RU2000100332A - Оптический логический элемент и способы его соответствующего изготовления и оптической адресации, а также его использование в оптическом логическом устройстве - Google Patents

Оптический логический элемент и способы его соответствующего изготовления и оптической адресации, а также его использование в оптическом логическом устройстве

Info

Publication number
RU2000100332A
RU2000100332A RU2000100332/28A RU2000100332A RU2000100332A RU 2000100332 A RU2000100332 A RU 2000100332A RU 2000100332/28 A RU2000100332/28 A RU 2000100332/28A RU 2000100332 A RU2000100332 A RU 2000100332A RU 2000100332 A RU2000100332 A RU 2000100332A
Authority
RU
Russia
Prior art keywords
state
metastable
bacteriorhodopsin
wavelength
light
Prior art date
Application number
RU2000100332/28A
Other languages
English (en)
Other versions
RU2186418C2 (ru
Inventor
Ханс Гуде Гудесен
Геирр И. ЛЕЙСТАД
Пер-Эрик Нордаль
Original Assignee
Тин Филм Электроникс Аса
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NO972574A external-priority patent/NO304859B1/no
Application filed by Тин Филм Электроникс Аса filed Critical Тин Филм Электроникс Аса
Publication of RU2000100332A publication Critical patent/RU2000100332A/ru
Application granted granted Critical
Publication of RU2186418C2 publication Critical patent/RU2186418C2/ru

Links

Claims (34)

