линия вдоль длин источников света не является параллельной линии вдоль длин пластин.
47. Устройство по п. 40, дополнительно содержащее по меньшей мере один резонаторный отражатель для отражения светового излучения, испущенного по меньшей мере одним источником света в указанное устройство.
48. Устройство по п. 40, в котором резонаторный отражатель выполнен содержащим по меньшей мере один канал для приема охлаждающей жидкости от охлаждающей подсистемы для охлаждения указанного устройства.
49. Устройство по п. 40, дополнительно содержащее по меньшей мере одно уплотнение для отделения одного или более охлаждающих каналов друг от друга.
50. Устройство по п. 40, в котором указанное по меньшей мере одно уплотнение обеспечено в контакте с резонаторным отражателем и либо с пластиной, либо с материалом резонаторного фильтра.
51. Устройство по п. 40, дополнительно содержащее по меньшей мере водяной коллектор, смонтированный на периметре указанного устройства для поддержания охлаждающей подсистемы для охлаждения указанного устройства.
52. Устройство по п. 40, дополнительно содержащее по меньшей мере один коллектор, смонтированный на указанном устройстве для поддержания охлаждающей подсистемы для охлаждения указанного устройства.
53. Устройство по п. 40, в котором указанное устройство выполнено таким образом, что указанная пластина испускает множество параллельных лазерных пучков.
54. Лазерное устройство, содержащее:
плоский кристалл;
источник света, обеспечивающий световую энергию в первом частотном диапазоне;
материал резонаторного фильтра, обеспеченный по меньшей мере на одной стороне плоского кристалла и выполненный с возможностью приема части световой энергии от источника света и с возможностью преобразования по меньшей мере части указанной части световой энергии в первом частотном диапазоне в световую энергию во втором частотном диапазоне по меньшей мере для частичного поглощения плоским кристаллом;
множество гибких держателей, выполненных с возможностью удержания компонентов указанного устройства и в то же время допускающих тепловое расширение по меньшей мере одного из компонентов указанного устройства; и
систему для циркуляции охлаждающей жидкости, выполненную с возможностью циркуляции охлаждающей жидкости между плоским кристаллом и материалом резонаторного фильтра для охлаждения указанного устройства, причем
плоский кристалл выполнен с возможностью испускания усиленного лазерного пучка из конца плоского кристалла.
55. Устройство по п. 54, в котором усиленный лазерный пучок испускается из того же конца плоского кристалла, в который входит пучок источника в плоский кристалл для его усиления, таким образом, что испущенный лазерный пучок испускается из плоского кристалла под углом, отличным от угла, под которым пучок лазера источника входит в плоский кристалл.
56. Лазерное устройство по любому из пп. 54 и 55, в котором материал резонаторного фильтра содержит фторид тербия, легированный самарием, а плоский кристалл содержит александрит, легированный хромом.
57. Лазерное устройство по любому из пп. 54 и 55, в котором указанный конец обеспечен под острым углом к одной примыкающей стороне плоского кристалла, а также под углом, отличным от прямого, к противоположной примыкающей стороне плоского кристалла.
58. Лазерное устройство по любому из пп. 54 и 55, в котором плоский кристалл снабжен поверхностью обратного отражения, которая находится не под углом 90° к горизонтальной оси плоского кристалла.
59. Лазерное устройство, содержащее:
плоский кристалл, имеющий передний торец, который формирует место, обеспеченное под острым углом к нижней стороне этого кристалла, для приема падающего светового пучка, обеспеченного под первым углом к переднему торцу; указанный кристалл также имеет заднюю стенку, обеспеченную под задним углом, не равным 90°, к нижней части этого кристалла;
источник света, обеспечивающий световую энергию, включая часть в первом частотном диапазоне и часть во втором частотном диапазоне; и
материал резонаторного фильтра, прозрачный для первого светового частотного диапазона и обеспеченный на верхней и/или нижней части этого кристалла и выполненный с возможностью приема световой энергии от источника света и с возможностью преобразования световой энергии в первом частотном диапазоне в световую энергию в преобразованном частотном диапазоне по меньшей мере для частичного поглощения плоским кристаллом, причем
источник света и материал резонаторного фильтра расположены таким образом, что по меньшей мере часть указанной части световой энергии во втором частотном диапазоне передается через резонаторный фильтр на плоский кристалл, а
плоский кристалл выполнен с возможностью усиления лазерного пучка для испускания из плоского кристалла посредством поглощения как части указанной части световой энергии во втором частотном диапазоне, переданной через резонаторный фильтр, так и части световой энергии в преобразованном частотном диапазоне, а также
острый угол и задний угол выбраны таким образом, что усиленный лазерный пучок испускается из переднего торца плоского кристалла под углом, отличным от первого угла, таким образом, что падающий световой пучок, входящий в плоский кристалл, не совпадает с усиленным лазерным пучком, испускаемым из этого кристалла.
60. Система для усиления светового излучения, содержащая множество лазерных устройств по п. 59, расположенных последовательно.
61. Устройство по п. 59, в котором плоский кристалл содержит сапфир, легированный титаном.
62. Устройство по п. 59, в котором указанная пластина является прямоугольной пластиной.
63. Устройство по п. 59, в котором указанная пластина имеет длину больше, чем ширину, а множество источников света также имеют длину больше, чем ширину, при этом источники света расположены таким образом, что линия вдоль длин источников света не является параллельной линии вдоль длин пластин.
64. Устройство по п. 59, дополнительно содержащее по меньшей мере один резонаторный отражатель для отражения светового излучения, испущенного по меньшей мере одним источником света в указанное устройство.
65. Устройство по п. 59, в котором резонаторный отражатель выполнен содержащим по меньшей мере один канал для приема охлаждающей жидкости от охлаждающей подсистемы для охлаждения указанного устройства.
66. Устройство по п. 59, дополнительно содержащее по меньшей мере одно уплотнение для отделения одного или более охлаждающих каналов друг от друга.
67. Устройство по п. 59, в котором указанное по меньшей мере одно уплотнение обеспечено в контакте с резонаторным отражателем и либо с пластиной, либо с материалом резонаторного фильтра.
68. Устройство по п. 59, дополнительно содержащее по меньшей мере водяной коллектор, смонтированный на периметре указанного устройства для поддержания охлаждающей подсистемы для охлаждения указанного устройства.
69. Устройство по п. 59, дополнительно содержащее по меньшей мере один коллектор, смонтированный на указанном устройстве для поддержания охлаждающей подсистемы для охлаждения указанного устройства.
70. Устройство по п. 59, в котором указанное устройство выполнено таким образом, что указанная пластина испускает множество параллельных лазерных пучков.
71. Способ изготовления заготовки, включающий этап использования лазерного устройства в соответствии с п. 59 для испускания лазерного светового излучения для добавления по меньшей мере одного слоя материала на указанную заготовку или удаления по меньшей мере одного слоя материала с нее.
72. Способ по п. 71, в котором заготовку формируют в полупроводниковое устройство.
73. Способ по п. 71, в котором заготовку формируют в фотоэлектрическое устройство.
74. Способ по п. 71, в котором заготовку формируют в интегральную схему.
