RU2002128612A - METHOD OF ELECTROLYTIC OXIDATION FOR PRODUCING CERAMIC COATING ON THE SURFACE OF METAL - Google Patents

METHOD OF ELECTROLYTIC OXIDATION FOR PRODUCING CERAMIC COATING ON THE SURFACE OF METAL

Info

Publication number
RU2002128612A
RU2002128612A RU2002128612/02A RU2002128612A RU2002128612A RU 2002128612 A RU2002128612 A RU 2002128612A RU 2002128612/02 A RU2002128612/02 A RU 2002128612/02A RU 2002128612 A RU2002128612 A RU 2002128612A RU 2002128612 A RU2002128612 A RU 2002128612A
Authority
RU
Russia
Prior art keywords
changing
signal
value
positive
during
Prior art date
Application number
RU2002128612/02A
Other languages
Russian (ru)
Other versions
RU2268325C2 (en
Inventor
Жак БОВИР
Original Assignee
Жак БОВИР
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0005321A external-priority patent/FR2808291B1/en
Application filed by Жак БОВИР filed Critical Жак БОВИР
Publication of RU2002128612A publication Critical patent/RU2002128612A/en
Application granted granted Critical
Publication of RU2268325C2 publication Critical patent/RU2268325C2/en

Links

Claims (12)