1. Мультистабильный оптический логический элемент, содержащий светочувствительный органический материал (1), который может подвергнуться фотохимическому циклу при облучении светом одной или более подходящих длин волн, в котором фотохимический цикл в дополнение к физическому основному состоянию содержит одно или более метастабильных физических состоянии, в котором физическое состояние логического элемента изменяется в фотохимическом цикле посредством возбуждения перехода из одного метастабильного состояния в другое метастабильное состояние, или посредством возбуждения перехода из основного состояния в метастабильное состояние и наоборот, в котором физическому состоянию присваивается определенное логическое значение, и в котором изменение физического состояния логического элемента вызывает изменение его логического значения и происходит посредством оптической адресации логического элемента при записи, считывании, сохранении, стирании и переключении присвоенного логического значения, отличающийся тем, что логический элемент в исходном состоянии, а также перед тем как к нему происходит адресация, находится в метастабильном состоянии, созданном заранее, со значительной долей молекулярной заселенности упомянутого органического материала в упомянутом метастабильном состоянии.
2. Мультистабильный оптический логический элемент, который является непосредственно адресуемым с помощью адресации, происходящей к нему через оптические излучатели и детекторы непосредственно без вмешательства активных оптических средств, содержащий светочувствительный органический материал (1), который может подвергнуться фотохимическому циклу при облучении светом одной или более подходящих длин волн, в котором фотохимический цикл в дополнение к физическому основному состоянию содержит одно или более метастабильных физических состояний, в котором физическое состояние логического элемента изменяется в фотохимическом цикле посредством возбуждения перехода из одного метастабильного состояния в другое метастабильное состояние, или посредством возбуждения перехода из основного состояния в метастабильное состояние и наоборот, в котором физическому состоянию присваивается определенное логическое значение, и в котором изменение физического состояния логического элемента вызывает изменение его логического значения и происходит посредством оптической адресации логического элемента при записи, считывании, сохранении, стирании и переключении присвоенного логического значения, отличающийся тем, что логический элемент в исходном состоянии, а также перед тем как к нему происходит адресация, находится в метастабильном состоянии, созданном заранее, со значительной долей молекулярной заселенности упомянутого органического материала в упомянутом метастабильном состоянии, что светочувствительный органический материал (1) обеспечивается в структуре, в значительной степени подобной пленке, или в виде структуры, подобной пленке, и что в смежной или в этой же структуре (1) для оптической адресации светочувствительного органического материала обеспечивается по меньшей мере один источник (2) хроматического света, и по меньшей мере один цветочувствительный оптический детектор (5) для детектирования физического/логического состояния светочувствительного органического материала.
3. Оптический логический элемент по п.1 или 2, отличающийся тем, что этим исходным метастабильным состоянием является метастабильное состояние, которое наиболее близко к основному состоянию в конце фотохимического цикла.
4. Оптический логический элемент по п.1 или 2, отличающийся тем, что светочувствительным материалом являются молекулы протеина или соединения, подобного протеину.
5. Оптический логический элемент по п.4 отличающийся тем, что протеином является бактериородопсин или относящееся к нему соединение.
6. Оптический логический элемент по п.5, отличающийся тем, что исходным метастабильным состоянием является состояние М бактериородопсина.
7. Оптический логический элемент по п.5, отличающийся тем, что исходным метастабильным состоянием является состояние Q бактериородопсина.
8. Оптический логический элемент по п.2, отличающийся тем, что структура, подобная пленке, содержит матрицу оптически прозрачного материала, и что светочувствительный материал (1) обеспечивается в матрице.
9. Оптический логический элемент по п.8, отличающийся тем, что матрица представляет собой оптически прозрачный полимер.
10. Оптический логический элемент по п.2, отличающийся тем, что источником (2) хроматического цвета является источник света с перестраиваемой длиной волны.
11. Оптический логический элемент по п.10, отличающийся тем, что источником (2) света с перестраиваемой длиной волны является светоизлучающий полимерный диод, причем перестройка длины волны излучения осуществляется посредством управления напряжением возбуждения диода.
12. Оптический логический элемент по п.2, в котором обеспечивается более одного источника (2) хроматического цвета, отличающийся тем, что источники (2) хроматического цвета настраиваются на длины волн или спектральные полосы мощности, которые соответственно согласуются с длинами волн возбуждения или с полосами поглощения основного состояния, а также с одним или более метастабильными состояниями фотохимического цикла светочувствительного материала.
13. Оптический логический элемент по п.2, отличающийся тем, что цветочувствительным оптическим детектором (5) является мультиспектральный оптический детектор.
14. Оптический логический элемент по п.2, отличающийся тем, что цветочувствительным оптическим детектором (5) является светопоглощающий полимерный диод.
15. Оптический логический элемент по п.2, в котором обеспечивается более одного цветочувствительного оптического детектора, отличающийся тем, что детекторы настраиваются на длины волн или спектральные полосы, которые соответственно согласуются с длинами волн возбуждения или с полосами поглощения основного состояния, а также с одним или более метастабильным состоянием фотохимического цикла.
