RU2014130444A - Способ и устройство для измерения центричности токопроводящей жилы в изоляционной оболочке - Google Patents

Способ и устройство для измерения центричности токопроводящей жилы в изоляционной оболочке Download PDF

Info

Publication number
RU2014130444A
RU2014130444A RU2014130444A RU2014130444A RU2014130444A RU 2014130444 A RU2014130444 A RU 2014130444A RU 2014130444 A RU2014130444 A RU 2014130444A RU 2014130444 A RU2014130444 A RU 2014130444A RU 2014130444 A RU2014130444 A RU 2014130444A
Authority
RU
Russia
Prior art keywords
plane
cable
measurement
optical
inductive
Prior art date
Application number
RU2014130444A
Other languages
English (en)
Other versions
RU2593425C2 (ru
Inventor
Харальд СИКОРА
Клаус БРЕМЕР
Original Assignee
Сикора Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сикора Аг filed Critical Сикора Аг
Publication of RU2014130444A publication Critical patent/RU2014130444A/ru
Application granted granted Critical
Publication of RU2593425C2 publication Critical patent/RU2593425C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B7/31Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B7/312Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes for measuring eccentricity, i.e. lateral shift between two parallel axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

1. Способ измерения центричности токопроводящей жилы в изоляционной оболочке, в котором кабель (28), образованный токопроводящей жилой с ее изоляционной оболочкой, перемещают в направлении (14) подачи, содержащий следующие этапы:- в плоскости индуктивного измерения положение токопроводящей жилы определяют посредством индуктивного измерительного устройства,- в первой плоскости оптического измерения, лежащей в направлении (14) подачи кабеля (28) перед плоскостью индуктивного измерения, положение кабеля (28) определяют с помощью по меньшей мере одного первого оптического измерительного устройства (16),- во второй плоскости оптического измерения, лежащей в направлении (14) подачи кабеля (28) за плоскостью индуктивного измерения, положение кабеля (28) определяют с помощью по меньшей мере одного второго оптического измерительного устройства (18),- указанные положения кабеля (28), определенные в указанных первой и второй плоскостях оптического измерения, соотносят друг с другом так, что получают положение кабеля (28) в плоскости индуктивного измерения, и- определяют центричность токопроводящей жилы в изоляционной оболочке из указанного полученного положения кабеля (28) в плоскости индуктивного измерения и из положения токопроводящей жилы, определенного в плоскости индуктивного измерения,- причем в первой плоскости оптического измерения и/или во второй плоскости оптического измерения проводят оптическое измерение с таким пространственным разрешением, что идентифицируют наклонное положение и/или изгиб кабеля (28) относительно направления (14) подачи, в частности, в первой плоскости оптического измерения и/или во второй плоскости оптического измерения, при этом та

Claims (17)

