RU2003123596A - Способ и устройство для определения формы трещин в горных породах - Google Patents

Способ и устройство для определения формы трещин в горных породах Download PDF

Info

Publication number
RU2003123596A
RU2003123596A RU2003123596/03A RU2003123596A RU2003123596A RU 2003123596 A RU2003123596 A RU 2003123596A RU 2003123596/03 A RU2003123596/03 A RU 2003123596/03A RU 2003123596 A RU2003123596 A RU 2003123596A RU 2003123596 A RU2003123596 A RU 2003123596A
Authority
RU
Russia
Prior art keywords
cracks
electric
measurement
well
rock
Prior art date
Application number
RU2003123596/03A
Other languages
English (en)
Other versions
RU2324813C2 (ru
Inventor
Владимир Мордухович Ентов (RU)
Владимир Мордухович Ентов
Юрий Николаевич Гордеев (RU)
Юрий Николаевич Гордеев
Евгений Михайлович Чехонин (RU)
Евгений Михайлович Чехонин
Марк ТЬЕРСЕЛЭН (FR)
Марк ТЬЕРСЕЛЭН
Original Assignee
Институт Проблем Механики Российской Академии Наук (Ru)
Институт проблем механики Российской Академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Проблем Механики Российской Академии Наук (Ru), Институт проблем механики Российской Академии наук filed Critical Институт Проблем Механики Российской Академии Наук (Ru)
Priority to RU2003123596/03A priority Critical patent/RU2324813C2/ru
Priority to US10/872,116 priority patent/US20050017723A1/en
Priority to GB0413873A priority patent/GB2404253B/en
Publication of RU2003123596A publication Critical patent/RU2003123596A/ru
Priority to US11/763,584 priority patent/US7819181B2/en
Application granted granted Critical
Publication of RU2324813C2 publication Critical patent/RU2324813C2/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/008Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Claims (11)