75. Способ по п. 71, в котором заготовку формируют в конденсатор.
76. Способ по п. 75, в котором заготовка является электрическим проводником, содержащим медь и/или алюминий.
77. Способ по п. 71, в котором на заготовку добавляют слой материала, содержащего алмаз или алмазоподобный углерод, используя указанное лазерное устройство.
78. Способ по п. 71, в котором на полупроводниковое устройство добавляют слой материала, содержащего гафниево-танталовый карбид, используя указанное лазерное устройство.
79. Способ по п. 71, в котором плоский кристалл содержит сапфир, легированный титаном.
80. Способ по п. 71, в котором указанный материал содержит арсенид бора.
81. Способ изготовления, включающий следующие этапы:
этап обеспечения слэб-лазера, содержащего:
плоский кристалл, выполненный с возможностью испускания усиленного импульсного высокоэнергетического лазерного пучка из конца,
источник света, обеспечивающий световую энергию, включая первый частотный диапазон,
материал резонаторного фильтра, обеспеченный по меньшей мере на одной стороне плоского кристалла и выполненный с возможностью приема по меньшей мере части световой энергии от источника света и с возможностью преобразования по меньшей мере части световой энергии в первом частотном диапазоне в световую энергию во втором частотном диапазоне для поглощения плоским кристаллом для усиления лазерного пучка, и
охлаждающую подсистему, выполненную с возможностью охлаждения лазера;
этап обеспечения заготовки; и
этап использования слэб-лазера для испускания высокоэнергетического импульсного пучка для осаждения по меньшей мере одного слоя материала на указанную заготовку.
82. Способ по п. 81, в котором указанный материал является алмазом или алмазоподобным углеродом.
83. Способ по п. 82, в котором указанный материал является гафниево-танталовым карбидом.
84. Способ изготовления полупроводникового устройства, включающий следующие этапы:
этап обеспечения слэб-лазера, содержащего:
плоский кристалл, выполненный с возможностью испускания усиленного импульсного высокоэнергетического лазерного пучка из конца,
источник света, обеспечивающий световую энергию, включая первый частотный диапазон,
материал резонаторного фильтра, обеспеченный по меньшей мере на одной стороне плоского кристалла и выполненный с возможностью приема по меньшей мере части световой энергии от источника света и с возможностью преобразования по меньшей мере части световой энергии в первом частотном диапазоне в световую энергию во втором частотном диапазоне для поглощения плоским кристаллом для усиления лазерного пучка, и
охлаждающую подсистему, выполненную с возможностью охлаждения лазера;
этап обеспечения полупроводниковой заготовки;
этап обеспечения источника углерода; и
этап использования слэб-лазера для испускания очень коротких импульсов высокоэнергетического пучка для осаждения по меньшей мере одного слоя алмаза или алмазоподобного углерода от источника углерода на указанную заготовку.
85. Способ изготовления устройства для накопления энергии, включающий следующие этапы:
этап обеспечения слэб-лазера, содержащего:
плоский кристалл, выполненный с возможностью испускания усиленного высокоэнергетического лазерного пучка из конца,
источник света, обеспечивающий световую энергию, включая первый частотный диапазон,
материал резонаторного фильтра, обеспеченный по меньшей мере на одной стороне плоского кристалла и выполненный с возможностью приема по меньшей мере части световой энергии от источника света и с возможностью преобразования по меньшей мере части световой энергии в первом частотном диапазоне в световую энергию во втором частотном диапазоне для поглощения плоским кристаллом для усиления лазерного пучка, и
охлаждающую подсистему, выполненную с возможностью охлаждения лазера;
этап обеспечения заготовки;
этап обеспечения источника углерода; и
этап использования слэб-лазера для испускания высокоэнергетического пучка для осаждения по меньшей мере одного слоя алмаза или алмазоподобного углерода от источника углерода на указанную заготовку; и
этап встраивания указанной заготовки в устройство для накопления энергии.
86. Лазерное устройство, содержащее:
корпус;
плоский кристалл;
множество источников света, каждый из которых обеспечивает световую энергию, включая первый частотный диапазон и второй частотный диапазон;
материал резонаторного фильтра, обеспеченный по меньшей мере на одной стороне этого кристалла и выполненный с возможностью приема световой энергии от источника света таким образом, что этот материал резонаторного фильтра преобразует световую энергию, принятую в первом частотном диапазоне, в световую энергию во втором частотном диапазоне, который поглощается плоским кристаллом, и
охлаждающую подсистему для циркуляции охлаждающей жидкости, причем
материал резонаторного фильтра и слэб-лазер расположены в указанном корпусе таким образом, что циркулирующая охлаждающая жидкость протекает между плоским кристаллом и материалом резонаторного фильтра для охлаждения, а
плоский кристалл выполнен с возможностью приема падающего светового пучка на одном конце плоского кристалла под одним углом, а также с возможностью испускания усиленного лазерного пучка из указанного одного конца под любым другим углом, отличным от указанного одного угла, или испускания усиленного лазерного пучка, линейно смещенного от падающего светового пучка после поглощения световой энергии указанной второй частоты.
87. Лазерное усиливающее устройство, содержащее:
множество слэб-лазеров, расположенных последовательно, каждый из указанных слэб-лазеров содержит:
корпус,
плоский кристалл, и
материал резонаторного фильтра, обеспеченный по меньшей мере на одной стороне этого кристалла и выполненный с возможностью приема световой энергии от источника света таким образом, что этот материал резонаторного фильтра преобразует световую энергию, принятую в первом частотном диапазоне, в световую энергию во втором частотном диапазоне, который поглощается плоским кристаллом, причем
плоский кристалл выполнен с возможностью приема падающего светового пучка на одном своем конце под одним углом, а также с возможностью испускания усиленного лазерного пучка из указанного одного конца под любым углом, отличным от указанного одного угла, или испускания усиленного лазерного пучка, линейно смещенного от падающего светового пучка после поглощения световой энергии указанной второй частоты;
причем выход предыдущего лазера из указанных слэб-лазеров в ряду используют в качестве входа в последующий лазер из указанных слэб-лазеров в ряду, а выход последнего лазера из указанных слэб-лазеров в ряду используют в качестве выхода усиливающего устройства.
88. Устройство по п. 87, в котором плоский кристалл снабжен поверхностью обратного отражения, которая находится не под углом 90° к горизонтальной оси плоского кристалла.
89. Устройство по п. 87, в котором указанная отражающая поверхность содержит покрытие из диоксида кремния или диэлектрическую многослойную стопу в 1/4 длины волны, содержащую настроенную или частотно-избирательную характеристику для лазерного пучка, но прозрачную для светового излучения накачки.
90. Устройство по п. 87, в котором плоский кристалл выполнен таким образом, что выходящий лазерный пучок, испущенный плоским кристаллом, отделен на некоторый угол или расстояние от входящего пучка световой энергии от источника.
91. Устройство по п. 87, в котором первая частота находится в диапазоне частот ультрафиолетового излучения, а вторая частота является частотой, меньшей, чем частоты ультрафиолетового излучения.
