WO2008027835A1 - Method for anodizing aluminum-copper alloy - Google Patents

Method for anodizing aluminum-copper alloy Download PDF

Info

Publication number
WO2008027835A1
WO2008027835A1 PCT/US2007/076891 US2007076891W WO2008027835A1 WO 2008027835 A1 WO2008027835 A1 WO 2008027835A1 US 2007076891 W US2007076891 W US 2007076891W WO 2008027835 A1 WO2008027835 A1 WO 2008027835A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
bath
providing
anodization method
anodization
Prior art date
Application number
PCT/US2007/076891
Other languages
French (fr)
Inventor
Viola I. Birss
Eric J. Mcleod
Richard G. Rateick
Original Assignee
Uti Limited Partnership
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uti Limited Partnership filed Critical Uti Limited Partnership
Publication of WO2008027835A1 publication Critical patent/WO2008027835A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/246Chemical after-treatment for sealing layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids

Definitions

  • the present invention is directed toward a method of anodizing an aluminum-copper alloy in a basic silicate solution and, more specifically, toward a method of anodizing an aluminum-copper alloy in a basic silicate solution in a manner that reduces fatigue strength deficits in the anodized object.
  • Aluminum-copper alloys including 2000 Series aluminum-copper alloys such as AA2219, AA2024 and AA2014, are desirable in many industries due to their high strength- to-weight ratios. However, these alloys tend to corrode if not protected in some manner. To enhance corrosion resistance, it is known to anodize these alloys in a sulfuric acid solution using a direct current to generate a protective oxide layer. It is also known that such anodization reduces the fatigue strength of the anodized objects to varying degrees.
  • a first aspect of which comprises an anodization method for anodizing an object formed of an aluminum-copper alloy in an anodizing bath containing a basic silicate solution.
  • the method involves placing a first electrode of an AC power supply in the anodizing bath, connecting the object to be coated to a second electrode of the AC power supply and placing the object to be coated in the bath.
  • a voltage is then applied to the first and second electrodes to maintain a current density of less than about 10 mA/ cm 2 to form an anodized coating on the object.
  • the object is then removed from the bath, and the coating on the object is sealed with, for example, a polymer sealant.
  • Another aspect of the present invention is an anodization method for anodizing a 2000 series aluminum-copper alloy plate in an anodizing bath containing a sodium silicate solution and potassium hydroxide, the bath having a pH of about 13.
  • the method involves placing a first electrode of an AC power supply in the anodizing bath, connecting the object to be coated to a second electrode of the AC power supply, and placing the object to be coated in the bath.
  • a voltage is then applied to the first and second electrodes to maintain a current density of less than about 10 mA/ cm 2 to form an anodized coating on the object.
  • the object is then removed from the bath and the anodized coating on the object is sealed with Parylene HT.
  • Figure 1 is a graph of the anodization profile of AA2219 aluminum
  • Figure 2 is a graph of the anodizing profile of AA2219 with varying anodizing bath silicate concentrations
  • Figure 3 is a graph of anodizing voltage over time for different anodizing bath pH's.
  • anodizing aluminum-copper alloys such as AA2219, AA2024 and AA2014 using amicroarc oxidation process.
  • the process employs a basic anodizing solution containing a metallic silicate and a combined AC/DC waveform and a relatively low current density.
  • the anodization solution is cooled to about 4°C at the beginning of the anodization process, and the current applied to the solution has a ratio of DC to AC components of about 5:1.
  • the DC voltage is increased to maintain a current density of about 10 mA/ cm 2 or less.
  • the process is ended when the DC voltage reaches about 300 to 320 VDC.
  • This process reduces the fatigue strength of the anodized object by a smaller amount than the above-described sulfuric acid anodization process. It is believed that this improvement is due to the fact that less copper is dissolved from aluminum alloy using the present process than is dissolved using prior anodization processes.
  • the oxide coating formed in this manner provides relatively little corrosion resistance and is not suitable for many applications.