1. Способ определения формы трещин гидроразрыва в горной породе, заключающийся в том, что обеспечивают по меньшей мере одну скважину, нагнетают в по меньшей мере одну из обеспеченных скважин заранее заданную жидкость под давлением, позволяющим упомянутой жидкости создавать трещины вблизи скважины и проникать в них и далее через поверхности трещин в породу, внутри скважины измеряют электрическое или магнитное поле, индуцированные проникновением упомянутой жидкости в трещины и далее через поверхности трещин в породу, и определяют форму трещин, используя значение одного или обоих измеренных полей в функциональной зависимости от времени измерения или места измерения, или от времени и места измерения.
2. Способ по п.1, в котором обеспечивают по меньшей мере две скважины, причем электрическое или магнитное поле, индуцированные проникновением жидкости в трещины вблизи одной из скважин и далее через поверхности трещин в породу, измеряют внутри другой из обеспеченных скважин.
3. Способ по п.1, в котором дополнительно обеспечивают прямую модель распределения электрического или магнитного поля для заранее заданных формы трещины и давления нагнетания путем расчета этого распределения в функциональной зависимости от времени измерения или от места измерения, или от времени и места измерения, измеряют внутри скважины электрическое или магнитное поле для тех же значений места и времени измерения, которые использованы в прямой модели распределения электрических или магнитных полей, чтобы получить наблюдаемое распределение
электрического или магнитного поля, и определяют форму трещин в породах путем минимизации расхождения между наблюдаемым и обеспеченным прямой моделью распределениями электрического или магнитного полей.
4. Способ определения формы трещин гидроразрыва в горной породе, заключающийся в том, что обеспечивают по меньшей мере одну скважину, нагнетают в по меньшей мере одну из обеспеченных скважин заранее заданную жидкость под давлением, позволяющим упомянутой жидкости создавать трещины вблизи скважины и проникать в них и далее через поверхности трещин в породу, понижают давление до величины, позволяющей упомянутой жидкости проникать обратно из породы в трещины через поверхности трещин, внутри скважины измеряют электрическое или магнитное поле, индуцированные обратным проникновением жидкости из породы в трещины, и определяют форму трещин, используя значение одного или обоих измеренных полей в функциональной зависимости от времени измерения или места измерения, или от времени и места измерения.
5. Способ по п.4, в котором обеспечивают по меньшей мере две скважины, причем электрическое или магнитное поле, индуцированные обратным проникновением жидкости из породы в трещины через поверхности трещин вблизи одной из скважин, измеряют внутри другой из обеспеченных скважин.
6. Способ по п.4, в котором обеспечивают прямую модель распределения электрического или магнитного поля для заранее заданных формы трещины и величины пониженного давления путем расчета этого распределения в функциональной зависимости от
времени измерения или места измерения, или от времени и места измерения, измеряют внутри скважины электрическое или магнитное поле для тех же значений места и времени измерения, которые использованы в прямой модели распределения электрических или магнитных полей, чтобы получить наблюдаемое распределение электрического или магнитного поля, и оценивают формы трещин в породах путем минимизации расхождения между наблюдаемым и обеспеченным прямой моделью распределениями электрического или магнитного полей.
7. Устройство для определения формы трещин гидроразрыва в горной породе, включающее в себя средство для нагнетания в по меньшей мере одну скважину заранее определенной жидкости под давлением, позволяющим упомянутой жидкости создавать трещины вблизи скважины и проникать в них, по меньшей мере одно скважинное средство для измерения электрических и магнитных полей, индуцированных проникновением жидкости в трещины и перемещением жидкости через поверхности трещин в горную породу и обратно, и средство для определения формы трещин с использованием значения одного или обоих измеренных полей в функциональной зависимости от времени измерения или от положения точки измерения, или от времени и положения точки измерения.
8. Устройство по п.7, в котором по меньшей мере одно из средств для измерения внутри скважины электрического или магнитного поля выполнено с возможностью перемещения в скважине.
9. Устройство по п.7, в котором средство для нагнетания заранее заданной жидкости представляет собой насос, расположенный на поверхности.
10. Устройство по п.7, в котором средство для нагнетания заранее заданной жидкости выполнено с возможностью изменения давления и поддержания его на различных уровнях при прекращении нагнетания жидкости.
11. Устройство по п.7, дополнительно включающее в себя по меньшей мере один блок памяти для хранения значений электрических или магнитных полей для заранее заданной формы трещины и давления в зависимости от времени измерения и положения точки измерения, средство для определения местоположения скважинного устройства относительно скважины, по меньшей мере один процессор для отбора измерений электрического или магнитного поля, измеренных скважинным средством для времен и мест измерения, для которых эти значения хранятся в блоке памяти, и для минимизации расхождения между хранимыми и измеренными значениями, и средство вывода данных об определенной таким образом форме трещин в горной породе.
RU2003123596/03A 2003-07-25 2003-07-25 Способ и устройство для определения формы трещин в горных породах RU2324813C2 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2003123596/03A RU2324813C2 (ru) 2003-07-25 2003-07-25 Способ и устройство для определения формы трещин в горных породах
US10/872,116 US20050017723A1 (en) 2003-07-25 2004-06-18 Evaluation of fracture geometries in rock formations
GB0413873A GB2404253B (en) 2003-07-25 2004-06-21 Evaluation of fracture geometries in rock formations
US11/763,584 US7819181B2 (en) 2003-07-25 2007-06-15 Method and an apparatus for evaluating a geometry of a hydraulic fracture in a rock formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003123596/03A RU2324813C2 (ru) 2003-07-25 2003-07-25 Способ и устройство для определения формы трещин в горных породах

Publications (2)

Publication Number Publication Date
RU2003123596A true RU2003123596A (ru) 2005-02-10
RU2324813C2 RU2324813C2 (ru) 2008-05-20

Family

ID=32768747

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003123596/03A RU2324813C2 (ru) 2003-07-25 2003-07-25 Способ и устройство для определения формы трещин в горных породах

Country Status (3)