1. Способ измерения центричности токопроводящей жилы в изоляционной оболочке, в котором кабель (28), образованный токопроводящей жилой с ее изоляционной оболочкой, перемещают в направлении (14) подачи, содержащий следующие этапы:
- в плоскости индуктивного измерения положение токопроводящей жилы определяют посредством индуктивного измерительного устройства,
- в первой плоскости оптического измерения, лежащей в направлении (14) подачи кабеля (28) перед плоскостью индуктивного измерения, положение кабеля (28) определяют с помощью по меньшей мере одного первого оптического измерительного устройства (16),
- во второй плоскости оптического измерения, лежащей в направлении (14) подачи кабеля (28) за плоскостью индуктивного измерения, положение кабеля (28) определяют с помощью по меньшей мере одного второго оптического измерительного устройства (18),
- указанные положения кабеля (28), определенные в указанных первой и второй плоскостях оптического измерения, соотносят друг с другом так, что получают положение кабеля (28) в плоскости индуктивного измерения, и
- определяют центричность токопроводящей жилы в изоляционной оболочке из указанного полученного положения кабеля (28) в плоскости индуктивного измерения и из положения токопроводящей жилы, определенного в плоскости индуктивного измерения,
- причем в первой плоскости оптического измерения и/или во второй плоскости оптического измерения проводят оптическое измерение с таким пространственным разрешением, что идентифицируют наклонное положение и/или изгиб кабеля (28) относительно направления (14) подачи, в частности, в первой плоскости оптического измерения и/или во второй плоскости оптического измерения, при этом такое наклонное положение и/или изгиб учитывают при определении центричности токопроводящей жилы в изоляционной оболочке.
2. Способ по п. 1, отличающийся тем, что проводят оптическое измерение с таким пространственным разрешением в первой плоскости оптического измерения и во второй плоскости оптического измерения соответственно, что идентифицируют наклонное положение и/или изгиб кабеля относительно направления подачи, в частности, в указанной первой плоскости оптического измерения и в указанной второй плоскости измерения.
3. Способ по п. 1 или 2, отличающийся тем, что, исходя из идентифицированного, в частности, в первой плоскости оптического измерения и/или во второй плоскости оптического измерения наклонного положения и/или изгиба кабеля (28) относительно направления (14) подачи получают скорректированное положение кабеля (28) в плоскости индуктивного измерения, исходя из которого определяют центричность токопроводящей жилы в изоляционной оболочке.
4. Способ по любому из пп. 1 или 2, отличающийся тем, что из оптического измерения, выполненного в первой плоскости оптического измерения и/или во второй плоскости оптического измерения, определяют радиус изгиба или диаметр изгиба кабеля (28) и, исходя из которого, получают скорректированное положение кабеля (28) в плоскости индуктивного измерения.
5. Способ по п. 4, отличающийся тем, что определяют радиус изгиба или диаметр изгиба кабеля (28), при этом строят окружность, для которой идентифицированные в первой плоскости оптического измерения и/или во второй плоскости оптического измерения изгибы кабеля (28) образуют круговые сегменты, причем радиус или диаметр указанной окружности выбирают в качестве радиуса изгиба или диаметра изгиба.
6. Способ по п. 5, отличающийся тем, что в качестве центра окружности для идентифицированных изгибов кабеля (28) в первой плоскости оптического измерения и/или во второй плоскости оптического измерения выбирают точку пересечения двух радиальных прямых.
7. Способ по любому из пп. 1 или 2, отличающийся тем, что определяют радиус изгиба или диаметр изгиба для наклонного положения кабеля (28), идентифицированные в первой плоскости оптического измерения и/или во второй плоскости оптического измерения, при этом строят соответственно одну перпендикулярную прямую к определенным наклонным положениям кабеля (28) и точку пересечения указанных перпендикулярных прямых выбирают центром окружности, для которой идентифицированные наклонные положения кабеля (28) образуют касательные или хорды, причем радиус или диаметр указанной окружности выбирают в качестве радиуса изгиба или диаметра изгиба.
8. Способ по любому из пп. 1 или 2, отличающийся тем, что указанную индуктивную плоскость измерения, и/или указанную первую оптическую плоскость измерения, и/или указанную вторую оптическую плоскость измерения выбирают перпендикулярно к направлению (14) подачи кабеля (28).
9. Способ по любому из пп. 1 или 2, отличающийся тем, что кабель (28) поддерживают вдоль его направления (14) подачи несколькими опорными элементами, предпочтительно несколькими опорными роликами, причем указанные опорные элементы, расположенные непосредственно перед и расположенные непосредственно за плоскостью индуктивного измерения, располагают зеркально симметрично относительно плоскости индуктивного измерения.