  • the present inventors have also found that the porous oxide coating provides an excellent base for various polymer sealants that would not bond well to untreated metal.
  • Para-p-xylylene sealants such as Parylene HT, have been found to bond particularly well to this coating and provide good levels of corrosion resistance.
  • Parylene HT Parylene HT
  • FIG. 1 illustrates an anodization profile for AA2219.
  • This anodization profile has four distinct stages labeled I, ⁇ , IH and IV in the Figure.
  • Stage I is an initiation stage and stage II represents sparkles oxidation formation. Sparking begins during Stage m, and intense sparking begins during Stage IV which may also be referred to as the microarc stage.
  • Stage 2 5 three baths, Bath 1, Bath 2 and Bath 3 were tested to determine the effect of silicate concentration on anodizing time and final voltage. Each bath included 10 g/L of KOH and had a pH as measured with a pH tester, of 13.
  • the characteristic voltage vs. time plots for AA2219 samples are shown in Figure 2. For ease of explanation, only the DC component is shown, although the AC component discussed above is present in this process with a DC: AC ratio of 5.
  • the four distinct stages of AA2219 anodization can be seen in Figure 2.
  • the first stage (I) is a period of very slow voltage rise from an initial voltage of about 2 VDC to 6 VDC.
  • the second stage (II) involves the most rapid increase in voltage, ranging from 6 to 60
  • Stage III is demarcated by a reduction in slope that occurs at around 60 VDC and continues to about 280 VDC. The rate of voltage increase is fairly steady in this region of the plot. As sparks are visible by around 180 VDC, it is through that the change from Stage It to Stage ITI indicates the onset of sparking.
  • Stage IV lasts from about 280 VDC until the selected ending voltage, and exhibits larger, longer lasting and less frequent sparks.
  • the general shape of the V vs. t plots is independent of the anodizing bath composition and is comparable to the anodization profile of AA 2219 in Figure 1.
  • the total anodization time is significantly reduced by increasing the bath silicate concentration to 40 g/L. At this concentration, Stage I is not evident. It is assumed that the processes that occur in Stage I at low silicate concentrations still occur when baths containing higher silicate concentrations are used. The faster anodization rate that occurs with the higher concentrations, however, makes this first stage less evident.
  • stage IV begins at approximately 280 VDC and continues until an equilibrium is reached and no further increases in VDC occur.
  • Tests have been conducted up to a voltage of about 320 VDC.
  • the fatigue strength deficit of AA2219 samples tested using Bath 10 and a pH of 13 was analyzed, it was found to be about 12 percent as compared to about 38 percent for samples anodized in a traditional acid anodization bath. Additional tests were conducted on specimens wherein the anodization process was stopped at a final voltage of about 300 VDC. This shorter anodization reduced the amount of copper dissolved and also produced a less durable protective oxidation layer. However, this method produced almost no fatigue strength deficit.
  • the coating produced by stopping the process at 300 VDC was porous and readily accepted a parylene coating. Two examples of the above- described process are discussed below.
  • An anodizing hath was formed of potassium hydroxide and a sodium silicate solution (Fisher-Scientific SS338) which contained 29.2% amorphous silica, 9.1% sodium oxide and 61.7% water.
  • the bath contained 5 g/L KOH and 40 g/L of the silicate solution to produce a pH of about 13.
  • the bath was contained in a 60 mL cylindrical cell with a stainless steel cathode fabricated such that it lined the sides and bottom of the cell. The cell was cooled in an ice-water bath to about 4°C.
  • the objects to be coated comprised disc-shaped samples of AA2219 that were 600 grit polished and had a diameter of 1 cm and a height of 0.5 cm.
  • the flat surfaces of the samples were cut in the long transverse/short transverse plane from AA2219-T851 plate.
  • Fatigue strength of the above sample was also improved, being about 12 percent in the untreated sample as opposed to about 38 percent in samples anodized using a sulfuric acid bath.
  • EXAMPLE 2 The anodizing bath and sample preparation in the second example was identical to the first example. AC and DC power supplies were used in series to produce a combined DC/ AC waveform with a ratio of about 5:1, and a water bath was used to cool the anodization bath to