1. Электролитический способ плазменного микродугового окисления для получения керамического покрытия на поверхности металла, имеющего полупроводниковые свойства, такого как алюминий, титан, магний, гафний, цирконий и их сплавы, посредством физико-химической реакции преобразования обрабатываемого металла, отличающийся тем, что он состоит из операций погружения металлической заготовки (5), на которую должно быть нанесено покрытие, в электролитическую ванну (3), состоящую из водного раствора гидроксида щелочного металла, например гидроксида натрия или гидроксида калия, и соли щелочного металла и кислородсодержащей кислоты, причем металлическая заготовка образует один из электродов, и наложения на эти электроды напряжения сигнала в целом треугольной формы, то есть сигнала, имеющего по меньшей мере положительный наклон и отрицательный наклон, с коэффициентом формы, который может изменяться в ходе процесса, генерируя ток, который регулируют по интенсивности, форме импульса и соотношению положительной интенсивности и отрицательной интенсивности.1. The electrolytic method of plasma microarc oxidation to obtain a ceramic coating on the surface of a metal having semiconductor properties, such as aluminum, titanium, magnesium, hafnium, zirconium and their alloys, by means of a physicochemical reaction for converting the metal to be treated, characterized in that it consists of operations of immersion of a metal billet (5), which should be coated, in an electrolytic bath (3), consisting of an aqueous solution of alkali metal hydroxide, for example and sodium or potassium hydroxide, and an alkali metal salt and an oxygen-containing acid, the metal billet forming one of the electrodes, and applying to these electrodes the voltage of the signal is generally triangular in shape, that is, a signal having at least a positive slope and a negative slope, with a coefficient forms that can change during the process, generating a current that is regulated in intensity, pulse shape and the ratio of positive intensity and negative intensity. 2. Способ по п.1, отличающийся тем, что его положительный и отрицательный наклоны сигнала напряжения являются приблизительно симметричными.2. The method according to claim 1, characterized in that its positive and negative slopes of the voltage signal are approximately symmetrical. 3. Способ по п.1, отличающийся тем, что положительный и отрицательный наклоны сигнала напряжения являются асимметричными и имеют углы, изменяющиеся в ходе электролиза.3. The method according to claim 1, characterized in that the positive and negative slopes of the voltage signal are asymmetric and have angles that vary during electrolysis. 4. Способ по одному из пп.1-3, отличающийся тем, что он заключается в изменении величины треугольного сигнала напряжения в ходе процесса от 300 до 600 В (Vrms).4. The method according to one of claims 1 to 3, characterized in that it consists in changing the value of the triangular voltage signal during the process from 300 to 600 V (Vrms). 5. Способ по одному из пп.1-4, отличающийся тем, что он заключается в изменении частоты треугольного сигнала в ходе процесса от 100 до 400 Гц.5. The method according to one of claims 1 to 4, characterized in that it consists in changing the frequency of the triangular signal during the process from 100 to 400 Hz. 6. Способ по одному из пп.1-5, отличающийся тем, что он заключается в изменении значения силы тока или фиксировании его независимо от значения напряжения.6. The method according to one of claims 1 to 5, characterized in that it consists in changing the value of the current strength or fixing it regardless of the voltage value. 7. Способ по совокупности пп.1-6, отличающийся тем, что он заключается в независимом изменении в ходе процесса различных параметров, а именно коэффициента формы, значения потенциала, частоты и величины тока.7. The method as set forth in claims 1 to 6, characterized in that it consists in independently changing various parameters during the process, namely, the shape factor, potential value, frequency and current value. 8. Способ по совокупности пп.1-6, отличающийся тем, что он заключается в изменении по меньшей мере некоторых из различных параметров, а именно коэффициента формы, значения потенциала, частоты, величины тока и соотношения UA/IC, одновременно в ходе процесса.8. The method as set forth in claims 1 to 6, characterized in that it consists in changing at least some of the various parameters, namely the shape factor, potential value, frequency, current value and UA / IC ratio, simultaneously during the process. 9. Способ по одному из пп.1-8, отличающийся тем, что он заключается в раздельном регулировании его форм сигнала и значений электрической мощности VI в положительной фазе и/или в отрицательной фазе.9. The method according to one of claims 1 to 8, characterized in that it consists in separately regulating its waveforms and values of the electric power VI in the positive phase and / or in the negative phase. 10. Электронный генератор типа источника тока для осуществления способа согласно одному из пп.1-9, включающий блок (9) для связи с однофазным или трехфазным источником электроэнергии от сети и блок для связи с ванной электролиза, отличающийся тем, что он содержит модуль (10) для преобразования синусоидального сигнала переменного тока, поступающего из сети, в трапецеидальный или пилообразный сигнал; модуль (12) для модификации наклона и коэффициента формы сигнала; модуль (13) для изменения частоты в различных типах цикла; и модуль (14) для управления электрической энергией в соответствии с параметризованной энергией и использованной энергией.10. An electronic generator of a current source type for implementing the method according to one of claims 1 to 9, including a unit (9) for communicating with a single-phase or three-phase electric source from the network and a unit for communicating with the electrolysis bath, characterized in that it contains a module ( 10) for converting a sinusoidal signal of alternating current coming from the network into a trapezoidal or sawtooth signal; module (12) for modifying the slope and waveform coefficient; module (13) for changing the frequency in various types of cycle; and a module (14) for controlling electric energy in accordance with the parameterized energy and the energy used. 11. Генератор по п.10, отличающийся тем, что он включает на выходе изолирующий трансформатор с последовательно подключенными конденсаторами в первичной или вторичной цепи для того, чтобы отфильтровать постоянно токовую составляющую таким образом, чтобы предохранить магнитную цепь от насыщения, в то же время обеспечивая оптимальную безопасность работы в отношении электрической защиты, с присоединением одного из полюсов к земле.11. The generator of claim 10, characterized in that it includes an output transformer with series-connected capacitors in the primary or secondary circuit in order to filter the constant current component in such a way as to protect the magnetic circuit from saturation, while at the same time providing optimum safety of work in relation to electrical protection, with the connection of one of the poles to the ground. 12. Генератор по п.10 или 11, отличающийся тем, что им управляют с помощью процессора типа ПК (8), применяемого для управления различными параметрами в ходе осуществления способа.12. The generator according to claim 10 or 11, characterized in that it is controlled by a processor such as a PC (8) used to control various parameters during the implementation of the method.
RU2002128612/02A 2000-04-26 2001-04-25 Method of electrolytic oxidation for obtaining ceramic coat on surface of metal (versions) RU2268325C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/05321 2000-04-26
FR0005321A FR2808291B1 (en) 2000-04-26 2000-04-26 ELECTROLYTIC OXIDATION PROCESS FOR OBTAINING A CERAMIC COATING ON THE SURFACE OF A METAL

Publications (2)

Publication Number Publication Date
RU2002128612A true RU2002128612A (en) 2004-05-27
RU2268325C2 RU2268325C2 (en) 2006-01-20

Family

ID=8849614

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002128612/02A RU2268325C2 (en) 2000-04-26 2001-04-25 Method of electrolytic oxidation for obtaining ceramic coat on surface of metal (versions)

Country Status (13)