Country Link
US (2) US20050017723A1 (ru)
GB (1) GB2404253B (ru)
RU (1) RU2324813C2 (ru)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030205376A1 (en) 2002-04-19 2003-11-06 Schlumberger Technology Corporation Means and Method for Assessing the Geometry of a Subterranean Fracture During or After a Hydraulic Fracturing Treatment
US6978831B2 (en) * 2003-09-17 2005-12-27 Halliburton Energy Services, Inc. System and method for sensing data in a well during fracturing
US20060081412A1 (en) * 2004-03-16 2006-04-20 Pinnacle Technologies, Inc. System and method for combined microseismic and tiltmeter analysis
EA009655B1 (ru) * 2004-04-21 2008-02-28 Пинэкл Текнолоджиз, Инк. Микросейсмическое картирование трещин с помощью синхронизированных измерений источника сейсмических сигналов для калибровки скорости
US7347271B2 (en) * 2004-10-27 2008-03-25 Schlumberger Technology Corporation Wireless communications associated with a wellbore
US7477160B2 (en) * 2004-10-27 2009-01-13 Schlumberger Technology Corporation Wireless communications associated with a wellbore
US7757775B2 (en) * 2007-01-09 2010-07-20 Schlumberger Technology Corporation Mitigation of localized stress in tubulars
US7944211B2 (en) * 2007-12-27 2011-05-17 Schlumberger Technology Corporation Characterization of formations using electrokinetic measurements
US8006754B2 (en) 2008-04-05 2011-08-30 Sun Drilling Products Corporation Proppants containing dispersed piezoelectric or magnetostrictive fillers or mixtures thereof, to enable proppant tracking and monitoring in a downhole environment
US8253417B2 (en) * 2008-04-11 2012-08-28 Baker Hughes Incorporated Electrolocation apparatus and methods for mapping from a subterranean well
US8841914B2 (en) 2008-04-11 2014-09-23 Baker Hughes Incorporated Electrolocation apparatus and methods for providing information about one or more subterranean feature
US8797037B2 (en) 2008-04-11 2014-08-05 Baker Hughes Incorporated Apparatus and methods for providing information about one or more subterranean feature
AU2009257881B2 (en) * 2008-05-19 2015-03-05 Halliburton Energy Services, Inc. Formation treatment using electromagnetic radiation
EP2307666A2 (en) 2008-05-20 2011-04-13 Oxane Materials, Inc. Method of manufacture and the use of a functional proppant for determination of subterranean fracture geometries
US8006755B2 (en) * 2008-08-15 2011-08-30 Sun Drilling Products Corporation Proppants coated by piezoelectric or magnetostrictive materials, or by mixtures or combinations thereof, to enable their tracking in a downhole environment
US8427162B2 (en) * 2008-08-25 2013-04-23 Baker Hughes Incorporated Apparatus and method for detection of position of a component in an earth formation
IT1391797B1 (it) * 2008-11-21 2012-01-27 Eni Spa Metodo e sistema di rilevamento della geometria di fratture sotterranee
WO2010059275A1 (en) 2008-11-24 2010-05-27 Halliburton Energy Services, Inc. A high frequency dielectric measurement tool
US8490693B2 (en) * 2009-02-17 2013-07-23 Schlumberger Technology Corporation Determining fracture orientation using wellbore acoustic radial profiles
US9567819B2 (en) * 2009-07-14 2017-02-14 Halliburton Energy Services, Inc. Acoustic generator and associated methods and well systems
WO2011022012A1 (en) * 2009-08-20 2011-02-24 Halliburton Energy Services, Inc. Fracture characterization using directional electromagnetic resistivity measurements
RU2575940C2 (ru) 2010-02-20 2016-02-27 Бэйкер Хьюз Инкорпорейтед Устройство и способы предоставления информации об одной или более подземных переменных