Abstract

An anodization method includes steps of providing an object formed of an aluminum-copper alloy, providing an anodizing bath comprising a basic silicate solution, providing an AC power supply including a first electrode and a second electrode, placing the first electrode in contact with the anodizing bath, connecting the second electrode to the object, placing the object in the anodizing bath, applying a voltage to the first and second electrodes to maintain a current density of about 10 mA/ cm2 or less to form an anodized coating on the object, removing the object from the bath, and sealing the anodized coating on the object.

Description

METHOD FOR ANODIZING ALUMINUM-COPPER ALLOY
CROSS-REFERENCE TO RELATED APPLICATIONS The present application claims the benefit of U.S. Provisional Patent Application No.
60/823,728, filed August 28, 2006, the entire contents of which are hereby incorporated by reference.
FIELD OF THE INVENTION The present invention is directed toward a method of anodizing an aluminum-copper alloy in a basic silicate solution and, more specifically, toward a method of anodizing an aluminum-copper alloy in a basic silicate solution in a manner that reduces fatigue strength deficits in the anodized object.
BACKGROUND OF THE INVENTION
Aluminum-copper alloys, including 2000 Series aluminum-copper alloys such as AA2219, AA2024 and AA2014, are desirable in many industries due to their high strength- to-weight ratios. However, these alloys tend to corrode if not protected in some manner. To enhance corrosion resistance, it is known to anodize these alloys in a sulfuric acid solution using a direct current to generate a protective oxide layer. It is also known that such anodization reduces the fatigue strength of the anodized objects to varying degrees.
One of the present inventors has found that the amount of fatigue strength deficit for a given alloy depends on the nature of the product being anodized. Highly worked products such as bar stock lose relatively little fatigue strength after anodization, while lightly worked plate and similar objects suffer more significant deficits. This difference has been attributed to the number and size of copper rich areas of the metal surface. Dissolution of these copper rich areas during anodization significantly reduces fatigue strength. Working the alloy reduces the size of the copper rich areas, and therefore, while worked objects also experience a fatigue strength deficit, it is not as severe as the deficit that occurs in objects formed from more lightly worked alloy plate or large diameter bar. These findings are detailed in Rateick, R. G. et. al. "Relationship of Microstructure to Fatigue Strength Loss in Anodized Aluminium-Copper Alloys," Materials Science and Technology, vol. 21, no. 10, 2005 (1227- 1235), the entire contents of which is hereby incorporated by reference. It would therefore be desirable to provide parts formed from such aluminum-copper alloys with acceptable corrosion resistance without adversely affecting their fatigue strength.
SUMMARY OF THE INVENTION These problems and others are addressed by embodiments of the present invention, a first aspect of which comprises an anodization method for anodizing an object formed of an aluminum-copper alloy in an anodizing bath containing a basic silicate solution. The method involves placing a first electrode of an AC power supply in the anodizing bath, connecting the object to be coated to a second electrode of the AC power supply and placing the object to be coated in the bath. A voltage is then applied to the first and second electrodes to maintain a current density of less than about 10 mA/ cm2 to form an anodized coating on the object. The object is then removed from the bath, and the coating on the object is sealed with, for example, a polymer sealant.
Another aspect of the present invention is an anodization method for anodizing a 2000 series aluminum-copper alloy plate in an anodizing bath containing a sodium silicate solution and potassium hydroxide, the bath having a pH of about 13. The method involves placing a first electrode of an AC power supply in the anodizing bath, connecting the object to be coated to a second electrode of the AC power supply, and placing the object to be coated in the bath. A voltage is then applied to the first and second electrodes to maintain a current density of less than about 10 mA/ cm2 to form an anodized coating on the object. The object is then removed from the bath and the anodized coating on the object is sealed with Parylene HT.
BRIEF DESCRIPTION OF THE DRAWINGS These aspects and features of the invention and others will be better understood after a reading of the following detailed description together with the following drawings wherein: Figure 1 is a graph of the anodization profile of AA2219 aluminum; Figure 2 is a graph of the anodizing profile of AA2219 with varying anodizing bath silicate concentrations; and Figure 3 is a graph of anodizing voltage over time for different anodizing bath pH's.
