RU176854U1 - Система для плазменно-дуговой резки, включающая трубки для охладителя и другие расходные компоненты - Google Patents

Система для плазменно-дуговой резки, включающая трубки для охладителя и другие расходные компоненты Download PDF

Info

Publication number
RU176854U1
RU176854U1 RU2017120100U RU2017120100U RU176854U1 RU 176854 U1 RU176854 U1 RU 176854U1 RU 2017120100 U RU2017120100 U RU 2017120100U RU 2017120100 U RU2017120100 U RU 2017120100U RU 176854 U1 RU176854 U1 RU 176854U1
Authority
RU
Russia
Prior art keywords
cooler
electrode
tube
length
longitudinal axis
Prior art date
Application number
RU2017120100U
Other languages
English (en)
Inventor
Мадхура С. МИТРА
Соумья МИТРА
Брайан Дж. КАРРИЕР
Original Assignee
Гипертерм, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Гипертерм, Инк. filed Critical Гипертерм, Инк.
Application granted granted Critical
Publication of RU176854U1 publication Critical patent/RU176854U1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/28Cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/006Control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/003Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/28Measuring or recording actual exposure time; Counting number of exposures; Measuring required exposure time
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3405Arrangements for stabilising or constricting the arc, e.g. by an additional gas flow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3436Hollow cathodes with internal coolant flow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3468Vortex generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/38Guiding or centering of electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)
  • Nozzles (AREA)

Abstract

Предлагается универсальная трубка для охладителя для плазменной горелки с жидкостным охлаждением, которая содержит:по существу полое вытянутое тело, имеющее ближний конец, дальний конец и проходящую через них продольную ось, причем тело трубки для охладителя выполнено с возможностью обеспечения протекания потока охладителя в электрод плазменной горелки;область раструба на дальнем конце трубки для охладителя;множество ножек на дальнем конце области раструба, выполненных с возможностью физического контакта с внутренней поверхностью электрода;уплотнительное кольцо на ближнем конце трубки для охладителя; ичасть с увеличенным радиальным размером, которая расположена между ближним концом трубки для охладителя и уплотнительным кольцом и выполнена с возможностью смещающего воздействия на нее в осевом направлении к электроду, причем часть с увеличенным радиальным размером имеет поверхность радиального выравнивания, протяженность которой вдоль продольной оси составляет по меньшей мере приблизительно 0,25 дюйма.