WO2011136760A1 (en) 2010-04-27 2011-11-03 Halliburton Energy Services, Inc. Fracture characterization by interferometric drillbit imaging, time reversal imaging of fractures using drill bit seismics, and monitoring of fracture generation via time reversed acoustics and electroseismics
US9134456B2 (en) 2010-11-23 2015-09-15 Conocophillips Company Electrical methods seismic interface box
WO2012082471A1 (en) 2010-12-14 2012-06-21 Conocophillips Company Autonomous electrical methods node
EP2652235A4 (en) 2010-12-15 2017-07-05 ConocoPhillips Company Electrical methods fracture detection via 4d techniques
WO2012094134A1 (en) * 2011-01-05 2012-07-12 Conocophillips Company Fracture detection via self-potential methods with an electrically reactive proppant
US20120193092A1 (en) * 2011-01-31 2012-08-02 Baker Hughes Incorporated Apparatus and methods for tracking the location of fracturing fluid in a subterranean formation
CN102155254B (zh) * 2011-02-28 2013-05-22 中国矿业大学 一种低透气性煤层脉冲压裂增透抽采瓦斯方法
US9618652B2 (en) * 2011-11-04 2017-04-11 Schlumberger Technology Corporation Method of calibrating fracture geometry to microseismic events
WO2015003028A1 (en) 2011-03-11 2015-01-08 Schlumberger Canada Limited Method of calibrating fracture geometry to microseismic events
US9140110B2 (en) 2012-10-05 2015-09-22 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11255173B2 (en) 2011-04-07 2022-02-22 Typhon Technology Solutions, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11708752B2 (en) 2011-04-07 2023-07-25 Typhon Technology Solutions (U.S.), Llc Multiple generator mobile electric powered fracturing system
BR122020025348B8 (pt) 2011-04-07 2023-04-11 Evolution Well Services Método de entrega de um fluido de fraturamento a um furo de poço, método de fornecimento de energia elétrica para pelo menos um sistema de fraturamento em um furo de poço e sistema para uso na entrega de fluido pressurizado a um furo de poço
US9658359B2 (en) * 2011-07-12 2017-05-23 Halliburton Energy Services, Inc. NMR tracking of injected fluids
US10767465B1 (en) * 2011-08-09 2020-09-08 National Technology & Engineering Solutions Of Sandia, Llc Simulating current flow through a well casing and an induced fracture
CA2854371C (en) * 2011-11-04 2019-12-24 Schlumberger Canada Limited Modeling of interaction of hydraulic fractures in complex fracture networks
US10422208B2 (en) 2011-11-04 2019-09-24 Schlumberger Technology Corporation Stacked height growth fracture modeling
US9068431B2 (en) * 2012-04-30 2015-06-30 Chevron U.S.A. Inc. Flow sensing apparatus and methods for use in oil and gas wells
CA2877147A1 (en) * 2012-06-29 2014-01-03 Schlumberger Canada Limited Electromagnetic imaging of proppant in induced fractures
US20140374091A1 (en) * 2013-06-20 2014-12-25 Schlumberger Technology Corporation Electromagnetic Imaging Of Proppant In Induced Fractures
WO2014025565A1 (en) * 2012-08-07 2014-02-13 Halliburton Energy Services, Inc. Use of magnetic liquids for imaging and mapping porous subterranean formations
EP2888441A4 (en) * 2012-08-24 2016-09-14 Services Petroliers Schlumberger SYSTEM AND METHOD FOR PERFORMING STIMULATION OPERATIONS
WO2014058425A1 (en) * 2012-10-11 2014-04-17 Halliburton Energy Services, Inc. Fracture sensing system and method
US10100635B2 (en) * 2012-12-19 2018-10-16 Exxonmobil Upstream Research Company Wired and wireless downhole telemetry using a logging tool
US10870793B2 (en) * 2013-01-04 2020-12-22 Carbo Ceramics, Inc. Electrically conductive proppant and methods for energizing and detecting same in a single wellbore
US11008505B2 (en) 2013-01-04 2021-05-18 Carbo Ceramics Inc. Electrically conductive proppant
CN105229258A (zh) 2013-01-04 2016-01-06 卡博陶粒有限公司 电气地导电的支撑剂以及用于检测、定位和特征化该电气地导电的支撑剂的方法