92. Устройство по п. 87, дополнительно содержащее множество гибких держателей, выполненных с возможностью удержания компонентов указанного устройства и в то же время допускающих тепловое расширение по меньшей мере одного компонента этого устройства.
93. Устройство по п. 87, в котором материал резонаторного фильтра содержит фторид тербия, легированный самарием.
94. Устройство по п. 87, в котором плоский кристалл содержит александрит, легированный хромом.
95. Устройство по п. 87, дополнительно содержащее систему для циркуляции охлаждающей жидкости, выполненную с возможностью циркуляции охлаждающей жидкости в указанном устройстве для охлаждения плоского кристалла и/или материала резонаторного фильтра.
96. Устройство по п. 87, в котором указанный один конец обеспечен под острым углом к одной примыкающей стороне плоского кристалла, а также под углом, отличным от прямого, к противоположной примыкающей стороне плоского кристалла.
97. Лазерное усиливающее устройство, содержащее:
множество слэб-лазеров, расположенных последовательно, каждый из указанных слэб-лазеров содержит:
корпус,
плоский кристалл;
множество источников света, каждый из которых обеспечивает световую энергию, включая первый частотный диапазон и второй частотный диапазон;
материал резонаторного фильтра, обеспеченный по меньшей мере на одной стороне этого кристалла и выполненный с возможностью приема световой энергии от источника света таким образом, что этот материал резонаторного фильтра преобразует световую энергию, принятую в первом частотном диапазоне, в световую энергию во втором частотном диапазоне, который поглощается плоским кристаллом, и
охлаждающую подсистему, выполненную с возможностью циркуляции охлаждающей жидкости, причем
материал резонаторного фильтра и слэб-лазер расположены в указанном корпусе таким образом, что циркулирующая охлаждающая жидкость протекает между плоским кристаллом и материалом резонаторного фильтра для охлаждения лазера, а
плоский кристалл выполнен с возможностью приема падающего светового пучка на одном конце плоского кристалла под одним углом, а также с возможностью испускания усиленного лазерного пучка из указанного одного конца под любым другим углом, отличным от указанного одного угла, или испускания усиленного лазерного пучка, линейно смещенного от падающего светового пучка после поглощения световой энергии указанной второй частоты,
при этом выход предыдущего лазера из указанных слэб-лазеров в ряду используют в качестве входа в последующий лазер из указанных слэб-лазеров в ряду,
а выход последнего лазера из указанных слэб-лазеров в ряду используют в качестве выхода усиливающего устройства.
98 Устройство по п. 97, в котором плоский кристалл снабжен поверхностью обратного отражения, которая находится не под углом 90° к горизонтальной оси плоского кристалла.
99. Устройство по п. 97, в котором указанная отражающая поверхность содержит покрытие из диоксида кремния или диэлектрическую многослойную стопу в 1/4 длины волны, содержащую настроенную или частотно-избирательную характеристику для лазерного пучка, но прозрачную для светового излучения накачки.
100. Устройство по п. 97, в котором плоский кристалл выполнен таким образом, что выходящий лазерный пучок, испущенный плоским кристаллом, отделен на некоторый угол или расстояние от входящего пучка световой энергии от источника.
101. Устройство по п. 97, в котором первая частота находится в диапазоне частот ультрафиолетового излучения, а вторая частота является частотой, меньшей, чем частоты ультрафиолетового излучения.
102. Устройство по п. 97, дополнительно содержащее множество гибких держателей, выполненных с возможностью удержания компонентов указанного устройства и в то же время допускающих тепловое расширение по меньшей мере одного компонента этого устройства.
103. Устройство по п. 97, в котором материал резонаторного фильтра содержит фторид тербия, легированный самарием.
104. Устройство по п. 97, в котором плоский кристалл содержит александрит, легированный хромом.
105. Устройство по п. 97, дополнительно содержащее систему для циркуляции охлаждающей жидкости, выполненную с возможностью циркуляции охлаждающей жидкости в указанном устройстве для охлаждения плоского кристалла и/или материала резонаторного фильтра.
106. Устройство по п. 97, в котором указанный один конец обеспечен под острым углом к одной примыкающей стороне плоского кристалла, а также под углом, отличным от прямого, к противоположной примыкающей стороне плоского кристалла.
107. Система для передачи материала от первого объекта на второй объект, содержащая:
обеспечение первой усиливающей подсистемы, содержащей по меньшей мере одно первое лазерное устройство, причем каждое из указанных первых лазерных устройств состоит из слэб-лазера, содержащего:
плоский кристалл и
материал резонаторного фильтра, обеспеченный по меньшей мере на одной стороне этого кристалла и выполненный с возможностью приема световой энергии от источника света таким образом, что этот материал резонаторного фильтра преобразует световую энергию, принятую в первом частотном диапазоне, в световую энергию во втором частотном диапазоне, который поглощается плоским кристаллом, причем
плоский кристалл выполнен с возможностью приема падающего светового пучка на одном своем конце под одним углом, а также с возможностью испускания усиленного лазерного пучка из указанного одного конца под любым углом, отличным от указанного одного угла, или испускания усиленного лазерного пучка, линейно смещенного от падающего светового пучка после поглощения световой энергии указанной второй частоты;
обеспечение первого затравочного лазера, выполненного с возможностью вывода первого пучка затравочного лазера, имеющего первые требуемые импульсные характеристики для ввода в первую усиливающую подсистему для генерации первого выхода лазерного пучка;
обеспечение второй усиливающей подсистемы, содержащей по меньшей мере одно второе лазерное устройство;
обеспечение второго затравочного лазера, выполненного с возможностью вывода второго пучка затравочного лазера, имеющего требуемые импульсные характеристики для входа во вторую усиливающую подсистему для генерации второго выхода лазерного пучка;
обеспечение первой лазерной трассировочной подсистемы, выполненной с возможностью трассировки по меньшей мере части первого выхода лазерного пучка на первый объект для испарения части первого объекта, при этом
обеспечение второй лазерной трассировочной подсистемы, выполненной с возможностью трассировки по меньшей мере части второго выхода лазерного пучка на второй объект для подготовки второго объекта к приему по меньшей мере части испаренной части первого объекта на второй объект или в него.
108. Система по п. 107, в которой первый затравочный лазер является сверхбыстрым лазером, имеющим ширину импульса около 1/2 наносекунды или менее и относительно узкий диапазон длин волн около 100 нм или менее.
109. Система по любому из пп. 107 и 108, в которой второй затравочный лазер является сверхбыстрым лазером, испускающим импульс каждые 3,2 мкс или менее.
110. Система по любому из пп. 107 и 108, в которой второй затравочный лазер является лазером с модуляцией добротности и шириной импульса около 1 наносекунды или более.
111. Система по любому из пп. 107 и 108, в которой первая лазерная трассировочная подсистема дополнительно выполнена с возможностью трассировки другой части первого выхода лазерного пучка на факел испаренной части первого объекта для термализации частиц первого объекта, присутствующих в факеле, для дополнительной атомизации этого факела.