Description

Область техники
Настоящая полезная модель в общем относится к области систем и процессов плазменно-дуговой резки. Если говорить более конкретно, полезная модель относится к усовершенствованным расходным компонентам (например, трубкам для охладителя).
Уровень техники
Плазменные горелки широко используются для обработки материалов при высокой температуре (например, нагрев, резание, строгание и маркирование). Если говорить в общем, плазменная горелка включает головку, электрод, установленный в головке, эмитирующий вкладыш, расположенный в центральном отверстии электрода, сопло, имеющее центральное выходное отверстие и установленное в головке, защитный элемент, электрические соединения, каналы для охлаждения и каналы для текучих сред, обеспечивающих управление дугой (например, плазмообразующего газа). Для управления режимами протекания текучей среды в плазменной камере, созданной между электродом и соплом, может использоваться завихрительное кольцо. В случае плазменных горелок с жидкостным охлаждением, в горелке может быть установлена трубка для охладителя для доставки жидкого охладителя к различным расходным компонентам, находящимся в наконечнике горелки, чтобы предотвратить перегрев. В некоторых горелках для удержания сопла и/или завихрительного кольца на месте в плазменной горелке может использоваться закрепляющий колпачок. Во время работы горелка создает плазменную дугу, которая представляет собой сжатую струю ионизированного газа с высокой температурой и достаточной кинетической энергией, чтобы способствовать удалению расплавленного металла. Газы, используемые в горелке, могут быть химически неактивными (например, аргон или азот) или химически активными (например, кислород или воздух).
В существующих плазменных горелках с жидкостным охлаждением требуется использовать разные трубки для охладителя для соответствия электродам разных размеров, предназначенным для разных процессов резания. Например, для процесса резания при электрическом токе 80 А может потребоваться установка более длинного электрода, чем для процесса резания при электрическом токе 300 А, что делает необходимым использование разных трубок для охладителя для соответствия электродам разной длины. Таким образом, имеется потребность в усовершенствованиях для упрощения частей горелки и уменьшения числа расходных компонентов, устанавливаемых на тело горелки и/или снимаемых с него при изменении процесса резания.
Сущность полезной модели
Таким образом, задачей настоящей полезной модели является предложить трубку для жидкого охладителя, которая совместима с расходными компонентами (например, электродами) для разных процессов, что позволяет снизить сложность установки и удаления компонентов горелки. В некоторых вариантах предлагается универсальная трубка для охладителя, которую можно использовать с электродами разных размеров, что позволяет устранить необходимость в приобретении разных трубок для охладителя для разных процессов резания.
Согласно полезной модели предлагается универсальная трубка для охладителя, применяемая в плазменной горелке с жидкостным охлаждением. Трубка для охладителя включает, по существу, полое вытянутое тело, имеющее ближний конец, дальний конец и проходящую через них продольную ось. Тело трубки для охладителя обеспечивает протекание потока охладителя в электрод плазменной горелки. Трубка для охладителя имеет область раструба на ее дальнем конце и множество ножек на дальнем конце области раструба. Ножки из упомянутого множества выполнены с возможностью физического контакта с внутренней поверхностью электрода. Трубка для охладителя также имеет уплотнительное кольцо на ее ближнем конце и часть с увеличенным радиальным размером, которая находится между ближним концом этой трубки и уплотнительным кольцом и на которую можно оказывать смещающее воздействие в осевом направлении к электроду. Часть с увеличенным радиальным размером имеет поверхность радиального выравнивания, протяженность которой вдоль продольной оси составляет, по меньшей мере, приблизительно 0,25 дюйма.
В некоторых вариантах протяженность поверхности радиального выравнивания вдоль продольной оси составляет, по меньшей мере, 0,25 дюйма. Например, протяженность поверхности радиального выравнивания вдоль продольной оси составляет приблизительно 0,4 дюйма. В качестве другого примера, протяженность поверхности радиального выравнивания вдоль продольной оси составляет приблизительно 0,5 дюйма.
В некоторых вариантах длина каждой из множества ножек, измеряемая вдоль продольной оси, составляет приблизительно 0,03 дюйма.
В некоторых вариантах на часть с увеличенным радиальным размером в трубке для охладителя можно воздействовать для изменения осевого расстояния в зависимости от длины электрода. Осевое расстояние измеряют между уплотнительным кольцом и ближним концом электрода. В некоторых вариантах осевое расстояние больше для электрода, имеющего меньшую длину.
В некоторых вариантах плазменную горелку с универсальной трубкой для охладителя задействуют при электрическом токе приблизительно 80 А. В некоторых вариантах плазменную горелку с универсальной трубкой для охладителя задействуют при электрическом токе приблизительно 300 А.
Трубка согласно полезной модели применяется следующим образом. Трубка для охладителя устанавливается в плазменную горелку, причем эта трубка имеет уплотнительное кольцо на ее ближнем конце, и устанавливается первый электрод в плазменную горелку таким образом, чтобы дальний конец трубки для охладителя находился во внутренней полости этого электрода. Подается первый поток охладителя в плазменную горелку через полое тело трубки для охладителя и смещающее воздействие при помощи первого потока охладителя на поверхность для воздействия на трубке для охладителя относительно первого электрода, так что трубка для охладителя перемещается в направлении вдоль продольной оси для контакта с первым электродом. Воздействие при помощи первого потока охладителя задает первое осевое расстояние между уплотнительным кольцом трубки для охладителя и ближним концом первого электрода. Удаляется первый электрод из плазменной горелки, устанавливается второй электрод в плазменную горелку таким образом, чтобы дальний конец трубки для охладителя находился во внутренней полости этого электрода, и подается второй поток охладителя в плазменную горелку через полое тело трубки для охладителя. Дополнительно оказывается смещающее воздействие при помощи второго потока охладителя на поверхность для воздействия на трубке для охладителя относительно второго электрода, в результате чего трубка для охладителя перемещается в направлении вдоль продольной оси для контакта со вторым электродом. Воздействие при помощи второго потока охладителя задает второе осевое расстояние между уплотнительным кольцом трубки для охладителя и ближним концом второго электрода. Разница между первым расстоянием и вторым расстоянием составляет, по меньшей мере, приблизительно 0,25 дюйма.
В некоторых вариантах первый электрод имеет первую длину, измеряемую вдоль продольной оси, и второй электрод имеет вторую длину, измеряемую вдоль продольной оси, причем первая длина меньше второй длины. В некоторых вариантах первое расстояние больше второго расстояния на приблизительно 0,25 дюйма или более.
В некоторых вариантах первый электрод имеет первую длину, измеряемую вдоль продольной оси, и второй электрод имеет вторую длину, измеряемую вдоль продольной оси, причем первая длина больше второй длины. В некоторых вариантах первое расстояние меньше второго расстояния на приблизительно 0,25 дюйма или более.
В некоторых вариантах разница между первым расстоянием и вторым расстоянием составляет приблизительно 0,37 дюйма.
В некоторых вариантах трубка для охладителя дополнительно имеет поверхность радиального выравнивания на ее ближнем конце. Протяженность поверхности радиального выравнивания вдоль продольной оси может составлять, по меньшей мере, 0,25 дюйма. Например, протяженность поверхности радиального выравнивания вдоль продольной оси составляет приблизительно 0,4 дюйма. В качестве другого примера, протяженность поверхности радиального выравнивания вдоль продольной оси составляет приблизительно 0,5 дюйма. В некоторых вариантах протяженность поверхности радиального выравнивания вдоль продольной оси больше первого расстояния или второго расстояния.
При применении трубки одна или более ножек выравнивания на дальнем конце трубки для охладителя может/могут приводиться в контакт с внутренней поверхностью в полости первого или второго электрода во время смещения. В некоторых вариантах каждая ножка выравнивания трубки для охладителя имеет длину, измеряемую вдоль продольной оси, которая составляет приблизительно 0,03 дюйма.
Краткое описание чертежей
Описанные выше преимущества полезной модели и ее дополнительные преимущества могут быть лучше поняты при ознакомлении с приведенным далее описанием с обращением к сопровождающим чертежам. Чертежи необязательно выполнены в масштабе, так как ударение, в основном, делается на иллюстрирование принципов полезной модели.
На Фиг.1 приведен разрез плазменной горелки с жидкостным охлаждением, имеющей универсальную трубку для охладителя, согласно примерному варианту реализации настоящей полезной модели.