16. Способ изготовления светочувствительного органического материала, который может подвергнуться фотохимическому циклу при облучении светом одной или более подходящих длин волн, в котором фотохимический цикл в дополнение к основному физическому состоянию содержит одно или более метастабильных физических состояний, в котором светочувствительный органический материал используется в качестве переключаемого носителя или носителя данных в мультистабильном логическом элементе по п.1 или 2, отличающийся тем, что облучают светочувствительный органический материал в основном состоянии светом со спектральной полосой мощности или длиной волны, которая инициирует фотохимический цикл и создает желательное исходное метастабильное состояние в фотохимическом цикле посредством упомянутого облучения, происходящего в течение достаточно длительного времени, для того, чтобы заставить значительную долю молекулярной заселенности органического материала перейти в упомянутое исходное метастабильное состояние, причем упомянутое исходное метастабильное состояние присваивается определенному логическому значению логического элемента.
17. Способ по п.16, в котором светочувствительным органическим материалом является бактериородопсин, отличающийся тем, что состояние М бактериородопсина создают как желательное исходное метастабильное состояние.
18. Способ по п.17, отличающийся тем, что фотохимический цикл инициируют и состояние М создают посредством облучения бактериородопсина светом со спектральной полосой мощности, которая соответствует полосе поглощения основного состояния bR, или светом с длиной волны, которая соответствует длине волны возбуждения основного состояния bR, причем облучение заканчивают, когда значительная доля молекул бактериородопсина достигла состояния М.
19. Способ по п.16, в котором светочувствительным органическим материалом является бактериородопсин, отличающийся тем, что состояние Q бактериородопсина создают как желательное исходное метастабильное состояние.
20. Способ по п.19, отличающийся тем, что фотохимический цикл инициируют и состояние Q создают посредством облучения бактериородопсина светом со спектральной полосой мощности, которая в значительной степени соответствует полосе поглощения основного состояния bR и состояния О бактериородопсина, причем упомянутое облучение продолжают до того момента, когда значительная доля молекул бактериородопсина достигает состояния Q.
21. Способ по п.19, отличающийся тем, что фотохимический цикл инициируют и состояние Q создают посредством облучения бактериородопсина светом двух различных длин волн, причем первая длина волны в значительной степени соответствует длине волны возбуждения основного состояния bR бактериородопсина, и вторая длина волны в значительной степени соответствует длине волны возбуждения состояния О бактериородопсина, причем упомянутое облучение продолжают до того момента, когда значительная доля молекул бактериородопсина достигает состояния Q.
22. Способ оптической адресации оптического логического элемента по п.1 или 2, со светочувствительным органическим материалом, изготовленным по способу по п.16, такой, что оптический логический элемент находится в исходном метастабильном состоянии, в котором оптическая адресация содержит шаги записи, считывания, сохранения, стирания и переключения логического значения, присвоенного оптическому логическому элементу, отличающийся тем, что он включает в себя:
(а) шаг записи и сохранения, содержащий возбуждение перехода из исходного метастабильного состояния в другое метастабильное состояние или в основное состояние, если логическое значение, присвоенное в предыдущем состоянии, должно быть изменено на логическое значение, присвоенное другому метастабильному состоянию или основному состоянию, а в противоположном случае - сохранение неизменным исходного метастабильного состояния;
(б) шаг считывания, содержащий детектирование фактического состояния оптического логического элемента для того, чтобы определить присвоенное логическое значение;
(в) шаг стирания, содержащий возбуждение перехода из основного состояния, если оптический логический элемент находится в этом состоянии, еще раз инициируя фотохимический цикл, который переключает оптический логический элемент обратно в метастабильное состояние, или, если оптический логический элемент уже находится в исходном метастабильном состоянии, сохранение последнего неизменным, или возбуждение перехода из другого метастабильного состояния, если оптический логический элемент находится в этом состоянии, и обратно в исходное метастабильное состояние, либо сначала обратно в основное состояние, для того, чтобы затем инициировать фотохимический цикл, который переключает оптический логический элемент обратно в исходное метастабильное состояние, либо, без прохождения через основное состояние, непосредственно к исходному метастабильному состоянию; и
(г) шаг переключения, содержащий возбуждение перехода из текущего состояния в другое состояние с одновременным или немедленным последующим детектированием другого состояния.
23. Способ по п.22, отличающийся тем, что переход из одного состояния в другое состояние на шаге записи и сохранения возбуждается посредством облучения светом со спектральной полосой мощности или длиной волны, которые настраиваются соответственно на полосу поглощения или длину волны возбуждения исходного метастабильного состояния.
24. Способ по п.23, в котором светочувствительным органическим материалом является бактериородопсин, и исходным метастабильным состоянием является состояние Q бактериородопсина, отличающийся тем, что спектральную полосу мощности или длину волны настраивают соответственно на полосу поглощения или длину волны возбуждения состояния Q.
25. Способ по п.22, отличающийся тем, что детектирование действительного состояния оптического логического элемента для определения присвоенного логического значения на шаге считывания возбуждают посредством облучения светом на спектральной полосе мощности или длине волны, которые настраивают соответственно на полосу поглощения или длину волны возбуждения основного состояния, причем поглощение детектируется детектором, настроенным на полосу поглощения.
26. Способ по п.25, в котором, светочувствительным органическим материалом является бактериородопсин, отличающийся тем, что спектральную полосу мощности или длину волны настраивают соответственно на полосу поглощения и/или длину волны возбуждения основного состояния bR бактериородопсина.