112. Система по любому из пп. 107 и 108, в которой указанное по меньшей мере одно лазерное устройство состоит из слэб-лазера, содержащего:
плоский кристалл; и
материал резонаторного фильтра, обеспеченный по меньшей мере на одной стороне этого кристалла и выполненный с возможностью приема световой энергии от источника света таким образом, что этот материал резонаторного фильтра преобразует световую энергию, принятую в первом частотном диапазоне, в световую энергию во втором частотном диапазоне, который поглощается плоским кристаллом, причем
плоский кристалл выполнен с возможностью приема падающего светового пучка на одном своем конце под одним углом, а также с возможностью испускания усиленного лазерного пучка из указанного одного конца под любым другим углом, отличным от указанного одного угла, или испускания усиленного лазерного пучка, линейно смещенного от падающего светового пучка после поглощения световой энергии указанной второй частоты.
113. Система по любому из пп. 107 и 108, в которой плоский кристалл (или кристаллы) снабжен поверхностью обратного отражения, которая находится не под углом 90 градусов к горизонтальной оси плоского кристалла.
114. Система по любому из пп. 107 и 108, в которой указанная отражающая поверхность (поверхности) содержит покрытие из диоксида кремния или диэлектрическую многослойную стопу в 1/4 длины волны, содержащую настроенную или частотно-избирательную характеристику для лазерного пучка, но прозрачную для светового излучения накачки.
115. Система по любому из пп. 107 и 108, в которой плоский кристалл выполнен таким образом, что выходящий лазерный пучок, испущенный плоским кристаллом, отделен на некоторый угол или расстояние от входящего пучка световой энергии от источника.
116. Система по любому из пп. 107 и 108, в которой первая частота находится в диапазоне частот ультрафиолетового излучения, а вторая частота является частотой, меньшей, чем частоты ультрафиолетового излучения.
117. Система по любому из пп. 107 и 108, дополнительно содержащая множество гибких держателей, выполненных с возможностью удержания компонентов указанного устройства и в то же время допускающих тепловое расширение по меньшей мере одного компонента этого устройства.
118. Система по любому из пп. 107 и 108, в которой материал резонаторного фильтра содержит фторид тербия, легированный самарием.
119. Система по любому из пп. 107 и 108, в которой плоский кристалл содержит александрит, легированный хромом.
120. Система по любому из пп. 107 и 108, дополнительно содержащая систему для циркуляции охлаждающей жидкости, выполненную с возможностью циркуляции охлаждающей жидкости в указанном устройстве для охлаждения плоского кристалла и/или материала резонаторного фильтра.
121. Система по любому из пп. 107 и 108, в которой указанный один конец обеспечен под острым углом к одной примыкающей стороне плоского кристалла, а также под углом, отличным от прямого, к противоположной примыкающей стороне плоского кристалла.
122. Система по любому из пп. 107 и 108, в которой каждая из первой усиливающей подсистемы и второй усиливающей подсистемы содержит по меньшей мере компрессор или компенсатор, выполненный с возможностью компенсации различных световых скоростей в соответствующем лазерном пучке (пучках).
123. Система по любому из пп. 107 и 108, в которой плоский кристалл содержит сапфир, легированный титаном.
124. Система по любому из пп. 107 и 108, в которой указанный один или оба из затравочных лазеров состоят из слэб-лазера, содержащего:
плоский кристалл; и
материал резонаторного фильтра, обеспеченный по меньшей мере на одной стороне этого кристалла и выполненный с возможностью приема световой энергии от источника света таким образом, что этот материал резонаторного фильтра преобразует световую энергию, принятую в первом частотном диапазоне, в световую энергию во втором частотном диапазоне, который поглощается плоским кристаллом, причем
плоский кристалл выполнен с возможностью приема падающего светового пучка на одном своем конце под одним углом, а также с возможностью испускания усиленного лазерного пучка из указанного одного конца под любым другим углом, отличным от указанного одного угла, или испускания усиленного лазерного пучка, линейно смещенного от падающего светового пучка после поглощения световой энергии указанной второй частоты.
125. Система по любому из пп. 107 и 108, в которой первый объект содержит арсенид бора.
126. Система по любому из пп. 107 и 108, в которой указанный один или оба из затравочных лазеров содержат слэб-лазер, содержащий:
плоский кристалл, имеющий передний торец, который формирует место, обеспеченное под острым углом к нижней стороне этого кристалла, и выполненный с возможностью приема падающего светового пучка, обеспеченного под первым углом к переднему торцу; указанный кристалл также имеет заднюю стенку, обеспеченную под задним углом, не равным 90°, к нижней части этого кристалла;
источник света, обеспечивающий световую энергию, включая часть в первом частотном диапазоне и часть во втором частотном диапазоне; и
материал резонаторного фильтра, прозрачный для первого светового частотного диапазона и обеспеченный на верхней и/или нижней части этого кристалла и выполненный с возможностью приема световой энергии от источника света и с возможностью преобразования световой энергии в первом частотном диапазоне в световую энергию в преобразованном частотном диапазоне по меньшей мере для частичного поглощения плоским кристаллом, причем
источник света и материал резонаторного фильтра расположены таким образом, что по меньшей мере часть указанной части световой энергии во втором частотном диапазоне передается через резонаторный фильтр на плоский кристалл, а
плоский кристалл выполнен с возможностью усиления лазерного пучка для испускания из плоского кристалла посредством поглощения как части указанной части световой энергии во втором частотном диапазоне, переданной через резонаторный фильтр, так и части световой энергии в преобразованном частотном диапазоне, а также
острый угол и задний угол выбраны таким образом, что усиленный лазерный пучок испускается из переднего торца плоского кристалла под углом, отличным от первого угла, таким образом, что падающий световой пучок, входящий в плоский кристалл, не совпадает с усиленным лазерным пучком, испускаемым из этого кристалла.