На Фиг.2 приведен разрез другой плазменной горелки с жидкостным охлаждением, в которой установлена универсальная трубка для охладителя, показанная на Фиг.1, согласно примерному варианту реализации настоящей полезной модели.
На Фиг.3а и 3b приведены, соответственно, общий вид и разрез универсальной трубки для охладителя, показанной на Фиг.1 и 2, согласно примерному варианту реализации настоящей полезной модели.
На Фиг.4 приведена схема применения универсальной трубки для охладителя, показанной на Фиг.1 и 2, согласно примерному варианту реализации настоящей полезной модели.
Подробное описание вариантов реализации
На Фиг.1 приведен разрез плазменной горелки 100 с жидкостным охлаждением, имеющей универсальную трубку 140 для охладителя, согласно примерному варианту реализации настоящей полезной модели. Плазменная горелка 100 включает тело 102, соединенное с трубкой 140, и наконечник 104, имеющий множество расходных компонентов, содержащих, например, электрод 105, сопло 110, внутренний закрепляющий колпачок 115, внешний закрепляющий колпачок 116, завихрительное кольцо 120 и защитный элемент 125. Как изображено, электрод 105 имеет вытянутое тело с ближним концом 162 и дальним концом 160. На дальнем конце 160 вытянутого тела электрода 105 имеется эмитирующий вкладыш 186, установленный так, чтобы эмитирующая поверхность была открыта. Вкладыш 186 может быть изготовлен из гафния или других материалов, которые обладают подходящими физическими свойствами, включая стойкость к коррозии и высокую способность к термоионной эмиссии. На внутренней поверхности электрода 105 на его дальнем конце 160 создана полость 154 для приема, по меньшей мере, дальней части трубки 140 для охладителя. В некоторых вариантах в полости 154 создана ступенька, или выступ, 170, которая предназначена для ориентирования и выравнивания трубки 140 для охладителя и обеспечивает протекание жидкого охладителя из этой трубки по окружности дальней части электрода 105, в которой удерживается эмитирующий вкладыш 186, что позволяет охлаждать этот вкладыш.
Сопло 110 находится на расстоянии от электрода 105 и имеет центральное выходное отверстие 106. Между соплом 110 и электродом 105 создан диффузор 188. Завихрительное кольцо 120 установлено вокруг электрода 105 и обеспечивает создание тангенциального компонента скорости протекания потока плазмообразующего газа, что позволяет задать вихревой режим протекания плазмообразующего газа. Внутренний закрепляющий колпачок 115 неподвижно соединен (например, при помощи резьбы) с телом 102 горелки для закрепления сопла 110 в теле 102 горелки и выравнивания сопла 110 в радиальном и/или осевом направлении относительно продольной оси горелки 100. Защитный элемент 125, который имеет выходное отверстие 107, соединен с внешним закрепляющим колпачком 116, который прикрепляет защитный элемент 125 к телу 102 горелки. В некоторых вариантах выходное отверстие 106 сопла и, в качестве необязательного варианта, выходное отверстие 107 защитного элемента задают выходное отверстие для плазменной дуги, через которое плазменная дуга проходит к заготовке во время работы горелки. Горелка 100 может, кроме того, включать электрические соединения, каналы для охлаждения и каналы для текучих сред, обеспечивающих управление дугой (например, плазмообразующего газа). В некоторых вариантах плазменную горелку 100 с жидкостным охлаждением, показанную на Фиг.1, задействуют при электрическом токе приблизительно 80 А.
На Фиг.2 приведен разрез другой плазменной горелки 200 с жидкостным охлаждением, в которой установлена универсальная трубка 140 для охладителя, показанная на Фиг.1, согласно примерному варианту реализации настоящей полезной модели. В некоторых вариантах в горелке 200, показанной на Фиг.2, используется та же самая трубка 140 для охладителя, что показана на Фиг.1. В некоторых вариантах в горелке 200, показанной на Фиг.2, используются те же самые тело 102 горелки и трубка 140 для охладителя, что показаны на Фиг.1, в результате чего можно заменять только компоненты, находящиеся в наконечнике 204 горелки.
Наконечник 204 горелки имеет множество расходных компонентов, содержащих, например, электрод 205, сопло 210, внутренний закрепляющий колпачок 215, внешний закрепляющий колпачок 216, завихрительное кольцо 220 и защитный элемент 225. Аналогично электроду 105, электрод 205 имеет вытянутое тело с ближним концом 262 и дальним концом 260. На дальнем конце 260 вытянутого тела электрода 205 расположен эмитирующий вкладыш 286. На внутренней поверхности электрода 205 на его дальнем конце 260 создана полость 254, которая выполнена с возможностью приема, по меньшей мере, дальней части трубки 140 для охладителя. В некоторых вариантах в полости 254 создана ступенька, или выступ, 270, которая предназначена для ориентирования и выравнивания трубки 140 для охладителя и охлаждения эмитирующего вкладыша 286.
В некоторых вариантах электрод 205 имеет длину, измеряемую в продольном направлении, отличающуюся от длины электрода 105, показанного на Фиг.1, так как плазменная горелка 200 используется при выполнении процесса, для которого требуется другой выходной электрический ток, чем в горелке 100, показанной на Фиг.1. Например, плазменную горелку 200 задействуют при электрическом токе приблизительно 80 А, а плазменную горелку 100 задействуют при электрическом токе приблизительно 300 А, в таком случае электрод 205 для процесса с током 80 А должен быть длиннее электрода 105 для процесса с током 300 А. Это объясняется тем, что наконечник 204 горелки для процесса с током 80 А должен иметь меньший диффузор 288 и меньшее/более короткое выходное отверстие 206 сопла из-за создания дуги, которая имеет меньший диаметр и дуговой промежуток меньшей длины. Таким образом, чтобы использовать одно и то же тело 102 горелки для обоих электродов 105 и 205, электрод 205 для более низкого электрического тока делают длиннее, в результате чего эмитирующий вкладыш 286 находится ближе к заготовке во время работы горелки. Однако, даже несмотря на то, что электроды 105, 205 имеют разную длину, с обоими электродами совместимы одни и те же трубка 140 для охладителя и/или тело 102 горелки, которые можно использовать как в горелке 100, показанной на Фиг.1, так и в горелке 200, показанной на Фиг.2. В некоторых вариантах электрод 105 для процесса с током 300 А имеет длину приблизительно 1,62 дюйма, и электрод 205 для процесса с током 80 А имеет длину приблизительно 1,93 дюйма, то есть, разница по длине между электродами составляет приблизительно 0,31 дюйма. Выступы 170, 270 в электродах 105, 205 имеют, по существу, идентичную длину, измеряемую вдоль продольной оси, которая составляет приблизительно 0,09 дюйма. В некоторых вариантах горелки 100, 200 имеют, по существу, одну и ту же длину, измеряемую в продольном направлении, после сборки их компонентов.
На Фиг.3а и 3b приведены, соответственно, общий вид и разрез универсальной трубки 140 для охладителя, показанной на Фиг.1 и 2, согласно примерному варианту реализации настоящей полезной модели. Как изображено, трубка 140 для охладителя имеет вытянутое тело с ближней областью (в общем называемой ближним концом) 340, которая является концом, обеспечивающим сопряжение с телом 102 горелки, и дальней областью (в общем называемой дальним концом) 342, которая является концом, обеспечивающим сопряжение с электродом 105 или 205. Вдоль тела трубки 140 для охладителя через ближний конец 340 и дальний конец 342 проходит продольная ось А. Вытянутое тело трубки 140 для охладителя должно быть, по существу, полым, чтобы оно обеспечивало циркулирование охладителя между телом 102 горелки и электродом 105 или 205. Например, трубка 140 для охладителя имеет отверстие 345 на ее ближнем конце 340 и отверстие 346 на ее дальнем конце 342, чтобы поток охладителя мог, соответственно, поступать в эту трубку и покидать ее.
В некоторых вариантах трубка 140 для охладителя имеет дальний кончик 350, расположенный на дальнем конце 342. Дальний кончик 350 имеет форму колокола/раструба, при этом с удалением диаметр дальнего кончика 350 увеличивается и/или этот кончик расширяется. В некоторых вариантах на дальнем конце дальнего кончика 250 находятся один или более выступов/ножек 352 выравнивания, которые проходят вдоль продольной оси А. Ножки 352 выравнивания выполнены с возможностью физического контакта с внутренней поверхностью электрода 105 в его полости 154 (или с внутренней поверхностью электрода 205 в его полости 254), когда трубку 140 для охладителя смещают относительно электрода 105 (или электрода 205). Например, ножки 352 выравнивания предназначены для контакта с поверхностью в полости 154, находящейся вокруг выступа 170 в этой полости. В некоторых вариантах каждая ножка 352 выравнивания имеет длину, измеряемую вдоль продольной оси А, которая составляет приблизительно 0,03 дюйма.