DETAILED DESCRIPTION These problems and others are addressed in the present invention by anodizing aluminum-copper alloys such as AA2219, AA2024 and AA2014 using amicroarc oxidation process. The process employs a basic anodizing solution containing a metallic silicate and a combined AC/DC waveform and a relatively low current density. Beneficially, the anodization solution is cooled to about 4°C at the beginning of the anodization process, and the current applied to the solution has a ratio of DC to AC components of about 5:1. As an oxide film begins to form on the object being anodized, the DC voltage is increased to maintain a current density of about 10 mA/ cm2 or less. The process is ended when the DC voltage reaches about 300 to 320 VDC. This process reduces the fatigue strength of the anodized object by a smaller amount than the above-described sulfuric acid anodization process. It is believed that this improvement is due to the fact that less copper is dissolved from aluminum alloy using the present process than is dissolved using prior anodization processes.
The oxide coating formed in this manner provides relatively little corrosion resistance and is not suitable for many applications. However, the present inventors have also found that the porous oxide coating provides an excellent base for various polymer sealants that would not bond well to untreated metal. Para-p-xylylene sealants, such as Parylene HT, have been found to bond particularly well to this coating and provide good levels of corrosion resistance. Thus the combination of a low current density oxidation process and a sealant provides an aluminum-copper alloy with greater corrosion resistance and greater fatigue strength than has heretofore been possible.
Figure 1 illustrates an anodization profile for AA2219. This anodization profile has four distinct stages labeled I, π, IH and IV in the Figure. Stage I is an initiation stage and stage II represents sparkles oxidation formation. Sparking begins during Stage m, and intense sparking begins during Stage IV which may also be referred to as the microarc stage. As illustrated in Figure 25 three baths, Bath 1, Bath 2 and Bath 3 were tested to determine the effect of silicate concentration on anodizing time and final voltage. Each bath included 10 g/L of KOH and had a pH as measured with a pH tester, of 13. Bath 1 contained 10 g/L of the silicate solution, Bath 2 contained 25 g/L of the silicate solution, and Bath 3 contained 40 g/L of the silicate solution. The characteristic voltage vs. time plots for AA2219 samples are shown in Figure 2. For ease of explanation, only the DC component is shown, although the AC component discussed above is present in this process with a DC: AC ratio of 5. The four distinct stages of AA2219 anodization can be seen in Figure 2. The first stage (I) is a period of very slow voltage rise from an initial voltage of about 2 VDC to 6 VDC. The second stage (II) involves the most rapid increase in voltage, ranging from 6 to 60
VDC. It is possible that this stage involves the formation of a barrier oxide layer on the sample surface. The beginning of Stage III is demarcated by a reduction in slope that occurs at around 60 VDC and continues to about 280 VDC. The rate of voltage increase is fairly steady in this region of the plot. As sparks are visible by around 180 VDC, it is through that the change from Stage It to Stage ITI indicates the onset of sparking. The final stage, Stage IV, lasts from about 280 VDC until the selected ending voltage, and exhibits larger, longer lasting and less frequent sparks.
The general shape of the V vs. t plots is independent of the anodizing bath composition and is comparable to the anodization profile of AA 2219 in Figure 1. However, the total anodization time is significantly reduced by increasing the bath silicate concentration to 40 g/L. At this concentration, Stage I is not evident. It is assumed that the processes that occur in Stage I at low silicate concentrations still occur when baths containing higher silicate concentrations are used. The faster anodization rate that occurs with the higher concentrations, however, makes this first stage less evident.