27. Способ по п.26, отличающийся тем, что облучение осуществляют с помощью импульса с интенсивностью настолько низкой или с длительностью настолько короткой, что фотохимический цикл из основного состояния bR по существу не инициируется.
28. Способ по п.22, отличающийся тем, что переход из основного состояния в исходное метастабильное состояние на шаге стирания производят посредством непрерывного облучения светом со спектральной полосой мощности или длиной волны, которые настраивают соответственно на полосу поглощения или длину волны возбуждения основного состояния таким образом, что фотохимический цикл инициируется еще раз.
29. Способ по п.28, в котором светочувствительным органическим материалом является бактериородопсин, и исходным метастабильным состоянием является состояние Q бактериородопсина, отличающийся тем, что спектральную полосу мощности или длину волны настраивают соответственно на полосы поглощения или длины волны возбуждения основного состояния bR бактериородопсина и состояния О бактериородопсина.
30. Способ по п.29, отличающийся тем, что облучение осуществляют непрерывно или импульсами с интенсивностью или длительностью, достаточными для того, чтобы переместить значительную долю молекул из основного состояния бактериородопсина в состояние Q.
31. Способ по п.22, отличающийся тем, что переход из текущего состояния в другое состояние с одновременным или немедленным последующим детектированием второго состояния на шаге переключения возбуждают, соответственно, посредством облучения светом на спектральной полосе мощности или длине волны, которые настраивают соответственно на полосу поглощения или длину волны возбуждения текущего состояния, и посредством облучения светом на спектральной полосе мощности или длине волны, которые настраивают соответственно на полосу поглощения второго состояния, причем поглощение света в упомянутом втором состоянии, детектируется детектором, настроенным на эту полосу поглощения.
32. Способ по п.31, в котором светочувствительным органическим материалом является бактериородопсин, в котором первым состоянием является либо одно из метастабильных состояний М или Q бактериородопсина и вторым состоянием является основное состояние bR бактериородопсина, либо первым состоянием является основное состояние bR и вторым состоянием является одно из метастабильных состояний М или Q, либо первым состоянием является метастабильное состояние Q, а вторым состоянием является метастабильное состояние М, либо первым состоянием является метастабильное состояние М, а вторым состоянием является метастабильное состояние Q, отличающийся тем, что
а) переход из состояния М или Q в основное состояние bR возбуждают посредством облучения светом, настроенным на полосу поглощения или длину волны возбуждения состояний М или Q, а детектирование состояния bR осуществляют со светом, настроенным на полосу поглощения состояния bR,
б) переход из основного состояния bR в состояние М или в состояние Q возбуждают посредством облучения светом, соответственно настроенным на полосу поглощения или длину волны возбуждения bR, настроенным на полосы поглощения или длины волн возбуждения для состояния bR и состояния О бактериородопсина, причем облучение соответственно заканчивают, когда значительная доля молекул, находящихся в состоянии bR, достигла состояния М, или продолжают до того момента, когда значительная доля молекул, находящихся в состоянии bR, достигнет состояния Q, а детектирование состояний М или Q осуществляют со светом, настроенным на полосу поглощения для состояний М или Q, соответственно,
в) переход из состояния Q в состояние М возбуждают посредством облучения светом, настроенным на полосу поглощения и длину волны возбуждения состояния Q, таким образом, что состояние Q переходит та основное состояние bR, после чего новый фотохимический цикл инициируют посредством облучения светом, настроенным на полосу поглощения или длину волны возбуждения bR, причем облучение прерывают, когда значительная доля молекул, находящихся в состоянии bR, достигает состояния М, и детектирование состояния М осуществляют со светом, настроенным на полосу поглощения состояния М, и
г) переход из состояния М в состояние Q, возбуждаемый I) посредством облучения светом, настроенным на полосу поглощения или длину волны возбуждения М, до того момента, когда молекулы, находящиеся в состоянии М, в основном перешли в состояние bR, и, посредством последующего облучения светом, соответственно настроенным на полосы поглощения состояния bR и состояния О, которое следует после состояния М в фотохимическом цикле, или на длины волн возбуждения состояния bR и состояния О, причем облучение продолжают до того момента, когда значительная доля молекул, находящихся в состоянии bR, достигнет состояния Q, или II) посредством облучения светом, настроенным соответственно на полосу поглощения или длину волны возбуждения состояния О, которое следует после состояния М в фотохимическом цикле, причем облучение продолжают до того момента, когда молекулы, находящиеся в состоянии М, в основном, достигли состояния Q, и детектирование в любом случае осуществляют со светом, настроенным на полосу поглощения Q.
33. Способ по п.32, отличающийся тем, что детектирование осуществляют с помощью импульса с интенсивностью настолько низкой или с длительностью настолько короткой, чтобы молекулы, находящиеся в этом состоянии, которое должно детектироваться, в основном оставались в этом состоянии.
34. Использование мультистабильного оптического логического элемента по п. 1 или 2, и способа оптической адресации мультистабильного оптического логического элемента по п.22 в оптическом логическом устройстве для хранения и обработки данных.
RU2000100332/28A 1997-06-06 1998-06-05 Оптический логический элемент и способы его соответствующего изготовления и оптической адресации, а также его использование в оптическом логическом устройстве RU2186418C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO972574 1997-06-06
NO972574A NO304859B1 (no) 1997-06-06 1997-06-06 Optisk logisk element og fremgangsmÕter til henholdsvis dets preparering og optiske adressering, samt anvendelse derav i en optisk logisk innretning