В некоторых вариантах на ближнем конце 340 вытянутого тела трубки 140 для охладителя имеется упругий элемент 344, например, уплотнительное кольцо, расположенное вокруг внешней поверхности этой трубки, для создания уплотнения между этой трубкой и телом 102 горелки, при этом разрешается осевое перемещение трубки 140 для охладителя относительно тела 102 горелки. На ближнем конце 340 вытянутого тела трубки 140 для охладителя, кроме того, имеется часть 358 с увеличенным радиальным размером, которая находится между уплотнительным кольцом 344 и этим концом. Часть 358 с увеличенным радиальным размером имеет диаметр больше диаметра тела трубки для охладителя на дальнем конце 342. Как показано, часть 358 с увеличенным радиальным размером имеет поверхность 354 радиального выравнивания, находящуюся на внешней боковой стороне трубки 140 для охладителя между уплотнительным кольцом 344 и ближним концом 340. Поверхность 354 радиального выравнивания обеспечивает радиальное выравнивание (т.е., центрирование) трубки 140 для охладителя в теле 102 горелки. Поверхность 354 радиального выравнивания также представляет собой поверхность, обеспечивающую скольжение трубки 140 для охладителя в осевом направлении в теле 102 горелки во время смещения. Поверхность 354 радиального выравнивания может иметь протяженность вдоль продольной оси А, которая составляет, по меньшей мере, 0,25 дюйма, например, 0,4 дюйма или 0,5 дюйма. В некоторых вариантах часть 358 с увеличенным радиальным размером имеет поверхность 356 для воздействия гидравлической силы, расположенную на торце на ближнем конце 340. Поверхность 356 для воздействия гидравлической силы предназначена для воздействия потока жидкого охладителя, который смещает трубку 140 для охладителя дальше в осевом направлении до тех пор, пока ножки 352 выравнивания на этой трубке не придут в физический контакт с поверхностью в полости 154 или 254.
Во время работы трубка 140 для охладителя, включая часть 358 с увеличенным радиальным размером, должна смещаться для изменения упомянутого осевого расстояния в горелке в зависимости от длины электрода, используемого в этой горелке. Например, как изображено на Фиг.1 и 2, если смотреть вдоль продольной оси А, электрод 105, показанный на Фиг.1, короче электрода 205, показанного на Фиг.2. При соединении электрода 105 или 205 с телом 102 горелки, дальний конец 260 более длинного электрода 205 находится в горелке 200 дальше, чем дальний конец 160 более короткого электрода 105 в горелке 100. В некоторых вариантах ближний конец 162 более короткого электрода 105 и ближний конец 262 более длинного электрода 205 имеют приблизительно одно и то же осевое положение в теле 102 горелки. Таким образом, трубка 140 для охладителя смещается не столь далеко для контакта с более коротким электродом 105, как для контакта с более длинным электродом 205. В обоих случаях смещение прекращается, когда ножки 352 выравнивания трубки 140 для охладителя приходят в контакт с поверхностью в полости 154 или 254 в соответствующем электроде 105 или 205.
После смещения интервал 180 представляет собой осевое расстояние между уплотнительным кольцом 344 трубки 140 охлаждения и ближним концом 162 более короткого электрода 105. Аналогичным образом интервал 280 представляет собой осевое расстояние между уплотнительным кольцом 344 и ближним концом 262 более длинного электрода 205. Интервал 180 должен быть больше интервала 280, так как дальний конец 160 более короткого электрода 105 находится ближе к телу 102 горелки (и, таким образом, трубка 140 для охладителя смещена не столь далеко), чем дальний конец 260 более длинного электрода 205. Если говорить в общем, осевой интервал между уплотнительным кольцом 344 трубки 140 для охладителя и ближним концом электрода больше, если электрод имеет меньшую длину. В некоторых вариантах разница между интервалом 180 и интервалом 280 составляет приблизительно 0,25 дюйма или больше, например, приблизительно 0,37 дюйма. В некоторых вариантах протяженность поверхности 354 радиального выравнивания в части 358 с увеличенным радиальным размером в трубке 140 для охладителя больше интервала 180 или 280.
В некоторых вариантах тело 102 горелки имеет, по существу, цилиндрическую полость 190, выполненную с возможностью помещения в нее, по меньшей мере, ближней части трубки 140 для охладителя. Область 192 выравнивания, находящаяся в дальней части полости 190 (изображено на Фиг.2), в общем имеет диаметр больше диаметра оставшейся части этой полости. Область 192 выравнивания задает перемещение уплотнительного кольца 344 трубки 140 для охладителя, например, разрешает перемещение уплотнительного кольца 344 вперед-назад в зависимости от длины электрода, установленного в теле 102 горелки. Если говорить конкретно, область 192 выравнивания имеет меньший диаметр на обоих краях для "захвата" уплотнительного кольца 344 после того, как трубка 140 для охладителя вставлена в тело горелки.
На Фиг.4 приведена схема применения универсальной трубки 140 для охладителя, показанной на Фиг.1 и 2, согласно примерному варианту реализации настоящей полезной модели. Сначала трубку 140 для охладителя устанавливают в плазменную горелку, например, в горелку 100, показанную на Фиг.1 (этап 402). Трубка 140 для охладителя выполнена с возможностью прикрепления к телу 102 горелки. Затем в горелку 100 устанавливают первый электрод, например, электрод 105, таким образом, чтобы дальний конец 342 трубки 140 для охладителя находился во внутренней полости 154 этого электрода (этап (404). Из тела 102 горелки в первый электрод 105 по трубке 140 для охладителя подают поток жидкого охладителя (этап 406). Жидкий охладитель может вводиться через ближнее отверстие 345 трубки 140 для охладителя и выходить в полость 154 электрода 105 через дальнее отверстие 346 этой трубки. Этот поток жидкого охладителя должен смещать трубку 140 для охладителя в осевом направлении дальше, толкая ее путем воздействия на поверхность 356 для воздействия гидравлической силы до тех пор, пока ножки 352 выравнивания на дальнем конце 342 трубки 140 для охладителя не придут в контакт с поверхностью в полости 154 электрода 105 (этап 408). Во время смещения часть 358 с увеличенным радиальным размером перемещается дальше вдоль продольной оси А. После смещения интервал 180 представляет собой осевое расстояние между уплотнительным кольцом 344 трубки 140 для охладителя и ближним концом 162 первого электрода 105.
Собранная горелка, которая включает трубку 140 для охладителя и электрод 105, используется для выполнения первой операции резания при конкретном выходном электрическом токе. Если требуется выполнить вторую операцию резания при другом выходном электрическом токе, оператор может удалить первый электрод 105 из тела 102 горелки (этап 410) и установить второй электрод, например, электрод 205, показанный на Фиг.2, который предназначен для выходного электрического тока, требующегося для выполнения второй операции (этап 412). После установки дальний конец 342 трубки 140 для охладителя находится во внутренней полости 254 второго электрода 205. Через полое тело трубки 140 для охладителя подается поток жидкого охладителя (этап 414) для смещения этой трубки в осевом направлении относительно второго электрода 140 дальше таким образом, чтобы ножки 352 выравнивания трубки 140 для охладителя пришли в контакт с поверхностью в полости 254 на дальнем конце 260 электрода 205 (этап 416). Во время смещения трубка 140 для охладителя, включающая часть 358 с увеличенным радиальным размером, перемещается дальше вдоль продольной оси А. После смещения интервал 280 представляет собой осевое расстояние между уплотнительным кольцом 344 трубки 140 для охладителя и ближним концом 262 второго электрода 205. В некоторых вариантах из-за разницы в требованиях по электрическому току для первой и второй операций резания длина электродов 105, 205 различается. Эта разница в длине электродов, в свою очередь, создает разницу в осевых интервалах 180, 280, которая может составлять, по меньшей мере, 0,25 дюйма. При этом в обеих операциях резания используется одна и та же универсальная трубка 140 для охладителя.
В качестве примера, первая операция резания выполняется при электрическом токе приблизительно 300 А, и вторая операция резания выполняется при электрическом токе приблизительно 80 А, в этом случае первый электрод 105 короче второго электрода 205, если смотреть вдоль продольной оси А. Более короткий первый электрод 105 позволяет смещать трубку 140 для охладителя не столь далеко в осевом направлении по сравнению с более длинным вторым электродом 205. Таким образом, интервал 180, соответствующий первому электроду 105 и работе при электрическом токе 300 А, должен быть больше интервала 280, соответствующего второму электроду 205 и работе при электрическом токе 80 А. В других вариантах первая операция резания включает использование электрода, который длиннее электрода, используемого во второй операции резания. Кроме того, использование конфигураций горелки для 80 А и 300 А приведено только в качестве примера. Универсальная трубка 140 для охладителя в общем совместима с электродами различной длины и операциями резания с различными требованиями по току.
Необходимо понимать, что различные аспекты и варианты реализации полезной модели могут быть скомбинированы различным образом. Исходя из материалов этой спецификации, специалист обычной квалификации в данной области техники легко может определить, как скомбинировать эти различные варианты. Также для специалистов в данной области техники после ознакомления с этой спецификацией могут стать очевидными различные модификации.