As Bath 3 offered the fastest anodization time, this bath was used in additional testing to determine optimal pH. Figure 3 illustrates the effect of pH on anodizing profile. As illustrated in this Figure, final anodizing voltage decreased with increasing pH. It was believed that pH's higher than 13 would excessively corrode the alloy being treated and these higher pH's were not tested for their affect on anodization rate. It is also believed that the higher pH would cause less copper to dissolve from the alloy than lower pH's would cause. To further reduce the dissolution of copper, it is beneficial to begin the anodization process in a chilled water bath so that the starting temperature of the bath is about 4°C. While the bath temperature increases during the anodization process, it generally does not exceed about 30°C. Higher starting temperatures were found to result in a greater loss of copper from the alloy and consequently a greater reduction in fatigue strength.
As noted above, stage IV begins at approximately 280 VDC and continues until an equilibrium is reached and no further increases in VDC occur. Tests have been conducted up to a voltage of about 320 VDC. When the fatigue strength deficit of AA2219 samples tested using Bath 10 and a pH of 13 was analyzed, it was found to be about 12 percent as compared to about 38 percent for samples anodized in a traditional acid anodization bath. Additional tests were conducted on specimens wherein the anodization process was stopped at a final voltage of about 300 VDC. This shorter anodization reduced the amount of copper dissolved and also produced a less durable protective oxidation layer. However, this method produced almost no fatigue strength deficit. Moreover, the coating produced by stopping the process at 300 VDC was porous and readily accepted a parylene coating. Two examples of the above- described process are discussed below.
EXAMPLE l
An anodizing hath was formed of potassium hydroxide and a sodium silicate solution (Fisher-Scientific SS338) which contained 29.2% amorphous silica, 9.1% sodium oxide and 61.7% water. The bath contained 5 g/L KOH and 40 g/L of the silicate solution to produce a pH of about 13. The bath was contained in a 60 mL cylindrical cell with a stainless steel cathode fabricated such that it lined the sides and bottom of the cell. The cell was cooled in an ice-water bath to about 4°C.
The objects to be coated comprised disc-shaped samples of AA2219 that were 600 grit polished and had a diameter of 1 cm and a height of 0.5 cm. The flat surfaces of the samples were cut in the long transverse/short transverse plane from AA2219-T851 plate.
AC and DC power supplies were used in series to produce a combined DC/ AC waveform with a ratio of about 5:1. The object to be coated or anode was connected to the power supply using a steel rod wrapped in PTFE tape and placed into the solution which in turn was chilled in an ice bath to about 4°C. The initial DC voltage was 0 and was raised gradually to 320 VDC as the spark anodization process proceeded to maintain a current density at the anode of 10 mA/ cm2. The process was complete in about 30 minutes at which point the further increase in voltage with time was minimal, hi addition, the pitting of Parylene coated samples was less severe. The pits were much smaller and fewer in number. The anode was thereafter removed from the electrical circuit and coated with Parylene HT. Subsequent testing of the sample showed an improved corrosion resistance over uncoated samples. Uncoated samples subjected to a 5% NaCl solution typically exhibited pitting after approximately 24 hours while coated samples resisted pitting for from 4 to 7 days.
Fatigue strength of the above sample was also improved, being about 12 percent in the untreated sample as opposed to about 38 percent in samples anodized using a sulfuric acid bath.
EXAMPLE 2 The anodizing bath and sample preparation in the second example was identical to the first example. AC and DC power supplies were used in series to produce a combined DC/ AC waveform with a ratio of about 5:1, and a water bath was used to cool the anodization bath to
4°C. The initial DC voltage was 0 and was raised gradually to maintain a current density at the anode of 10 mA/ cm . However, in the second example, the anodization process was halted when the applied voltage reached 300 VDC. This required less than the 30 minute process time of Example 1.
The anode was thereafter removed from the electrical circuit and coated with Parylene
HT. Subsequent testing of the sample showed an improved corrosion resistance over uncoated samples, similar to that exhibited by the samples of Example 1. However, in this case, almost no fatigue strength deficit was noted.
The present invention has been described herein in terms of a presently preferred embodiment. Obvious modifications and additions to this embodiment will become apparent to those skilled in the relevant arts upon a reading and understanding of this disclosure. It is intended that all such modifications and additions comprise a part of the present invention to the extent they fall within the scope of the several claims appended hereto.