RU2015102528A 2012-08-03 2013-08-01 Слэб-лазер и усилитель и способ использования RU2650807C9 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/566,144 2012-08-03
US13/566,144 US9246299B2 (en) 2011-08-04 2012-08-03 Slab laser and amplifier
PCT/US2013/053166 WO2014022635A1 (en) 2012-08-03 2013-08-01 Slab laser and amplifier and method of use

Publications (3)

Publication Number Publication Date
RU2015102528A true RU2015102528A (ru) 2016-09-20
RU2650807C2 RU2650807C2 (ru) 2018-04-17
RU2650807C9 RU2650807C9 (ru) 2018-09-06

Family

ID=49548573

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015102528A RU2650807C9 (ru) 2012-08-03 2013-08-01 Слэб-лазер и усилитель и способ использования

Country Status (9)

Country Link
US (5) US9246299B2 (ru)
EP (2) EP2880722B1 (ru)
JP (2) JP6415435B2 (ru)
CN (1) CN104604049B (ru)
BR (1) BR112015002090B1 (ru)
CA (1) CA2879746A1 (ru)
IN (1) IN2015DN00970A (ru)
RU (1) RU2650807C9 (ru)
WO (1) WO2014022635A1 (ru)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120807A1 (en) * 2013-01-29 2014-08-07 The Trustees Of Boston College High thermal conductivity materials for thermal management applications
KR102193150B1 (ko) * 2013-12-27 2020-12-21 삼성디스플레이 주식회사 증착 장치 및 이를 이용한 증착량 제어 방법
KR102192983B1 (ko) * 2014-01-15 2020-12-21 삼성디스플레이 주식회사 증착 장치 및 이를 이용한 증착 속도 산출 방법
KR20170019366A (ko) 2014-05-16 2017-02-21 디버전트 테크놀로지스, 인크. 차량 섀시용 모듈형 성형 접속체 및 그 사용 방법
RU2569904C1 (ru) * 2014-06-25 2015-12-10 Владимир Валентинович Павлов Лазерное устройство с пластинчатым оптическим элементом
SG10201806531QA (en) 2014-07-02 2018-09-27 Divergent Technologies Inc Systems and methods for fabricating joint members
CN107109628B (zh) * 2014-08-29 2019-08-23 国立研究开发法人产业技术综合研究所 有机材料膜或有机无机复合材料膜的激光蒸镀方法、激光蒸镀装置
US10220471B2 (en) 2015-10-14 2019-03-05 Lawrence Livermore National Security, Llc Spatter reduction laser scanning strategy in selective laser melting
EP3368312B1 (en) 2015-10-30 2022-10-26 Seurat Technologies, Inc. Additive manufacturing method
WO2017132664A1 (en) 2016-01-28 2017-08-03 Seurat Technologies, Inc. Additive manufacturing, spatial heat treating system and method
EP3362238B1 (en) * 2016-01-29 2021-12-29 Seurat Technologies, Inc. Method of additive manufacturing
DE102016108474A1 (de) 2016-05-09 2017-11-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Festkörper, Laserverstärkungssystem und Festkörperlaser
WO2017204358A1 (ja) * 2016-05-27 2017-11-30 富士フイルム株式会社 固体レーザ装置
SG11201810626YA (en) 2016-06-09 2018-12-28 Divergent Technologies Inc Systems and methods for arc and node design and manufacture
CN106602391B (zh) * 2016-12-09 2019-04-30 中国人民解放军海军航空工程学院 一种具备波前畸变自校正能力的板条激光模块
US11155005B2 (en) 2017-02-10 2021-10-26 Divergent Technologies, Inc. 3D-printed tooling and methods for producing same
US10759090B2 (en) 2017-02-10 2020-09-01 Divergent Technologies, Inc. Methods for producing panels using 3D-printed tooling shells
US10898968B2 (en) 2017-04-28 2021-01-26 Divergent Technologies, Inc. Scatter reduction in additive manufacturing
CN115464159A (zh) 2017-05-11 2022-12-13 速尔特技术有限公司 用于增材制造的图案化光的开关站射束路由
US10703419B2 (en) 2017-05-19 2020-07-07 Divergent Technologies, Inc. Apparatus and methods for joining panels
US11358337B2 (en) 2017-05-24 2022-06-14 Divergent Technologies, Inc. Robotic assembly of transport structures using on-site additive manufacturing
US11123973B2 (en) 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
US10919230B2 (en) 2017-06-09 2021-02-16 Divergent Technologies, Inc. Node with co-printed interconnect and methods for producing same
US10781846B2 (en) 2017-06-19 2020-09-22 Divergent Technologies, Inc. 3-D-printed components including fasteners and methods for producing same
US10994876B2 (en) 2017-06-30 2021-05-04 Divergent Technologies, Inc. Automated wrapping of components in transport structures
US11022375B2 (en) 2017-07-06 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing microtube heat exchangers
US10895315B2 (en) 2017-07-07 2021-01-19 Divergent Technologies, Inc. Systems and methods for implementing node to node connections in mechanized assemblies
US10940609B2 (en) 2017-07-25 2021-03-09 Divergent Technologies, Inc. Methods and apparatus for additively manufactured endoskeleton-based transport structures
US10751800B2 (en) 2017-07-25 2020-08-25 Divergent Technologies, Inc. Methods and apparatus for additively manufactured exoskeleton-based transport structures
US10605285B2 (en) 2017-08-08 2020-03-31 Divergent Technologies, Inc. Systems and methods for joining node and tube structures
US10357959B2 (en) 2017-08-15 2019-07-23 Divergent Technologies, Inc. Methods and apparatus for additively manufactured identification features
US11306751B2 (en) 2017-08-31 2022-04-19 Divergent Technologies, Inc. Apparatus and methods for connecting tubes in transport structures
US10960611B2 (en) 2017-09-06 2021-03-30 Divergent Technologies, Inc. Methods and apparatuses for universal interface between parts in transport structures
US11292058B2 (en) 2017-09-12 2022-04-05 Divergent Technologies, Inc. Apparatus and methods for optimization of powder removal features in additively manufactured components
US10668816B2 (en) 2017-10-11 2020-06-02 Divergent Technologies, Inc. Solar extended range electric vehicle with panel deployment and emitter tracking
US10814564B2 (en) 2017-10-11 2020-10-27 Divergent Technologies, Inc. Composite material inlay in additively manufactured structures
US10752986B2 (en) * 2017-10-30 2020-08-25 Savannah River Nuclear Solutions, Llc Method of manufacturing a three-dimensional carbon structure
US11786971B2 (en) 2017-11-10 2023-10-17 Divergent Technologies, Inc. Structures and methods for high volume production of complex structures using interface nodes
US10926599B2 (en) 2017-12-01 2021-02-23 Divergent Technologies, Inc. Suspension systems using hydraulic dampers
US11110514B2 (en) 2017-12-14 2021-09-07 Divergent Technologies, Inc. Apparatus and methods for connecting nodes to tubes in transport structures
US11085473B2 (en) 2017-12-22 2021-08-10 Divergent Technologies, Inc. Methods and apparatus for forming node to panel joints
US11534828B2 (en) 2017-12-27 2022-12-27 Divergent Technologies, Inc. Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits
US11420262B2 (en) 2018-01-31 2022-08-23 Divergent Technologies, Inc. Systems and methods for co-casting of additively manufactured interface nodes
US10751934B2 (en) 2018-02-01 2020-08-25 Divergent Technologies, Inc. Apparatus and methods for additive manufacturing with variable extruder profiles
US11224943B2 (en) 2018-03-07 2022-01-18 Divergent Technologies, Inc. Variable beam geometry laser-based powder bed fusion