Claims (13)

1. Универсальная трубка для охладителя для плазменной горелки с жидкостным охлаждением, которая содержит:
по существу полое вытянутое тело, имеющее ближний конец, дальний конец и проходящую через них продольную ось, причем тело трубки для охладителя выполнена с возможностью обеспечения протекания потока охладителя в электрод плазменной горелки;
область раструба на дальнем конце трубки для охладителя;
множество ножек на дальнем конце области раструба, выполненных с возможностью физического контакта с внутренней поверхностью электрода;
уплотнительное кольцо на ближнем конце трубки для охладителя; и
часть с увеличенным радиальным размером, которая расположена между ближним концом трубки для охладителя и уплотнительным кольцом и выполнена с возможностью смещающего воздействия на нее в осевом направлении к электроду, причем часть с увеличенным радиальным размером имеет поверхность радиального выравнивания, протяженность которой вдоль продольной оси составляет по меньшей мере приблизительно 0,25 дюйма.
2. Универсальная трубка для охладителя по п.1, в которой протяженность поверхности радиального выравнивания составляет приблизительно 0,4 дюйма.
3. Универсальная трубка для охладителя по п.1, в которой протяженность поверхности радиального выравнивания составляет приблизительно 0,5 дюйма.
4. Универсальная трубка для охладителя по п.1, в которой длина каждой из множества ножек вдоль продольной оси составляет приблизительно 0,03 дюйма.
5. Универсальная трубка для охладителя по п.1, в которой часть с увеличенным радиальным размером выполнена с возможностью смещающего воздействия путем изменения осевого расстояния в зависимости от длины электрода, причем осевое расстояние измеряют между уплотнительным кольцом и ближним концом электрода.
6. Универсальная трубка для охладителя по п.5, в которой осевое расстояние больше для электрода, имеющего меньшую длину.
7. Универсальная трубка для охладителя по п.1, при применении которой плазменную горелку задействуют при электрическом токе приблизительно 80 А.
8. Универсальная трубка для охладителя по п.1, при применении которой плазменную горелку задействуют при электрическом токе приблизительно 300 А.
RU2017120100U 2016-04-11 2017-04-11 Система для плазменно-дуговой резки, включающая трубки для охладителя и другие расходные компоненты RU176854U1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662320935P 2016-04-11 2016-04-11
US62/320,935 2016-04-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2017114668 Division 2017-04-11