US9434875B1 (en) 2014-12-16 2016-09-06 Carbo Ceramics Inc. Electrically-conductive proppant and methods for making and using same
CN103114848B (zh) * 2013-01-18 2015-09-30 西南石油大学 一种基于岩心测量的地层裂缝空间重构方法
US9377552B2 (en) * 2013-02-28 2016-06-28 Chevron U.S.A. Inc. System and method for detecting a fracture in a rock formation using an electromagnetic source
US9097097B2 (en) * 2013-03-20 2015-08-04 Baker Hughes Incorporated Method of determination of fracture extent
CN103244103B (zh) * 2013-05-20 2014-08-20 中国石油大学(华东) 基于纳米磁流体的水力压裂裂缝实时监测系统及监测方法
CN103267979B (zh) * 2013-05-20 2015-03-18 中国石油大学(华东) 基于纳米磁流体的储层裂缝检测系统及检测方法
RU2637255C2 (ru) * 2013-07-02 2017-12-01 Шлюмбергер Текнолоджи Б.В. Способ проверки геометрии трещины для микросейсмических событий
CN103485759B (zh) * 2013-09-10 2016-09-07 中国石油大学(北京) 油气井水力压裂裂缝扩展可视化实验方法及其装置
CA2933622A1 (en) 2013-12-13 2015-06-18 Chevron U.S.A. Inc. System and methods for controlled fracturing in formations
CN103712897B (zh) * 2014-01-07 2014-11-05 西南石油大学 运用高速摄影及数字图像技术的压裂液携砂性能测试装置
WO2015134054A1 (en) * 2014-03-05 2015-09-11 Carbo Ceramics Inc. Systems and methods for locating and imaging proppant in an induced fracture
US9932809B2 (en) * 2014-03-07 2018-04-03 Baker Hughes Incorporated Method and apparatus for hydraulic fracture geometry evaluation
US9529112B2 (en) 2014-04-11 2016-12-27 Schlumberger Technology Corporation Resistivity of chemically stimulated reservoirs
CA2945000C (en) * 2014-04-24 2018-08-28 Halliburton Energy Services, Inc. Fracture growth monitoring using em sensing
GB2540684B (en) * 2014-05-19 2018-01-03 Halliburton Energy Services Inc Nuclear magnetic resonance sensors embedded in cement
WO2015188115A1 (en) * 2014-06-05 2015-12-10 Schlumberger Canada Limited Method for improved design of hydraulic fracture height in a subterranean laminated rock formation
US20160024914A1 (en) * 2014-07-23 2016-01-28 Schlumberger Technology Corporation Monitoring matrix acidizing operations
US9551210B2 (en) 2014-08-15 2017-01-24 Carbo Ceramics Inc. Systems and methods for removal of electromagnetic dispersion and attenuation for imaging of proppant in an induced fracture
DE102014222274B4 (de) * 2014-10-31 2016-06-30 Rheinisch-Westfälisch-Technische Hochschule Aachen Verfahren und Vorrichtung zur Erfassung von unterirdischen Fluidströmungen in Untergrundspeichern
CN104777039A (zh) * 2014-11-13 2015-07-15 中国石油大学(华东) 一种研究应力作用下岩石高温产生热破裂的实验装置
CN104677778A (zh) * 2014-12-22 2015-06-03 中国石油大学(华东) 煤层气压裂过程中冰冻暂堵性能评价装置及方法
WO2016108849A1 (en) * 2014-12-30 2016-07-07 Halliburton Energy Services, Inc. Subterranean formation characterization using microelectromechanical system (mems) devices
US10901110B2 (en) * 2014-12-30 2021-01-26 Halliburton Energy Services, Inc. Through-casing fiber optic magnetic induction system for formation monitoring
BR112017010748A2 (pt) 2014-12-30 2018-01-09 Halliburton Energy Services Inc ?sistema e método de monitoramento de uma formação, e, dispositivo sensor?.
US10030497B2 (en) 2015-02-10 2018-07-24 Statoil Gulf Services LLC Method of acquiring information of hydraulic fracture geometry for evaluating and optimizing well spacing for multi-well pad
CN105986798A (zh) * 2015-02-27 2016-10-05 中国石油化工股份有限公司 一种电弧脉冲压裂技术适用性评价方法
WO2016159811A1 (ru) * 2015-03-30 2016-10-06 Шлюмберже Текнолоджи Корпорейшн Определение параметров трещины гидроразрыва с использованием магнитного каротажа
US10253598B2 (en) 2015-05-07 2019-04-09 Baker Hughes, A Ge Company, Llc Diagnostic lateral wellbores and methods of use
US9988900B2 (en) 2015-06-30 2018-06-05 Statoil Gulf Services LLC Method of geometric evaluation of hydraulic fractures by using pressure changes