Country Link
US (1) US6808613B2 (en)
EP (1) EP1276920B1 (en)
JP (1) JP2003531302A (en)
KR (1) KR100868547B1 (en)
CN (1) CN100482867C (en)
AT (1) ATE517200T1 (en)
AU (1) AU775598B2 (en)
BR (1) BR0110339A (en)
CA (1) CA2405485A1 (en)
FR (1) FR2808291B1 (en)
IL (2) IL152307A0 (en)
RU (1) RU2268325C2 (en)
WO (1) WO2001081658A1 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002329410A1 (en) * 2002-03-27 2003-10-13 Isle Coat Limited Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
GB2386907B (en) * 2002-03-27 2005-10-26 Isle Coat Ltd Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
JP4365415B2 (en) * 2004-01-12 2009-11-18 アレクサンドロビチ ニキフォロフ,アレクセイ How to produce high adhesion thick protective coating of valve metal parts by micro arc oxidation
DE102004026159B3 (en) * 2004-05-28 2006-02-16 Infineon Technologies Ag Production of an electronic component used in the production of integrated circuits comprises forming an insulating layer as a metal oxide layer by plasma-electrolytic oxidation of the metal
FR2877018B1 (en) * 2004-10-25 2007-09-21 Snecma Moteurs Sa MICRO ARC OXIDATION PROCESS FOR MAKING A COATING ON A METALLIC SUBSTRATE, AND USE THEREOF
WO2005118919A1 (en) * 2004-11-05 2005-12-15 Nihon Parkerizing Co., Ltd. Method of electrolytic ceramic coating for metal, electrolyte for use in electrolytic ceramic coating for metal and metal material
DE102005011322A1 (en) * 2005-03-11 2006-09-14 Dr.Ing.H.C. F. Porsche Ag Process for the preparation of oxide and silicate layers on metal surfaces
FR2889205B1 (en) * 2005-07-26 2007-11-30 Eads Astrium Sas Soc Par Actio COATING FOR EXTERNAL DEVICE FOR THERMO-OPTICAL CONTROL OF SPACE VEHICLE ELEMENTS, IONIZED MICRO-ARCS FORMATION METHOD, AND DEVICE COVERED WITH SAID COATING
CN1769526B (en) * 2005-12-02 2010-08-25 中国科学院物理研究所 Method and device for internal wall ceramic treatment of steel and iron pipe casting
US7910221B2 (en) * 2006-02-08 2011-03-22 La Jolla Bioengineering Institute Biocompatible titanium alloys
KR100780280B1 (en) * 2006-03-30 2007-11-28 주식회사 아이메탈아이 Method for treating the surface of Metals
WO2008027835A1 (en) * 2006-08-28 2008-03-06 Uti Limited Partnership Method for anodizing aluminum-copper alloy
DE102006052170A1 (en) * 2006-11-02 2008-05-08 Steinert Elektromagnetbau Gmbh Anodic oxide layer for electrical conductors, in particular conductors made of aluminum, method for producing an anodic oxide layer and electrical conductor with anodic oxide layer
US20080248214A1 (en) * 2007-04-09 2008-10-09 Xueyuan Nie Method of forming an oxide coating with dimples on its surface
TWI335674B (en) * 2007-07-11 2011-01-01 Univ Nat Taiwan Methos for forming an insulating layer over a silicon carbide substrate, silicon carbide transistors and methods for fabricating the same
CN101365305A (en) * 2007-08-07 2009-02-11 鸿富锦精密工业(深圳)有限公司 Portable electronic device outer casing and manufacturing method thereof
US20090056090A1 (en) * 2007-09-05 2009-03-05 Thomas Bunk Memorial article and method thereof
GB0720982D0 (en) * 2007-10-25 2007-12-05 Plasma Coatings Ltd Method of forming a bioactive coating
ZA200906786B (en) * 2008-10-16 2010-05-26 Internat Advanced Res Ct Arci A process for continuous coating deposition and an apparatus for carrying out the process
GB2469115B (en) * 2009-04-03 2013-08-21 Keronite Internat Ltd Process for the enhanced corrosion protection of valve metals
WO2010116747A1 (en) * 2009-04-10 2010-10-14 株式会社アルバック Surface-treatment method for components of mechanical booster pumps, turbomolecular pumps, or dry pumps, as well as mechanical booster pump, turbomolecular pump, or dry pump treated with said surface-treatment method
CN101660190B (en) * 2009-09-18 2010-12-29 西北有色金属研究院 Preparation method of titanium and titanium alloy surface black protective film for surgical implantation
CN101845655B (en) * 2010-06-01 2011-09-28 西安理工大学 Anode gradual-entering type microarc oxidation treatment method and device with low energy consumption
FR2966533B1 (en) 2010-10-21 2014-02-21 Astrium Sas FRICTION BODY FOR THE ASSEMBLY OF TWO PIECES.
CN102127791B (en) * 2011-04-22 2012-06-27 北京交通大学 Method for treating thick layer on surface of AZ91 magnesium alloy
CN102140665B (en) * 2011-04-22 2012-07-11 北京交通大学 AM60 magnesium alloy surface thin layer thickness uniformity treatment method
CN102181907B (en) * 2011-04-22 2012-07-11 北京交通大学 Method for treating thin layer on surface of AM60 magnesium alloy
CN102127789B (en) * 2011-04-22 2012-06-27 北京交通大学 AM60 magnesium alloy surface heavy-layer treatment method
CN102181909B (en) * 2011-04-22 2012-07-11 北京交通大学 Thin layer treatment method for surface of AZ91 magnesium alloy
KR101336443B1 (en) * 2011-04-26 2013-12-04 영남대학교 산학협력단 Manufacturing method of thin film on magnesium alloy to have superior corrosion resistance
CN102330095B (en) * 2011-08-29 2013-10-09 中国科学院合肥物质科学研究院 Preparation method of Al2O3 coating on surface of steel-matrix material
CN103695980B (en) * 2012-09-27 2016-04-13 中国科学院金属研究所 A kind of preparation method of single-layer micro-arc oxidation ceramic film on surface of aluminum alloy
CN103695981B (en) * 2012-09-27 2016-03-23 中国科学院金属研究所 A kind of method of micro-arc oxidation of aluminum alloy surface film functionalized design
US9123651B2 (en) 2013-03-27 2015-09-01 Lam Research Corporation Dense oxide coated component of a plasma processing chamber and method of manufacture thereof
CN103334143B (en) * 2013-07-15 2016-01-20 湖南大学 A kind of Zr alloy surface prepares the differential arc oxidation method of wear-resisting zirconia and aluminum oxide mixed coating fast
JP2015137739A (en) * 2014-01-23 2015-07-30 大陽日酸株式会社 Member for sliding part, and method of manufacturing the same
US10077717B2 (en) 2014-10-01 2018-09-18 Rolls-Royce Corporation Corrosion and abrasion resistant coating
CN108368632B (en) 2015-12-16 2020-09-25 汉高股份有限及两合公司 Method for depositing titanium-based protective coatings on aluminum
RU167518U1 (en) * 2015-12-30 2017-01-10 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") Installation for producing porous anodic metal oxides and semiconductors
WO2018013874A1 (en) 2016-07-13 2018-01-18 Alligant Scientific, LLC Electrochemical methods, devices and compositions
CN106801241A (en) * 2017-02-13 2017-06-06 广东飞翔达科技有限公司 The device and method of a kind of ceramic protective coating of generation on metal parts
FR3087208B1 (en) 2018-10-16 2020-10-30 Irt Antoine De Saint Exupery SURFACE TREATMENT PROCESS OF ALUMINUM PARTS
CN109183115A (en) * 2018-10-19 2019-01-11 北京杜尔考特科技有限公司 A kind of surface is covered with the preparation method of the aluminium alloy of superhard ceramic coating formed by micro-arc oxidation
CN110361313B (en) * 2019-07-11 2022-04-05 上海应用技术大学 Electrochemical test method for quantitatively evaluating porosity of phosphating film
FR3110605B1 (en) 2020-05-20 2023-06-30 Lag2M METHOD AND INSTALLATION FOR THE TREATMENT OF METAL PARTS BY MICRO-ARC OXIDATION
FR3111146A1 (en) 2021-06-03 2021-12-10 Lag2M PLANT FOR TREATMENT OF METAL PARTS BY MICRO-ARC OXIDATION
FR3124806A1 (en) 2021-07-02 2023-01-06 Lag2M Micro-arc oxidation process equipment
CN113881995B (en) * 2021-11-01 2023-03-24 中国电子科技集团公司第三十八研究所 Micro-arc oxidation method for interior of cold plate air duct