Publications (1)

Publication Number Publication Date
RU176854U1 true RU176854U1 (ru) 2018-01-31

Family

ID=58578998

Family Applications (6)

Application Number Title Priority Date Filing Date
RU2017120099U RU176471U1 (ru) 2016-04-11 2017-04-11 Система для плазменно-дуговой резки, включающая сопла и другие расходные компоненты, и соответствующие способы работы
RU2017114667A RU2661355C1 (ru) 2016-04-11 2017-04-11 Система для плазменно-дуговой резки, включающая сопла и другие расходные компоненты, и соответствующие способы работы
RU2017120100U RU176854U1 (ru) 2016-04-11 2017-04-11 Система для плазменно-дуговой резки, включающая трубки для охладителя и другие расходные компоненты
RU2017114669A RU2675420C2 (ru) 2016-04-11 2017-04-11 Система для плазменно-дуговой резки, включающая завихрительные кольца и другие расходные компоненты, и соответствующие способы работы
RU2017114668A RU2662444C1 (ru) 2016-04-11 2017-04-11 Ситема для плазменно-дуговой резки, включающая трубки для охладителя и другие расходные компоненты, и соответствующие способы работы
RU2017114636A RU2655430C1 (ru) 2016-04-11 2017-04-11 Система для плазменно-дуговой резки, включающая закрепляющие колпачки и другие расходные компоненты, и соответствующие способы работы

Family Applications Before (2)

Application Number Title Priority Date Filing Date
RU2017120099U RU176471U1 (ru) 2016-04-11 2017-04-11 Система для плазменно-дуговой резки, включающая сопла и другие расходные компоненты, и соответствующие способы работы
RU2017114667A RU2661355C1 (ru) 2016-04-11 2017-04-11 Система для плазменно-дуговой резки, включающая сопла и другие расходные компоненты, и соответствующие способы работы