US11267236B2 (en) 2018-03-16 2022-03-08 Divergent Technologies, Inc. Single shear joint for node-to-node connections
US11872689B2 (en) 2018-03-19 2024-01-16 Divergent Technologies, Inc. End effector features for additively manufactured components
US11254381B2 (en) 2018-03-19 2022-02-22 Divergent Technologies, Inc. Manufacturing cell based vehicle manufacturing system and method
US11408216B2 (en) 2018-03-20 2022-08-09 Divergent Technologies, Inc. Systems and methods for co-printed or concurrently assembled hinge structures
US11613078B2 (en) 2018-04-20 2023-03-28 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing adhesive inlet and outlet ports
US11214317B2 (en) 2018-04-24 2022-01-04 Divergent Technologies, Inc. Systems and methods for joining nodes and other structures
US10682821B2 (en) 2018-05-01 2020-06-16 Divergent Technologies, Inc. Flexible tooling system and method for manufacturing of composite structures
US11020800B2 (en) 2018-05-01 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for sealing powder holes in additively manufactured parts
US11389816B2 (en) 2018-05-09 2022-07-19 Divergent Technologies, Inc. Multi-circuit single port design in additively manufactured node
US10691104B2 (en) 2018-05-16 2020-06-23 Divergent Technologies, Inc. Additively manufacturing structures for increased spray forming resolution or increased fatigue life
US11590727B2 (en) 2018-05-21 2023-02-28 Divergent Technologies, Inc. Custom additively manufactured core structures
US11441586B2 (en) 2018-05-25 2022-09-13 Divergent Technologies, Inc. Apparatus for injecting fluids in node based connections
US11035511B2 (en) 2018-06-05 2021-06-15 Divergent Technologies, Inc. Quick-change end effector
US11292056B2 (en) 2018-07-06 2022-04-05 Divergent Technologies, Inc. Cold-spray nozzle
CN108963740B (zh) * 2018-07-09 2019-08-09 北京空间机电研究所 一种板条固体激光器泵浦增益模块
US11269311B2 (en) 2018-07-26 2022-03-08 Divergent Technologies, Inc. Spray forming structural joints
US10836120B2 (en) 2018-08-27 2020-11-17 Divergent Technologies, Inc . Hybrid composite structures with integrated 3-D printed elements
US11433557B2 (en) 2018-08-28 2022-09-06 Divergent Technologies, Inc. Buffer block apparatuses and supporting apparatuses
US11826953B2 (en) 2018-09-12 2023-11-28 Divergent Technologies, Inc. Surrogate supports in additive manufacturing
US11072371B2 (en) 2018-10-05 2021-07-27 Divergent Technologies, Inc. Apparatus and methods for additively manufactured structures with augmented energy absorption properties
US11260582B2 (en) 2018-10-16 2022-03-01 Divergent Technologies, Inc. Methods and apparatus for manufacturing optimized panels and other composite structures
US11504912B2 (en) 2018-11-20 2022-11-22 Divergent Technologies, Inc. Selective end effector modular attachment device
USD911222S1 (en) 2018-11-21 2021-02-23 Divergent Technologies, Inc. Vehicle and/or replica
CN113195127A (zh) 2018-12-14 2021-07-30 速尔特技术有限公司 使用用于二维打印的高通量激光从粉末创建对象的增材制造系统
US11449021B2 (en) 2018-12-17 2022-09-20 Divergent Technologies, Inc. Systems and methods for high accuracy fixtureless assembly
US10663110B1 (en) 2018-12-17 2020-05-26 Divergent Technologies, Inc. Metrology apparatus to facilitate capture of metrology data
US11529741B2 (en) 2018-12-17 2022-12-20 Divergent Technologies, Inc. System and method for positioning one or more robotic apparatuses
EP3898058A4 (en) 2018-12-19 2022-08-17 Seurat Technologies, Inc. ADDITIONAL MANUFACTURING SYSTEM USING A PULSE MODULATED LASER FOR TWO-DIMENSIONAL PRINTING
US11885000B2 (en) 2018-12-21 2024-01-30 Divergent Technologies, Inc. In situ thermal treatment for PBF systems
JP7341673B2 (ja) * 2019-02-27 2023-09-11 三菱重工業株式会社 レーザ装置
US11203240B2 (en) 2019-04-19 2021-12-21 Divergent Technologies, Inc. Wishbone style control arm assemblies and methods for producing same
CN112886378A (zh) * 2019-11-29 2021-06-01 山东大学 一种590nm波段拉曼倍频光源泵浦的翠绿宝石被动锁模激光器
EP4088289A4 (en) * 2020-01-06 2024-03-20 Battelle Energy Alliance, LLC SOLID-STATE NUCLEAR PUMPED LASER EMISSION SENSORS FOR MEASURING BATTERY REACTOR POWER AND FLOW, DIRECT ENERGY CONVERSION, AND ASSOCIATED METHODS
US11912339B2 (en) 2020-01-10 2024-02-27 Divergent Technologies, Inc. 3-D printed chassis structure with self-supporting ribs
US11590703B2 (en) 2020-01-24 2023-02-28 Divergent Technologies, Inc. Infrared radiation sensing and beam control in electron beam additive manufacturing
US11884025B2 (en) 2020-02-14 2024-01-30 Divergent Technologies, Inc. Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations
US11479015B2 (en) 2020-02-14 2022-10-25 Divergent Technologies, Inc. Custom formed panels for transport structures and methods for assembling same
CN111293579B (zh) * 2020-02-21 2021-07-27 中国航空制造技术研究院 一种用于板条激光晶体的双面水冷装置
US11421577B2 (en) 2020-02-25 2022-08-23 Divergent Technologies, Inc. Exhaust headers with integrated heat shielding and thermal syphoning
US11535322B2 (en) 2020-02-25 2022-12-27 Divergent Technologies, Inc. Omni-positional adhesion device
US11413686B2 (en) 2020-03-06 2022-08-16 Divergent Technologies, Inc. Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components
US20210320470A1 (en) * 2020-04-10 2021-10-14 Seurat Technologies, Inc. Fluid Edge Cladding For Spectroscopic Absorption Of Laser Emissions And Amplified Spontaneous Emission
CN115379943A (zh) * 2020-04-10 2022-11-22 速尔特技术有限公司 支持吸收激光放大器中的放大式自发发射的高通量增材制造系统
US11850804B2 (en) 2020-07-28 2023-12-26 Divergent Technologies, Inc. Radiation-enabled retention features for fixtureless assembly of node-based structures
US11806941B2 (en) 2020-08-21 2023-11-07 Divergent Technologies, Inc. Mechanical part retention features for additively manufactured structures
US11872626B2 (en) 2020-12-24 2024-01-16 Divergent Technologies, Inc. Systems and methods for floating pin joint design
US11947335B2 (en) 2020-12-30 2024-04-02 Divergent Technologies, Inc. Multi-component structure optimization for combining 3-D printed and commercially available parts
US11928966B2 (en) 2021-01-13 2024-03-12 Divergent Technologies, Inc. Virtual railroad
RU2757834C1 (ru) * 2021-01-28 2021-10-21 Акционерное Общество "Наука И Инновации" Съемная кассета для усилительного модуля
US11845130B2 (en) 2021-03-09 2023-12-19 Divergent Technologies, Inc. Rotational additive manufacturing systems and methods
US11865617B2 (en) 2021-08-25 2024-01-09 Divergent Technologies, Inc. Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities
CN113991397B (zh) * 2021-10-28 2023-06-27 河北工业大学 一种固体激光阵列放大器
CN114779373B (zh) * 2022-03-14 2024-03-26 清华大学 光功率分束器及其制备方法

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3631362A (en) 1968-08-27 1971-12-28 Gen Electric Face-pumped, face-cooled laser device
US3633126A (en) 1969-04-17 1972-01-04 Gen Electric Multiple internal reflection face-pumped laser