Publications (2)

Publication Number Publication Date
RU2000100332A true RU2000100332A (ru) 2001-10-27
RU2186418C2 RU2186418C2 (ru) 2002-07-27

Family

ID=19900788

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000100332/28A RU2186418C2 (ru) 1997-06-06 1998-06-05 Оптический логический элемент и способы его соответствующего изготовления и оптической адресации, а также его использование в оптическом логическом устройстве

Country Status (12)

Country Link
US (1) US6219160B1 (ru)
EP (1) EP0986775B1 (ru)
JP (1) JP2002504241A (ru)
KR (1) KR100436340B1 (ru)
CN (1) CN1184525C (ru)
AT (1) ATE359538T1 (ru)
AU (1) AU728670B2 (ru)
CA (1) CA2294164C (ru)
DE (1) DE69837540T2 (ru)
NO (1) NO304859B1 (ru)
RU (1) RU2186418C2 (ru)
WO (1) WO1998055897A2 (ru)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO972803D0 (no) * 1997-06-17 1997-06-17 Opticom As Elektrisk adresserbar logisk innretning, fremgangsmåte til elektrisk adressering av samme og anvendelse av innretning og fremgangsmåte
US6704133B2 (en) 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
US6753999B2 (en) * 1998-03-18 2004-06-22 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US7256766B2 (en) * 1998-08-27 2007-08-14 E Ink Corporation Electrophoretic display comprising optical biasing element
JP4744757B2 (ja) * 1999-07-21 2011-08-10 イー インク コーポレイション アクティブマトリクス駆動電子ディスプレイの性能を高めるための蓄電キャパシタの使用
AU7094400A (en) 1999-08-31 2001-03-26 E-Ink Corporation A solvent annealing process for forming a thin semiconductor film with advantageous properties
EP1208603A1 (en) 1999-08-31 2002-05-29 E Ink Corporation Transistor for an electronically driven display
JP3325881B2 (ja) * 2000-09-25 2002-09-17 科学技術振興事業団 有機光電流増倍デバイス
US6687149B2 (en) 2001-02-05 2004-02-03 Optabyte, Inc. Volumetric electro-optical recording
US6756620B2 (en) * 2001-06-29 2004-06-29 Intel Corporation Low-voltage and interface damage-free polymer memory device
US6624457B2 (en) 2001-07-20 2003-09-23 Intel Corporation Stepped structure for a multi-rank, stacked polymer memory device and method of making same
US6967640B2 (en) * 2001-07-27 2005-11-22 E Ink Corporation Microencapsulated electrophoretic display with integrated driver
US7202847B2 (en) 2002-06-28 2007-04-10 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US8125501B2 (en) * 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US6873560B2 (en) * 2002-09-23 2005-03-29 Paul D. Pavlichek Optical memory device
US7049153B2 (en) * 2003-04-23 2006-05-23 Micron Technology, Inc. Polymer-based ferroelectric memory
US20060187795A1 (en) * 2004-10-14 2006-08-24 Steve Redfield Branch photocycle technique for holographic recording in bacteriorhodopsin
US7123407B2 (en) * 2005-01-20 2006-10-17 Korea Institute Of Science And Technology Apparatus and method for realizing all-optical NOR logic device using gain saturation characteristics of a semiconductor optical amplifier
US20070112103A1 (en) * 2005-10-31 2007-05-17 Zhang-Lin Zhou Molecular system and method for reversibly switching the same
CN112749808B (zh) * 2021-01-14 2022-10-25 华翊博奥(北京)量子科技有限公司 一种寻址操控系统和寻址操控方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288861A (en) * 1977-12-01 1981-09-08 Formigraphic Engine Corporation Three-dimensional systems
JPS60185229A (ja) * 1984-03-02 1985-09-20 Mitsubishi Electric Corp 情報の記録・再生・消去方法
FR2595145B1 (fr) * 1986-02-28 1989-03-31 Thomson Csf Systeme de visualisation a memoire
GB2211955B (en) * 1987-11-04 1991-09-11 Stc Plc Optical logic device
JPH0381756A (ja) * 1989-08-25 1991-04-08 Fuji Photo Film Co Ltd 光記録材料
JPH03237769A (ja) * 1989-12-04 1991-10-23 Fuji Photo Film Co Ltd カラー画像受光素子
JP2632063B2 (ja) * 1990-03-02 1997-07-16 富士写真フイルム株式会社 カラー画像受光素子
IT1248697B (it) * 1990-06-05 1995-01-26 Enichem Spa Materiale polimerico ad effetto termo-ottico per un dispositivo ottico-bistabile
JPH04312080A (ja) * 1991-04-11 1992-11-04 Fuji Photo Film Co Ltd 光電変換素子による像情報検出方法
US5253198A (en) * 1991-12-20 1993-10-12 Syracuse University Three-dimensional optical memory
SE501106C2 (sv) * 1992-02-18 1994-11-14 Peter Toth Optiskt minne
DE4226868A1 (de) * 1992-08-13 1994-02-17 Consortium Elektrochem Ind Zubereitungen von Bakteriorhodopsin-Varianten mit erhöhter Speicherzeit und deren Verwendung
SE506019C2 (sv) * 1994-05-17 1997-11-03 Forskarpatent I Linkoeping Ab Ljuskälla av konjugerade polymerer med spänningsstyrd färg samt metod för tillverkning av ljuskällan
US5559732A (en) 1994-12-27 1996-09-24 Syracuse University Branched photocycle optical memory device
US6005791A (en) 1996-06-12 1999-12-21 Gudesen; Hans Gude Optical logic element and optical logic device
US5922843A (en) * 1996-10-15 1999-07-13 Syracuse University Analog bacteriorhodopsin molecules
US6046925A (en) * 1997-04-14 2000-04-04 The Regents Of The University Of California Photochromic fluorescent proteins and optical memory storage devices based on fluorescent proteins