Family Applications After (3)

Application Number Title Priority Date Filing Date
RU2017114669A RU2675420C2 (ru) 2016-04-11 2017-04-11 Система для плазменно-дуговой резки, включающая завихрительные кольца и другие расходные компоненты, и соответствующие способы работы
RU2017114668A RU2662444C1 (ru) 2016-04-11 2017-04-11 Ситема для плазменно-дуговой резки, включающая трубки для охладителя и другие расходные компоненты, и соответствующие способы работы
RU2017114636A RU2655430C1 (ru) 2016-04-11 2017-04-11 Система для плазменно-дуговой резки, включающая закрепляющие колпачки и другие расходные компоненты, и соответствующие способы работы

Country Status (10)

Country Link
US (5) US10492286B2 (ru)
EP (5) EP3443820B1 (ru)
KR (1) KR102408315B1 (ru)
CN (10) CN107295737B (ru)
AU (1) AU2017250489B2 (ru)
BR (1) BR112018068894B1 (ru)
CA (1) CA3017243C (ru)
MX (2) MX2018011668A (ru)
RU (6) RU176471U1 (ru)
WO (4) WO2017180553A1 (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3443820B1 (en) * 2016-04-11 2022-03-02 Hypertherm, Inc. Plasma gas swirl ring and method for controlling a plasma gas flow through the swirl ring
US10026592B2 (en) * 2016-07-01 2018-07-17 Lam Research Corporation Systems and methods for tailoring ion energy distribution function by odd harmonic mixing
WO2018118790A1 (en) * 2016-12-19 2018-06-28 Hypertherm, Inc. Connecting plasma arc torches and related systems and methods
DE102017112821A1 (de) * 2017-06-12 2018-12-13 Kjellberg-Stiftung Elektroden für gas- und flüssigkeitsgekühlte Plasmabrenner, Anordnung aus einer Elektrode und einem Kühlrohr, Gasführung, Plasmabrenner, Verfahren zur Gasführung in einem Plasmabrenner und Verfahren zum Betreiben eines Plasmabrenners
US11267069B2 (en) 2018-04-06 2022-03-08 The Esab Group Inc. Recognition of components for welding and cutting torches
US10625359B2 (en) 2018-04-06 2020-04-21 The Esab Group Inc. Automatic identification of components for welding and cutting torches
US10897807B2 (en) * 2018-09-21 2021-01-19 The Esab Group Inc. Power source cooling apparatus, method, and configuration
US11523492B2 (en) 2019-04-04 2022-12-06 Hypertherm, Inc. Adjustable length consumables for a liquid-cooled plasma arc torch
CN110248457A (zh) * 2019-07-02 2019-09-17 深圳杜摩韦尔工程技术有限公司 一种超小型等离子喷枪
USD936716S1 (en) * 2019-12-16 2021-11-23 Hypertherm, Inc. Cartridge for a plasma cutting torch
US11986900B2 (en) 2020-03-16 2024-05-21 Hypertherm, Inc. Cathode seated liquid coolant tube for a plasma arc cutting system
CN214079719U (zh) * 2020-12-24 2021-08-31 江苏博迁新材料股份有限公司 一种等离子弧枪喷嘴结构
US11839015B2 (en) 2021-02-04 2023-12-05 The Esab Group Inc. Consumables for processing torches
CZ2021452A3 (cs) * 2021-09-24 2022-11-09 Thermacut, K.S. Směrovací dílec pro plazmový hořák, sestava a plazmový hořák
CZ309392B6 (cs) * 2021-09-24 2022-11-09 Thermacut, K.S. Tryska pro plazmový hořák a plazmový hořák

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977510A (en) * 1998-04-27 1999-11-02 Hypertherm, Inc. Nozzle for a plasma arc torch with an exit orifice having an inlet radius and an extended length to diameter ratio
RU2177677C2 (ru) * 1997-03-14 2001-12-27 Линкольн Глобал, Инк. Сопло плазменной горелки (варианты)
US20080217305A1 (en) * 2007-02-16 2008-09-11 Hypertherm, Inc. Gas-Cooled Plasma Arc Cutting Torch
US20120055906A1 (en) * 2006-09-13 2012-03-08 Hypertherm, Inc. Forward Flow, High Access Consumables for a Plasma Arc Cutting Torch