10. Способ по любому из пп. 1 или 2, отличающийся тем, что указанное по меньшей мере одно первое оптическое измерительное устройство (16) и/или указанное по меньшей мере одно второе оптическое измерительное устройство (18) содержит по меньшей мере один оптический источник излучения и по меньшей мере один оптический датчик с двумерным пространственным разрешением.
11. Способ по любому из пп. 1 или 2, отличающийся тем, что указанное индуктивное измерительное устройство содержит по меньшей мере две индуктивные измерительные катушки (10, 12), которые расположены парами относительно друг друга в плоскости индуктивного измерения.
12. Устройство для измерения центричности токопроводящей жилы в изоляционной оболочке, в котором кабель (28), образованный токопроводящей жилой с ее изоляционной оболочкой, выполнен с возможностью перемещения в направлении (14) подачи, содержащее:
- индуктивное измерительное устройство, расположенное в плоскости индуктивного измерения, для определения положения токопроводящей жилы в плоскости индуктивного измерения,
- по меньшей мере одно первое оптическое измерительное устройство (16), расположенное в первой плоскости оптического измерения, лежащей в направлении подачи (14) кабеля перед плоскостью индуктивного измерения, для определения положения кабеля (28) в первой плоскости оптического измерения,
- по меньшей мере одно второе оптическое измерительное устройство (18), расположенное во второй плоскости оптического измерения, лежащей в направлении подачи (14) кабеля (28) за плоскостью индуктивного измерения, для определения положения кабеля (28) во второй плоскости оптического измерения,
- вычислительное устройство (20), выполненное с возможностью соотнесения положений кабеля (28), определенных в первой и второй плоскостях оптического измерения, таким образом, чтобы получить положение кабеля (28) в плоскости индуктивного измерения, и исходя из указанного полученного положения кабеля (28) и положения токопроводящей жилы, определенного в плоскости индуктивного измерения, определить центричность токопроводящей жилы в изоляционной оболочке,
- причем указанное по меньшей мере одно первое оптическое измерительное устройство (16) и/или указанное по меньшей мере одно второе оптическое измерительное устройство (18) выполнены с возможностью выполнения оптического измерения с таким пространственным разрешением в первой плоскости оптического измерения и/или во второй оптической плоскости, что обеспечена возможность идентификации наклонного положения и/или изгиба кабеля (28) относительно направления (14) подачи, в частности, в первой плоскости оптического измерения и/или во второй плоскости оптического измерения, и при этом вычислительное устройство (20) дополнительно выполнено с возможностью учитывать такое наклонное положение и/или изгиб при определении центричности токопроводящей жилы в изоляционной оболочке.
13. Устройство по п. 12, отличающееся тем, что вычислительное устройство (20) дополнительно выполнено с возможностью реализации способа по любому из пп. 1-7.
14. Устройство по любому из пп. 12 или 13, отличающееся тем, что указанная плоскость индуктивного измерения, и/или указанная первая плоскость оптического измерения, и/или указанная вторая плоскость оптического измерения выбраны лежащими перпендикулярно к направлению (14) подачи кабеля (28).
15. Устройство по любому из пп. 12 или 13, отличающееся тем, что дополнительно предусмотрено несколько опорных элементов, предпочтительно несколько опорных роликов, поддерживающих кабель (28) вдоль направления (14) его подачи, причем опорные элементы, расположенные непосредственно перед и расположенные непосредственно за плоскостью индуктивного измерения, размещены зеркально симметрично относительно плоскости индуктивного измерения.
16. Устройство по любому из пп. 12 или 13, отличающееся тем, что указанное по меньшей мере одно первое оптическое измерительное устройство (16) и/или указанное по меньшей мере одно второе измерительное устройство (18) содержит по меньшей мере один оптический источник излучения и по меньшей мере один оптический датчик с двумерным пространственным разрешением.
17. Устройство по любому из пп. 12 или 13, отличающееся тем, что указанное индуктивное измерительное устройство содержит по меньшей мере две индуктивные измерительные катушки (10, 12), которые расположены парами относительно друг друга в плоскости индуктивного измерения.
RU2014130444/28A 2013-07-29 2014-07-24 Способ и устройство для измерения центричности токопроводящей жилы в изоляционной оболочке RU2593425C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013012443.3A DE102013012443A1 (de) 2013-07-29 2013-07-29 Verfahren und Vorrichtung zur Messung der Zentrizität eines Leiters in einer Isolierumhüllung
DE102013012443.3 2013-07-29