Claims

What is claimed is:
1. An anodization method comprising the steps of: providing an object formed of an aluminum-copper alloy; providing an anodizing bath comprising a basic silicate solution; providing an AC power supply including a first electrode and a second electrode; placing the first electrode in contact with the anodizing bath; connecting the second electrode to the object; placing the object in the anodizing bath; applying a voltage to the first and second electrodes to maintain a current density of about 10 niA/ cm2 or less to form an anodized coating on the object; removing the object from the bath; and sealing the anodized coating on the object.
2. The anodization method of claim 1 wherein said step of applying a voltage to the first and second electrodes comprises the step of applying a DC voltage having an AC component to the first and second electrodes.
3. The anodization method of claim 2 wherein said step of applying a voltage having an AC component comprises the step of applying a voltage having a ratio of DC: AC components of about 5:1.
4. The anodization method of claim 2 including the additional step of chilling the anodizing bath to about 4° C.
5. The anodization method of claim 2 wherein said step of providing an object formed of an aluminum-copper alloy comprises the step of providing an object formed of aluminum-copper alloy plate.
6. The anodization method of claim 5 wherein said step of providing a plate of series
2000 aluminum alloy comprises the step of providing a plate formed from an alloy selected from the group consisting of AA2219, AA 2024 and AA2014.
7. The anodization method of claim 1 wherein said step of applying a voltage to the first and second electrodes to maintain a current density of about 10 mA/ cm2 or less to form an anodized coating on the object comprises the step of: increasing the voltage to maintain given current density of less than about 10 mA/ cm2 or less until the DC component of the voltage reaches about 320 V.
8. The anodization method of claim 1 wherein said applying a voltage to the first and second electrodes to maintain a current density of about 10 mA/ cm2 or less to form an anodized coating on the object comprises the steps of: increasing the voltage to maintain given current density of about 10 mA/ cm2 or less until the DC component of the voltage reaches about 300 V.
9. The anodization method of claim 1 wherein said step of sealing the anodized coating on the object comprises the step of coating the anodized coating with a para-p- xylylene polymer such as Parylene HT.
10. The anodization method of claim 1 wherein said basic silicate solution comprises sodium silicate and has a pH of about 13.
PCT/US2007/076891 2006-08-28 2007-08-27 Method for anodizing aluminum-copper alloy WO2008027835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82372806P 2006-08-28 2006-08-28
US60/823,728 2006-08-28

Publications (1)

Publication Number Publication Date
WO2008027835A1 true WO2008027835A1 (en) 2008-03-06

Family

ID=38754485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/076891 WO2008027835A1 (en) 2006-08-28 2007-08-27 Method for anodizing aluminum-copper alloy

Country Status (2)

Country Link
US (1) US20080047837A1 (en)
WO (1) WO2008027835A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105586623A (en) * 2014-10-21 2016-05-18 宁波江丰电子材料股份有限公司 Aluminum-copper alloy surface film plating method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8337936B2 (en) * 2008-10-06 2012-12-25 Biotronik Vi Patent Ag Implant and method for manufacturing same
WO2014009905A2 (en) * 2012-07-10 2014-01-16 Pct Protective Coating Technologies Ltd. Method of sealing pores of an oxidation layer
CN105401200B (en) * 2015-12-10 2018-03-02 国网河北能源技术服务有限公司 A kind of preparation method on Super-hydrophobic aluminium surface
CN112323115B (en) * 2020-11-04 2023-06-23 西安赛福斯材料防护有限责任公司 Method for preparing wear-resistant insulating film layer on surface of titanium alloy by micro-arc oxidation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3293158A (en) * 1963-09-17 1966-12-20 Mcneill William Anodic spark reaction processes and articles
US3956080A (en) * 1973-03-01 1976-05-11 D & M Technologies Coated valve metal article formed by spark anodizing
US4082626A (en) * 1976-12-17 1978-04-04 Rudolf Hradcovsky Process for forming a silicate coating on metal
SU617493A1 (en) * 1976-07-05 1978-07-30 Харьковский Ордена Ленина Политехнический Институт Им.В.И.Ленина Electrolyte for anode-plating of aluminium alloys
JPS5698495A (en) * 1980-01-09 1981-08-07 Hitachi Ltd Surface treatment method of magnesium or its alloy
JP2003080857A (en) * 2001-09-12 2003-03-19 Fuji Photo Film Co Ltd Support for lithographic printing plate and original plate for lithographic printing plate