CN106501090B (zh) * 2016-09-26 2019-02-15 中国石油天然气股份有限公司 用于水力压裂模拟实验的裂缝表征方法
FR3060636B1 (fr) * 2016-12-20 2019-05-24 IFP Energies Nouvelles Procede de surveillance de la salinite au sein d'une formation souterraine
US10578763B2 (en) * 2017-01-13 2020-03-03 Board Of Regents Of The University Of Texas System Modular electrode tool for improved hydraulic fracture diagnostics
CN108664677B (zh) * 2017-04-01 2021-08-27 中国石油化工股份有限公司 一种油气井生产数据分析方法
CN109098707B (zh) * 2017-06-21 2022-02-11 中国石油化工股份有限公司 砂砾岩体油藏的直井缝网压裂的适应性评价方法、砂砾岩体油藏的直井缝网压裂方法
CN110318743B (zh) * 2018-03-30 2022-06-21 中国石油化工股份有限公司 薄互层页岩油储层压裂模拟试验方法及装置
US11401803B2 (en) 2019-03-15 2022-08-02 Saudi Arabian Oil Company Determining fracture surface area in a well
CN110186643A (zh) * 2019-05-10 2019-08-30 中国地质大学(武汉) 一种监测裂隙岩体非饱和带水汽运移规律的方法
CN111322050B (zh) * 2020-04-24 2022-02-11 西南石油大学 一种页岩水平井段内密切割暂堵压裂施工优化方法
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power
CN115875030B (zh) * 2022-12-05 2024-06-11 西南石油大学 一种注水井压驱条件下注入量设计及油井裂缝参数优化方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496768A (en) * 1968-07-09 1970-02-24 Exxon Production Research Co Detection of movement of liquids in the earth
US4427944A (en) * 1980-07-07 1984-01-24 Schlumberger Technology Corporation System for permeability logging by measuring streaming potentials
NO812051L (no) * 1980-07-07 1982-01-08 Schlumberger Ltd Fremgangsmaate og apparat for undersoekelse av permeabiliteten av grunnformasjoner
JPH0726512B2 (ja) * 1989-12-29 1995-03-22 地熱技術開発株式会社 人工磁場を利用した地殻内亀裂形状、賦存状熊三次元検知システム
FR2684453B1 (fr) 1991-11-28 1994-03-11 Schlumberger Services Petroliers Procede et dispositif de diagraphie a electrodes annulaires et azimutales.
FR2712627B1 (fr) * 1993-11-17 1996-01-05 Schlumberger Services Petrol Procédé et dispositif pour surveiller et/ou étudier un réservoir d'hydrocarbures traversé par un puits.
FR2716536B1 (fr) * 1994-02-22 1996-04-26 Geophysique Cie Gle Procédé et dispositif pour mesurer la perméabilité d'un milieu rocheux .
FR2727464A1 (fr) 1994-11-29 1996-05-31 Schlumberger Services Petrol Capteur de diagraphie electrique et son procede de realisation
US5841280A (en) * 1997-06-24 1998-11-24 Western Atlas International, Inc. Apparatus and method for combined acoustic and seismoelectric logging measurements
US6216783B1 (en) * 1998-11-17 2001-04-17 Golder Sierra, Llc Azimuth control of hydraulic vertical fractures in unconsolidated and weakly cemented soils and sediments
GB2349222B (en) * 1999-04-21 2001-10-31 Geco Prakla Method and system for electroseismic monitoring of microseismicity
JP3341040B2 (ja) * 1999-09-28 2002-11-05 独立行政法人産業技術総合研究所 電磁界観測に基づく地殻内急速運動の予測方法及びその装置
US6441618B2 (en) * 2000-02-04 2002-08-27 Schlumberger Technology Corporation Method and apparatus for monitoring the advance of seawater into fresh water aquifers near coastal cities
US6597178B1 (en) * 2002-10-18 2003-07-22 Schlumberger Technology Corporation Sensor for detecting the magnetic field in the area of downhole casing
US7388380B2 (en) * 2004-06-18 2008-06-17 Schlumberger Technology While-drilling apparatus for measuring streaming potentials and determining earth formation characteristics and other useful information
US7520324B2 (en) * 2004-06-18 2009-04-21 Schlumberger Technology Corporation Completion apparatus for measuring streaming potentials and determining earth formation characteristics
US8302687B2 (en) * 2004-06-18 2012-11-06 Schlumberger Technology Corporation Apparatus for measuring streaming potentials and determining earth formation characteristics
US7944211B2 (en) * 2007-12-27 2011-05-17 Schlumberger Technology Corporation Characterization of formations using electrokinetic measurements