US3766490A (en) * 1972-03-14 1973-10-16 Us Army Lu:nd:yag laser system and material
AU1363076A (en) * 1976-05-04 1977-11-10 Ward H Laser amplification
US4769823A (en) 1985-12-31 1988-09-06 General Electric Company Laser system with trivalent chromium doped aluminum tungstate fluorescent converter
US4734917A (en) * 1985-12-31 1988-03-29 General Electric Company Fluorescent converter pumped cavity for laser system
US4794616A (en) * 1985-12-31 1988-12-27 General Electric Company Laser system with solid state fluorescent converter matrix having distributed fluorescent converter particles
US4838243A (en) 1987-04-17 1989-06-13 Stephen Kuber Chimney cleanout tee cap lock
US4858243A (en) * 1987-06-12 1989-08-15 Raycon Corporation Laser pumping cavity
JP2586110B2 (ja) * 1988-06-30 1997-02-26 三菱電機株式会社 固体レーザ装置
IL87370A (en) 1988-08-08 1992-03-29 Electro Optics Ind Ltd Laser pumping cavity
JPH03190293A (ja) 1989-12-20 1991-08-20 Hoya Corp スラブ型レーザ媒体
JPH04137573A (ja) 1990-09-27 1992-05-12 Hoya Corp コンポジットスラブレーザ媒体及びレーザ装置
US5659567A (en) * 1992-02-19 1997-08-19 Roberts; Rosemary Szewjkowski Microwave-driven UV light source and solid-state laser
JPH05254879A (ja) * 1992-03-06 1993-10-05 Seiko Epson Corp 蛍光ガラス及びそれを用いたレーザー装置
JPH06125125A (ja) * 1992-05-12 1994-05-06 Mitsubishi Electric Corp 固体レーザ装置
DE4220158A1 (de) 1992-06-19 1993-12-23 Battelle Institut E V Verfahren zur selektiven Abscheidung von Aluminiumstrukturen aus der Gasphase
US5299220A (en) 1992-09-08 1994-03-29 Brown David C Slab laser
US5305345A (en) 1992-09-25 1994-04-19 The United States Of America As Represented By The United States Department Of Energy Zigzag laser with reduced optical distortion
US5581573A (en) * 1993-04-15 1996-12-03 Fuji Electric Co., Ltd. Solid-state laser device with diffused-light excitation, and integrating sphere
JPH06350171A (ja) * 1993-04-15 1994-12-22 Fuji Electric Co Ltd 固体レーザ装置および積分球
CA2160998C (en) 1993-04-21 2006-01-24 James Richards Diode pumped slab laser
US5394427A (en) 1994-04-29 1995-02-28 Cutting Edge Optronics, Inc. Housing for a slab laser pumped by a close-coupled light source
US5553092A (en) * 1994-05-17 1996-09-03 Alliedsignal Inc. Solid state laser with integral optical diffuser plate to homogenize optical pumping
US5479430A (en) 1995-02-07 1995-12-26 The Board Of Trustees Of The Leland Stanford Junior University Protective coating for solid state slab lasers
JPH0927646A (ja) * 1995-07-12 1997-01-28 Hitachi Ltd スラブレーザ
DE19541020A1 (de) 1995-11-03 1997-05-07 Daimler Benz Ag Laserverstärkersystem
JPH09199781A (ja) * 1996-01-16 1997-07-31 Nec Corp レーザ増幅器
US5832016A (en) 1997-01-29 1998-11-03 Northrop Grumman Corporation Slab laser assembly
RU8168U1 (ru) 1997-11-28 1998-10-16 Валерий Геннадиевич Полушкин Активный лазерный элемент с волноводным режимом работы
US6014391A (en) 1997-12-19 2000-01-11 Raytheon Company Thermally improved slab laser pump cavity apparatus with integral concentrator and method of making same
JPH11220191A (ja) * 1998-01-29 1999-08-10 Miyachi Technos Corp 固体レーザ装置
US6134258A (en) * 1998-03-25 2000-10-17 The Board Of Trustees Of The Leland Stanford Junior University Transverse-pumped sLAB laser/amplifier
US6347101B1 (en) 1998-04-16 2002-02-12 3D Systems, Inc. Laser with absorption optimized pumping of a gain medium
JP3154689B2 (ja) * 1998-05-26 2001-04-09 三菱重工業株式会社 半導体レーザ励起スラブ固体レーザ装置
US6268956B1 (en) 1998-07-07 2001-07-31 Trw Inc. End pumped zig-zag slab laser gain medium
US6219361B1 (en) 1999-06-21 2001-04-17 Litton Systems, Inc. Side pumped, Q-switched microlaser
US6356575B1 (en) 1999-07-06 2002-03-12 Raytheon Company Dual cavity multifunction laser system
US6373866B1 (en) 2000-01-26 2002-04-16 Lumenis Inc. Solid-state laser with composite prismatic gain-region
US6738399B1 (en) 2001-05-17 2004-05-18 The United States Of America As Represented By The United States Department Of Energy Microchannel cooled edge cladding to establish an adiabatic boundary condition in a slab laser
US7065121B2 (en) 2001-07-24 2006-06-20 Gsi Group Ltd. Waveguide architecture, waveguide devices for laser processing and beam control, and laser processing applications
US20030138021A1 (en) 2001-10-25 2003-07-24 Norman Hodgson Diode-pumped solid-state thin slab laser
AU2003235235B2 (en) * 2002-04-26 2007-10-25 Sumitomo Electric Industries, Ltd. Process for producing oxide superconductive thin-film
US7065109B2 (en) * 2002-05-08 2006-06-20 Melles Griot Inc. Laser with narrow bandwidth antireflection filter for frequency selection
TWI270918B (en) * 2003-05-27 2007-01-11 Ip2H Ag Light source and method for supplying a transport function to a chemical element in a light source
US7257302B2 (en) * 2003-06-03 2007-08-14 Imra America, Inc. In-line, high energy fiber chirped pulse amplification system
JP4754795B2 (ja) * 2003-09-19 2011-08-24 株式会社半導体エネルギー研究所 表示装置及び表示装置の作製方法
US7520790B2 (en) * 2003-09-19 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of display device
US7388895B2 (en) 2003-11-21 2008-06-17 Tsinghua University Corner-pumping method and gain module for high power slab laser
US7376160B2 (en) 2003-11-24 2008-05-20 Raytheon Company Slab laser and method with improved and directionally homogenized beam quality
JP3899411B2 (ja) 2004-02-19 2007-03-28 独立行政法人情報通信研究機構 3つの反射面による多重反射で構成される光路を用いたスラブ型固体レーザ媒体、またはスラブ型非線形光学媒体
JP2005294625A (ja) * 2004-04-01 2005-10-20 Sony Corp 成膜装置
US7123634B2 (en) 2004-05-07 2006-10-17 Northrop Grumman Corporation Zig-zag laser amplifier with polarization controlled reflectors
US7039087B2 (en) 2004-05-13 2006-05-02 The United States Of America As Represented By The Department Of The Army End pumped slab laser cavity
US7879410B2 (en) * 2004-06-09 2011-02-01 Imra America, Inc. Method of fabricating an electrochemical device using ultrafast pulsed laser deposition
GB0418333D0 (en) 2004-08-17 2004-09-22 Cambridge Display Tech Ltd Enhanced emission of light from organic light emitting diodes
US7280571B2 (en) 2004-11-23 2007-10-09 Northrop Grumman Corporation Scalable zig-zag laser amplifier
US7590160B2 (en) 2004-11-26 2009-09-15 Manni Jeffrey G High-gain diode-pumped laser amplifier
US7505499B2 (en) 2004-12-15 2009-03-17 Panasonic Corporation Slab laser amplifier with parasitic oscillation suppression
US8599898B2 (en) 2004-12-22 2013-12-03 Universal Laser Systems, Inc. Slab laser with composite resonator and method of producing high-energy laser radiation
FI20050216A0 (fi) * 2005-02-23 2005-02-23 Ruuttu Jari Menetelmä valmistaa timanttia, muita jalokiviä, kuten safiiria, rubiinia jne. ja suorittaa näillä pinnoituksia sekä suorittaa pinnoituksia muilla aineilla, kuten boriideillä, oksideillä, nitrideillä jne.