Publications (2)

Publication Number Publication Date
RU2014130444A true RU2014130444A (ru) 2016-02-20
RU2593425C2 RU2593425C2 (ru) 2016-08-10

Family

ID=51210361

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014130444/28A RU2593425C2 (ru) 2013-07-29 2014-07-24 Способ и устройство для измерения центричности токопроводящей жилы в изоляционной оболочке

Country Status (9)

Country Link
US (1) US9291451B2 (ru)
EP (1) EP2833093B1 (ru)
JP (1) JP5981967B2 (ru)
KR (1) KR101662679B1 (ru)
CN (1) CN104344794B (ru)
DE (1) DE102013012443A1 (ru)
ES (1) ES2578053T3 (ru)
PL (1) PL2833093T3 (ru)
RU (1) RU2593425C2 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091919B (zh) * 2016-06-08 2019-08-13 爱德森(厦门)电子有限公司 一种金属导线材偏心度快速检测装置及方法
CN111992601B (zh) * 2020-08-21 2022-03-01 中交三航(南通)海洋工程有限公司 一种测量大直径钢管桩卷制过程中轴线偏心度的方法
CN113074616B (zh) * 2021-03-25 2023-10-20 中国电子科技集团公司第十六研究所 一种同轴超导磁体的同心度测试装置及其测试方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2517709C3 (de) 1975-04-22 1979-07-12 Harald 2800 Bremen Sikora Vorrichtung zur Messung und Regelung der Wanddicke von isolierten Strängen
DE3942214A1 (de) * 1989-12-21 1991-06-27 Sikora Industrieelektronik Vorrichtung zur messung der exzentrizitaet einer einen leiter umgebenden ummantelung aus kunststoffmaterial
GB9303978D0 (en) * 1993-02-26 1993-04-14 Beta Instr Co An eccentricity gauge
DE19757067C2 (de) * 1997-12-20 2002-03-07 Sikora Industrieelektronik Verfahren zur Messung des Durchmessers eines Stranges
US5986748A (en) * 1998-08-21 1999-11-16 Seh America Inc Dual beam alignment device and method
DE10025461A1 (de) * 2000-05-23 2001-12-06 Mahr Gmbh Messeinrichtung nach dem Interferenzprinzip
JP3420563B2 (ja) * 2000-10-05 2003-06-23 タキカワエンジニアリング株式会社 被覆電線用偏心度測定装置
US7068359B2 (en) 2002-04-08 2006-06-27 Zumbach Electronic Ag Contactless system for measuring centricity and diameter
DE10307356A1 (de) * 2003-02-21 2004-09-16 Sikora Ag Verfahren und Vorrichtung zur Bestimmung der Dicke der Isolation eines Flachkabels in Bereichen der metallischen Leiterbahnen
RU2300737C1 (ru) * 2005-11-15 2007-06-10 Общество с ограниченной ответственностью "Научно-исследовательский институт ЭРМИС" Индуктивно-оптический преобразователь измерителя эксцентричности электрического кабеля
US7461463B1 (en) * 2007-05-16 2008-12-09 Beta Lasermike, Inc. Eccentricity gauge for wire and cable and method for measuring concentricity
DE102007037963A1 (de) * 2007-08-11 2009-02-12 Sikora Aktiengesellschaft Verfahren zur Visualisierung der Exzentrizität von Kabeln bei der Exzentrizitätsmessung der Kabel
JP4907632B2 (ja) * 2008-10-27 2012-04-04 三菱電機株式会社 被覆金属線の被覆厚測定装置
JP2011053140A (ja) * 2009-09-03 2011-03-17 Canon Inc 被覆軸体の偏心測定方法および偏心測定装置

Also Published As

Publication number Publication date
RU2593425C2 (ru) 2016-08-10
KR101662679B1 (ko) 2016-10-05
US9291451B2 (en) 2016-03-22
KR20150014393A (ko) 2015-02-06
JP2015025806A (ja) 2015-02-05
EP2833093A1 (de) 2015-02-04
US20150029493A1 (en) 2015-01-29
ES2578053T3 (es) 2016-07-20
JP5981967B2 (ja) 2016-08-31
EP2833093B1 (de) 2016-03-23
PL2833093T3 (pl) 2017-01-31
DE102013012443A1 (de) 2015-01-29
CN104344794B (zh) 2018-09-21
CN104344794A (zh) 2015-02-11

Similar Documents

Publication Publication Date Title
RU2014130444A (ru) Способ и устройство для измерения центричности токопроводящей жилы в изоляционной оболочке
WO2013118918A1 (ja) 内径測定装置及び内径測定方法
MY178954A (en) System and method for determining location and skew of crane grappling member
RU2017100254A (ru) Сенсорное устройство, устройство измерения и способ измерений
JP2018109601A5 (ru)
RU2013138568A (ru) Устройство для измерения деформаций и способ измерения деформаций
CN202393362U (zh) 一种长轴直线度检测系统
CN101713634A (zh) 用于电线和电缆的偏心度计以及用于测量同心度的方法
CN105717432B (zh) 局部放电定位装置及方法
CN104596430A (zh) 测径仪
CN102749186A (zh) 一种自动测量激光器焦距的方法
US9389140B1 (en) Systems and methods for testing optical fiber
JP2012145441A (ja) ワーク寸法測定装置
CN103234457A (zh) 基于数字成像的多光束位移测量方法
RU2661551C1 (ru) Способ определения трассы прокладки и локализации места повреждения кабеля
RU2722167C1 (ru) Способ бесконтактного измерения смещения токоведущего проводника от геометрического центра кабельной жилы
JP2017024038A (ja) マンドレルミルのチョック部のライナー寸法精度測定方法
CN104880651A (zh) 一种变压器内部局部放电测定装置及其定位方法
CN103994721A (zh) 一种影像测量仪
JP2013242184A (ja) 丸棒材又は円筒材の曲がり量測定装置
CN204719179U (zh) 一种变压器内部局部放电测定装置
US20150198734A1 (en) Apparatus and method for detecting location of buried pipe
JP2014048133A (ja) 配管寸法測定装置
Fedorov et al. Diameter calculation in contactless three-axis measuring devices
CN105301661A (zh) 一种水上电法勘探的随机测量方法