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT309942B (en) * 1971-05-18 1973-09-10 Isovolta Process for anodic oxidation of objects made of aluminum or its alloys
JPS5334107B2 (en) * 1974-04-23 1978-09-19
US4133725A (en) * 1978-05-18 1979-01-09 Sanford Process Corporation Low voltage hard anodizing process
DE3808610A1 (en) * 1988-03-15 1989-09-28 Electro Chem Eng Gmbh PROCESS FOR SURFACE FINISHING OF MAGNESIUM AND MAGNESIUM ALLOYS
US5275713A (en) * 1990-07-31 1994-01-04 Rudolf Hradcovsky Method of coating aluminum with alkali metal molybdenate-alkali metal silicate or alkali metal tungstenate-alkali metal silicate and electroyltic solutions therefor
US5266412A (en) * 1991-07-15 1993-11-30 Technology Applications Group, Inc. Coated magnesium alloys
US5362569A (en) * 1993-03-22 1994-11-08 Bauman Albert J Anodizing and duplex protection of aluminum copper alloys
IL109857A (en) * 1994-06-01 1998-06-15 Almag Al Electrolytic process and apparatus for coating metals
US5720866A (en) * 1996-06-14 1998-02-24 Ara Coating, Inc. Method for forming coatings by electrolyte discharge and coatings formed thereby
CA2233339A1 (en) * 1997-03-26 1998-09-26 Rong Yue Coated subtrate and process for production thereof
US20010019778A1 (en) * 1997-09-10 2001-09-06 Seb S.A. Multilayer non-stick coating of improved hardness for aluminum articles and articles and culinary utensils incorporating such coating
JP4332297B2 (en) * 1997-12-17 2009-09-16 アイル・コート・リミテツド Method for applying a hard protective coating on an article made from an aluminum alloy
RU2124588C1 (en) * 1997-12-30 1999-01-10 Закрытое акционерное общество "Техно-ТМ" Process of microplasma oxidation of valve metals and their alloys and gear for its implementation
US6197178B1 (en) * 1999-04-02 2001-03-06 Microplasmic Corporation Method for forming ceramic coatings by micro-arc oxidation of reactive metals
FR2808291B1 (en) * 2000-04-26 2003-05-23 Mofratech ELECTROLYTIC OXIDATION PROCESS FOR OBTAINING A CERAMIC COATING ON THE SURFACE OF A METAL
US6916414B2 (en) * 2001-10-02 2005-07-12 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
US6893551B2 (en) * 2001-11-22 2005-05-17 International Advanced Research Centre For Powder Metallurgy And New Materials (Arci) Process for forming coatings on metallic bodies and an apparatus for carrying out the process
US6919012B1 (en) * 2003-03-25 2005-07-19 Olimex Group, Inc. Method of making a composite article comprising a ceramic coating
US7780838B2 (en) * 2004-02-18 2010-08-24 Chemetall Gmbh Method of anodizing metallic surfaces
US20060016690A1 (en) * 2004-07-23 2006-01-26 Ilya Ostrovsky Method for producing a hard coating with high corrosion resistance on articles made anodizable metals or alloys