Similar Documents

Publication Publication Date Title
RU2000100332A (ru) Оптический логический элемент и способы его соответствующего изготовления и оптической адресации, а также его использование в оптическом логическом устройстве
US4101976A (en) Frequency selective optical data storage system
JP3198113B2 (ja) 光論理素子および光論理機構
RU2186418C2 (ru) Оптический логический элемент и способы его соответствующего изготовления и оптической адресации, а также его использование в оптическом логическом устройстве
US5346789A (en) Oriented biological material for optical information storage and processing
US5268862A (en) Three-dimensional optical memory
WO1998028740A1 (en) Photo-chemical generation of stable fluorescent derivatives of rhodamine b
US20080213625A1 (en) Optical Data Storage and Retrieval Based on Fluorescent and Photochromic Components
JP2003536191A (ja) データ記憶装置
EP0503428B1 (en) Optical recording medium and method for using the same
JPH05169820A (ja) 書換型フォトクロミック光ディスク
RU2172975C2 (ru) Оптический логический элемент и оптическое логическое устройство
US5825725A (en) Method and apparatus for reversible optical data storage
Dvornikov et al. Ultra-high-density non-destructive readout, rewritable molecular memory.
Wang et al. Long M-State Lifetime Bacteriorhodopsin Films as Optical Cache Memory Devices
Yang et al. Spectroscopic properties of azo-dye doped PMMA films studied by multi-photon absorption
Dvornikov et al. Advances in 3D two-photon optical storage devices
WO1999062070A1 (en) Method and apparatus for three-dimensional storage of data
Dvornikov et al. Materials and methods for 3D optical storage memory
JPH04222927A (ja) 光読出し方式
JPH06259809A (ja) 光メモリ素子
KR20000016570A (ko) 광학식 논리 엘리먼트 및 광학식 논리 디바이스
Dvornikov et al. Studies of new nondestructive read-out media for two-photon 3D high-density storage
JPS62160283A (ja) 書換型ヒ−トモ−ド光記憶媒体
JPH052767A (ja) 光記録媒体