US7542489B2 (en) 2005-03-25 2009-06-02 Pavilion Integration Corporation Injection seeding employing continuous wavelength sweeping for master-slave resonance
JP2006307251A (ja) * 2005-04-27 2006-11-09 Kobe Univ ダイヤモンドライクカーボン薄膜の作製方法
US7386019B2 (en) * 2005-05-23 2008-06-10 Time-Bandwidth Products Ag Light pulse generating apparatus and method
JP4883503B2 (ja) 2005-06-21 2012-02-22 独立行政法人情報通信研究機構 多重光路の固体スラブレーザロッドまたは非線形光学結晶を用いたレーザ装置
US7391558B2 (en) 2005-10-19 2008-06-24 Raytheon Company Laser amplifier power extraction enhancement system and method
US7860142B2 (en) * 2006-02-07 2010-12-28 Raytheon Company Laser with spectral converter
KR20070117738A (ko) * 2006-06-09 2007-12-13 삼성전자주식회사 표시기판의 리페어 방법 및 이에 의해 리페어된 표시기판
US7929579B2 (en) 2006-08-02 2011-04-19 Cynosure, Inc. Picosecond laser apparatus and methods for its operation and use
US20080089369A1 (en) 2006-10-16 2008-04-17 Pavilion Integration Corporation Injection seeding employing continuous wavelength sweeping for master-slave resonance
US20080116183A1 (en) * 2006-11-21 2008-05-22 Palo Alto Research Center Incorporated Light Scanning Mechanism For Scan Displacement Invariant Laser Ablation Apparatus
RU2346380C1 (ru) * 2007-07-17 2009-02-10 Общество с ограниченной ответственностью "Мармирус" Емкостной генератор тока
EP2065485B1 (en) * 2007-11-21 2011-05-18 OTB Solar B.V. Method and system for continuous or semi-continuous laser deposition.
US7633979B2 (en) 2008-02-12 2009-12-15 Pavilion Integration Corporation Method and apparatus for producing UV laser from all-solid-state system
JP5305758B2 (ja) 2008-06-30 2013-10-02 株式会社東芝 半導体発光装置
US7822091B2 (en) 2008-07-14 2010-10-26 Lockheed Martin Corporation Inverted composite slab sandwich laser gain medium
JP4910010B2 (ja) 2009-03-24 2012-04-04 株式会社東芝 半導体発光装置
TWM370095U (en) 2009-06-30 2009-12-01 Acpa Energy Conversion Devices Co Ltd Wave length modulating apparatus for light source
EP2621736A4 (en) * 2010-10-01 2016-03-02 Intelligent Material Solutions Inc MORPHOLOGICAL AND SIZE-UNIFORM MONODISPERSION PARTICLES AND THEIR FORMED SELF-ASSEMBLY
US8908737B2 (en) 2011-04-04 2014-12-09 Coherent, Inc. Transition-metal-doped thin-disk laser
US8774236B2 (en) 2011-08-17 2014-07-08 Veralas, Inc. Ultraviolet fiber laser system

Also Published As

Publication number Publication date
CA2879746A1 (en) 2014-02-06
JP6743087B2 (ja) 2020-08-19
US9525262B2 (en) 2016-12-20
JP6415435B2 (ja) 2018-10-31
EP3185373B1 (en) 2021-04-07
IN2015DN00970A (ru) 2015-06-12
CN104604049A (zh) 2015-05-06
US20160043524A1 (en) 2016-02-11
US20130301662A1 (en) 2013-11-14
JP2018164090A (ja) 2018-10-18
WO2014022635A1 (en) 2014-02-06
EP2880722B1 (en) 2019-10-09
US9287112B2 (en) 2016-03-15
EP2880722A1 (en) 2015-06-10
RU2650807C2 (ru) 2018-04-17
BR112015002090A2 (pt) 2017-07-04
US10777960B2 (en) 2020-09-15
EP2880722A4 (en) 2016-04-27
RU2650807C9 (ru) 2018-09-06
US9246299B2 (en) 2016-01-26
US20160211637A1 (en) 2016-07-21
EP3185373A1 (en) 2017-06-28
CN104604049B (zh) 2019-08-13
JP2015528217A (ja) 2015-09-24
US20150311064A1 (en) 2015-10-29
BR112015002090B1 (pt) 2021-05-25
US20170070022A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
RU2015102528A (ru) Слэб-лазер и усилитель и способ использования
JP2015528217A5 (ru)
US9065241B2 (en) Methods, systems, and apparatus for high energy optical-pulse amplification at high average power
Wandt et al. Development of a Joule‐class Yb: YAG amplifier and its implementation in a CPA system generating 1 TW pulses
CN201868728U (zh) 碱金属蒸汽激光器
US9209588B2 (en) Disk laser
US20130121364A1 (en) Laser cavity with central extraction by polarisation for coherent coupling of intense intra-cavity beams
KR20160033593A (ko) 레이저 발진장치
CN102064464A (zh) 高功率半导体激光器防止反射光损伤装置
CN210957265U (zh) 一种端泵多程板条激光放大器
He et al. 30 W output of short pulse duration nanosecond green laser generated by a hybrid fiber-bulk MOPA system
CN102882117A (zh) 一种全固态皮秒激光多通放大器
Kausas et al. Room Temperature 2J Laser Amplifier with Direct Bonded DFC Chip
JP6210732B2 (ja) レーザ増幅器及びレーザ発振器
US10919794B2 (en) Method of cutting glass using a laser
CN108346967A (zh) 一种集成碟片式高功率固体激光放大器
Apollonov High power disk laser
CN215267057U (zh) 一种新型固体激光放大器
RO131895A0 (ro) Sistem laser defensiv
Perevezentsev et al. New optical scheme for a multi-pass disk laser amplifier
Kuznetsov et al. High average and peak power laser based on Yb: YAG amplifiers of advanced geometries for OPCPA pumping
JP2010186793A (ja) 固体レーザーモジュール
US20050195880A1 (en) Method for amplifying a solid laser
Smillie Passive Q-switching of 1 micron Nd: YAG lasers for military target designator applications
CN118040444A (zh) 一种固体激光器光斑补偿装置及其方法

Legal Events

Date Code Title Description
TH4A Reissue of patent specification