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3293158A (en) * 1963-09-17 1966-12-20 Mcneill William Anodic spark reaction processes and articles
US3956080A (en) * 1973-03-01 1976-05-11 D & M Technologies Coated valve metal article formed by spark anodizing
SU617493A1 (en) * 1976-07-05 1978-07-30 Харьковский Ордена Ленина Политехнический Институт Им.В.И.Ленина Electrolyte for anode-plating of aluminium alloys
US4082626A (en) * 1976-12-17 1978-04-04 Rudolf Hradcovsky Process for forming a silicate coating on metal
JPS5698495A (en) * 1980-01-09 1981-08-07 Hitachi Ltd Surface treatment method of magnesium or its alloy
JP2003080857A (en) * 2001-09-12 2003-03-19 Fuji Photo Film Co Ltd Support for lithographic printing plate and original plate for lithographic printing plate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 197922, Derwent World Patents Index; AN 1979-42082B, XP002461878 *
R.G. RATEICK ET AL.: "Relationship of microstructured to fatigue strength loss in anodised aluminium-copper alloys", MATERIALS SCIENCE AND TECHNOLOGY, vol. 21, 2005, XP009093485 *
SADELER R: "Effect of a commercial hard anodizing on the fatigue property of a 2014-T6 aluminium alloy", JOURNAL OF MATERIALS SCIENCE, KLUWER ACADEMIC PUBLISHERS, BO, vol. 41, no. 18, 24 August 2006 (2006-08-24), pages 5803 - 5809, XP019399580, ISSN: 1573-4803 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105586623A (en) * 2014-10-21 2016-05-18 宁波江丰电子材料股份有限公司 Aluminum-copper alloy surface film plating method

Also Published As

Publication number Publication date
US20080047837A1 (en) 2008-02-28

Similar Documents

Publication Publication Date Title
KR101195458B1 (en) Method for treating the surface of metal
Snogan et al. Characterisation of sealed anodic films on 7050 T74 and 2214 T6 aluminium alloys
US20080047837A1 (en) Method for anodizing aluminum-copper alloy
FR2587370A1 (en) PROCESS FOR PRODUCING SLICED STEEL SLAB ETAMEE AND NICKELEE FOR SOLDERED PRESERVES
Peng et al. Preparation of anodic films on 2024 aluminum alloy in boric acid-containing mixed electrolyte
TWI424096B (en) Method for forming anodic oxide film
Rahimi et al. Comparison of corrosion and antibacterial properties of Al alloy treated by plasma electrolytic oxidation and anodizing methods
US4133725A (en) Low voltage hard anodizing process
US20030196907A1 (en) Method of anodizing a part made of aluminum alloy
KR100695999B1 (en) Anodizing method for matal surface using high-frequency pluse
WO2004063405A3 (en) Magnesium containing aluminum alloys and anodizing process
JP3152960B2 (en) Manufacturing method of aluminum or aluminum alloy material for vacuum equipment
EP1132501A2 (en) Anodized cryogenically treated aluminum
EA015400B1 (en) Procedure for anodising aluminium or aluminium alloys
CN1644760B (en) Manufacture of composite aluminum products
US3351540A (en) Method of improving the corrosion resistance of oxidized metal surfaces
US2666023A (en) Anodic coating of aluminum
RU2471020C1 (en) Application method of electrolytic copper coating to parts from aluminium and its alloys
JP2003041382A (en) Method for manufacturing eyeglasses frame
RU2771886C1 (en) Method for obtaining protective superhydrophobic coatings on aluminum alloys
CN108468077B (en) Magnesium alloy self-sealing anodic oxidation method
Kanagaraj et al. Anodising of aluminium in sulphamic acid electrolyte
Dayauc et al. The mechanical, corrosion and tribological properties of Al2O3 films grown by anodisation and MAO
RU2039850C1 (en) Method for anodizing made of aluminium alloys
Hou et al. A new, bright and hard aluminum surface produced by anodization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07841404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07841404

Country of ref document: EP

Kind code of ref document: A1