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE257274C (en) 1900-01-01
US4468293A (en) * 1982-03-05 1984-08-28 Olin Corporation Electrochemical treatment of copper for improving its bond strength
US4923574A (en) * 1984-11-13 1990-05-08 Uri Cohen Method for making a record member with a metallic antifriction overcoat
DD257274B1 (en) * 1987-02-02 1991-05-29 Karl Marx Stadt Tech Hochschul METHOD FOR PRODUCING DECORATIVE SURFACES ON METALS
US5147515A (en) * 1989-09-04 1992-09-15 Dipsol Chemicals Co., Ltd. Method for forming ceramic films by anode-spark discharge
SU1767043A1 (en) * 1990-01-25 1992-10-07 Филиал Всесоюзного Научно-Исследовательского Проектно-Конструкторского И Технологического Института Электромашиностроения Method of micro arc anodization
US5071527A (en) * 1990-06-29 1991-12-10 University Of Dayton Complete oil analysis technique
US5141602A (en) * 1991-06-18 1992-08-25 International Business Machines Corporation High-productivity method and apparatus for making customized interconnections
RU2023762C1 (en) * 1991-06-27 1994-11-30 Научно-техническое бюро "Энергия" Московского межотраслевого объединения "Ингеоком" Method for applying coatings to products made of aluminum alloys
JP2875680B2 (en) * 1992-03-17 1999-03-31 株式会社東芝 Method for filling or coating micropores or microdents on substrate surface
JPH06297639A (en) * 1993-04-13 1994-10-25 Sky Alum Co Ltd Film laminating aluminum material and manufacture thereof
RU2070622C1 (en) * 1993-06-24 1996-12-20 Василий Александрович Большаков Method of applying ceramic coating onto a metal surface by microarc anodizing technique and used electrolyte
RU2110623C1 (en) * 1993-12-29 1998-05-10 Научно-исследовательский инженерный центр "Агромет" Method of coating unipolar-conductance metals
IL109857A (en) * 1994-06-01 1998-06-15 Almag Al Electrolytic process and apparatus for coating metals
US5605615A (en) * 1994-12-05 1997-02-25 Motorola, Inc. Method and apparatus for plating metals
US5720866A (en) * 1996-06-14 1998-02-24 Ara Coating, Inc. Method for forming coatings by electrolyte discharge and coatings formed thereby
WO1998040541A1 (en) * 1997-03-11 1998-09-17 Almag Al Process and apparatus for coating metals
US6365028B1 (en) * 1997-12-17 2002-04-02 Isle Coat Limited Method for producing hard protection coatings on articles made of aluminum alloys
US6197178B1 (en) * 1999-04-02 2001-03-06 Microplasmic Corporation Method for forming ceramic coatings by micro-arc oxidation of reactive metals