Also Published As

Publication number Publication date
US7819181B2 (en) 2010-10-26
GB2404253A (en) 2005-01-26
RU2324813C2 (ru) 2008-05-20
US20070256830A1 (en) 2007-11-08
US20050017723A1 (en) 2005-01-27
GB0413873D0 (en) 2004-07-21
GB2404253B (en) 2005-06-08

Similar Documents

Publication Publication Date Title
RU2003123596A (ru) Способ и устройство для определения формы трещин в горных породах
JP4757092B2 (ja) 地下水流動評価方法
Cornet et al. The hydromechanical behaviour of a fracture: an in situ experimental case study
RU2009129115A (ru) Применения широкополосных электромагнитных измерений для определения свойств пласта-коллектора
RU2006112550A (ru) Гидравлический разрыв пласта
JP5544443B2 (ja) 圧力パルス崩壊試験における不確実性減少技法
KR101610232B1 (ko) 지표투수 시험기 및 이의 배치 방법
CN105467438B (zh) 一种基于三模量的泥页岩地应力三维地震表征方法
CN212514040U (zh) 囊压测试装置
CN108952657A (zh) 一种水平井平台压裂裂缝长度确定方法及装置
Raymer Predicting groundwater inflow into hard-rock tunnels: Estimating the high-end of the permeability distribution.
Pearson et al. Improvements in the Lugeon or packer permeability test
WO2015157141A1 (en) Resistivity of chemically stimulated reservoirs
Wang A brief review of the methods determining the height of permeable fracture zone
RU2539445C1 (ru) Способ определения пластового давления в нефтяной скважине, оборудованной погружным электронасосом
RU2515666C1 (ru) Способ определения забойного давления в нефтяной скважине, оборудованной погружным электронасосом
JP2019015126A (ja) 改良地盤の強度の推定方法
JP4803531B2 (ja) 透水性の評価方法
Lehane et al. Discussion of “Determination of Bearing Capacity of Open-Ended Piles in Sand” by Kyuho Paik and Rodrigo Salgado
JP3085406U (ja) 地盤用現場透水試験装置
Zhuang Interference Testing and Pulse Testing in the Kenli Carbonate Oil Pool--A Case History
JP3167048B2 (ja) 岩盤上層の破砕性評価基準の設定方法およびその設定装置
CN106837298A (zh) 一种低产液量油井间开生产时间确定方法
Amoozegar 3.4. 3.4 Auger‐Hole Method (Saturated Zone)
Székely et al. Interpretation of transient borehole flow metering data in a fissured granite formation

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110726