Similar Documents

Publication Publication Date Title
RU2002128612A (en) METHOD OF ELECTROLYTIC OXIDATION FOR PRODUCING CERAMIC COATING ON THE SURFACE OF METAL
CN100482867C (en) Oxidising electrolytic method for obtaining ceramic coating at surface of metal
US5963435A (en) Apparatus for coating metal with oxide
CN103944437B (en) Supply unit and arc component processing power source
JP3425331B2 (en) Power supply
SU545123A1 (en) Pulse generator for electrical discharge machining
RU2311996C1 (en) Electric arc welding method and apparatus for performing the same
RU2635120C1 (en) Device for microarc metal and alloy oxidation
JP2000184798A (en) Vscf converter and vscf power supply unit
RU2623531C1 (en) Device for plasma-electrolytic oxidation of metals and alloys
KR0155248B1 (en) Stability dc-power supply with variable function for high voltage
RU2775987C1 (en) Apparatus for micro-arc oxidation of products made of metals and alloys
RU2395631C2 (en) Facility for micro-arc oxidation of items out of metal and metal alloys
RU75393U1 (en) DEVICE FOR MICRO-ARC OXIDATION OF VENTAL METALS
SU1446201A1 (en) Apparatus for supplying electrolytic baths with pulsed current
JPS6468988A (en) Carbonic acid gas laser device
SU1700108A1 (en) Apparatus for microarc oxidation of metals and alloys
RU2036257C1 (en) Apparatus to feed electroplating tanks with pulsed current
SU959232A1 (en) Method of producing controllable high dc voltage
JPH0482617A (en) Pulse power supply for electrical processing
JPH1110153A (en) Electric power source of electrolytic solution producing apparatus
RU102619U1 (en) DEVICE FOR MICROARC OXIDATION OF METAL PRODUCTS
JPS6337807A (en) Apparatus for pulse processing of ferromagnetic material
SU1436237A1 (en) Power supply source
RU2278409C2 (en) Stabilized transformer of alternating voltage to direct voltage