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1006372A (fr) 1948-01-02 1952-04-22 Forkardt Paul Kg Mandrin de tour
US2538521A (en) 1949-02-10 1951-01-16 E Horton & Son Company Chuck and dust excluding jacket therefor
US3116405A (en) * 1961-03-23 1963-12-31 Thermal Dynamics Corp Electric arc torches
US3294953A (en) * 1963-12-19 1966-12-27 Air Reduction Plasma torch electrode and assembly
DE1256816B (de) 1965-04-09 1967-12-21 Inst Badan Jadrowych Bogenplasmabrenner
US4312513A (en) 1979-08-10 1982-01-26 J & S Tool Company Gear holding hydraulically actuated chuck
DE3435680A1 (de) * 1984-09-28 1986-04-03 Fried. Krupp Gmbh, 4300 Essen Plasmabrenner
SU1694364A1 (ru) 1985-04-17 1991-11-30 Нпк По Контрольно Заваръчни Работи (Инопредприятие) Плазмотрон дл дуговой обработки
CN87207977U (zh) 1987-05-11 1988-01-20 龚伟海 三爪卡盘
US5034818A (en) * 1989-07-10 1991-07-23 Samsung Electronics Co., Ltd. Priority selector for external signals
CA2081459A1 (en) * 1990-04-24 1991-10-25 Richard W. Couch, Jr. Swirl ring and flow control process for a plasma arc torch
DE4022111A1 (de) * 1990-07-11 1992-01-23 Krupp Gmbh Plasmabrenner fuer uebertragenen lichtbogen
US5317126A (en) * 1992-01-14 1994-05-31 Hypertherm, Inc. Nozzle and method of operation for a plasma arc torch
DE4228064A1 (de) 1992-08-24 1994-03-03 Plasma Technik Ag Plasmaspritzgerät
CN1131598A (zh) * 1994-12-12 1996-09-25 Lg产电株式会社 等离子弧割炬
US5747767A (en) * 1995-09-13 1998-05-05 The Esab Group, Inc. Extended water-injection nozzle assembly with improved centering
RU7039U1 (ru) 1996-08-30 1998-07-16 ГНЦ "Центральный научно-исследовательский институт технологии судостроения" Плазмотрон
US5856647A (en) * 1997-03-14 1999-01-05 The Lincoln Electric Company Drag cup for plasma arc torch
US6498316B1 (en) 1999-10-25 2002-12-24 Thermal Dynamics Corporation Plasma torch and method for underwater cutting
US6425584B1 (en) 2000-09-01 2002-07-30 Illinois Tool Works, Inc. Sliding jaw chuck assembly
DE10203667A1 (de) 2002-01-30 2003-07-31 Roehm Gmbh Kraftbetätigtes Spannfutter
KR100486939B1 (ko) * 2002-03-26 2005-05-03 재단법인서울대학교산학협력재단 계단형 노즐 구조를 갖는 자장인가형 비이송식 플라즈마토치
WO2003089183A1 (en) 2002-04-19 2003-10-30 Thermal Dynamics Corporation Plasma arc torch
US6910693B2 (en) 2003-01-17 2005-06-28 Mp Tool & Engineering, Co. Draw down chuck
US6946617B2 (en) 2003-04-11 2005-09-20 Hypertherm, Inc. Method and apparatus for alignment of components of a plasma arc torch
US20080116179A1 (en) * 2003-04-11 2008-05-22 Hypertherm, Inc. Method and apparatus for alignment of components of a plasma arc torch
US7375302B2 (en) * 2004-11-16 2008-05-20 Hypertherm, Inc. Plasma arc torch having an electrode with internal passages
US20060163220A1 (en) 2005-01-27 2006-07-27 Brandt Aaron D Automatic gas control for a plasma arc torch
MX2007013067A (es) * 2005-04-19 2008-01-11 Hypertherm Inc Antorcha de arco de plasma que proporciona inyeccion de flujo de proteccion angular.
RU2278328C1 (ru) 2005-05-13 2006-06-20 Ооо "Плазариум" Горелка
UA82584C2 (en) * 2006-07-10 2008-04-25 Анатолий Тимофеевич Неклеса Electric-arc plasmatron
JP5432299B2 (ja) * 2006-10-18 2014-03-05 コマツ産機株式会社 プラズマ切断装置およびプラズマトーチの冷却方法
FR2910224A1 (fr) 2006-12-13 2008-06-20 Air Liquide Torche de coupage plasma avec circuit de refroidissement a tube plongeur adaptatif
CN101541465B (zh) * 2007-02-09 2012-11-14 海别得公司 具有优化水冷却的等离子弧切割焊炬部件
US8772667B2 (en) 2007-02-09 2014-07-08 Hypertherm, Inc. Plasma arch torch cutting component with optimized water cooling
KR100967016B1 (ko) * 2007-09-20 2010-06-30 주식회사 포스코 플라즈마 토치장치 및 플라즈마를 이용한 반광 처리방법
DE202008006163U1 (de) * 2008-03-05 2008-10-02 Basf Se Verwendung einer Salzzubereitung zur Geschmacksmodulation von stofflichen Zusammensetzungen, die mindestens einen High Intensity Sweetener (HIS) enthalten
US8212173B2 (en) * 2008-03-12 2012-07-03 Hypertherm, Inc. Liquid cooled shield for improved piercing performance
US8389887B2 (en) * 2008-03-12 2013-03-05 Hypertherm, Inc. Apparatus and method for a liquid cooled shield for improved piercing performance
US8338740B2 (en) * 2008-09-30 2012-12-25 Hypertherm, Inc. Nozzle with exposed vent passage
DE102009006132C5 (de) * 2008-10-09 2015-06-03 Kjellberg Finsterwalde Plasma Und Maschinen Gmbh Düse für einen flüssigkeitsgekühlten Plasmabrenner, Düsenkappe für einen flüssigkeitsgekühlten Plasmabrenner sowie Plasmabrennerkopf mit derselben/denselben
DE102009016932B4 (de) 2009-04-08 2013-06-20 Kjellberg Finsterwalde Plasma Und Maschinen Gmbh Kühlrohre und Elektrodenaufnahme für einen Lichtbogenplasmabrenner sowie Anordnungen aus denselben und Lichtbogenplasmabrenner mit denselben
KR20110003256A (ko) * 2009-07-03 2011-01-11 닛테츠 스미킨 요우세츠 고교 가부시키가이샤 인서트 칩 및 플라즈마 토치
HUE026032T2 (en) * 2009-07-03 2016-05-30 Kjellberg Finsterwalde Plasma & Maschinen Gmbh Nozzle for liquid chilled plasma burner and plasma nozzle with nozzle
US8258423B2 (en) * 2009-08-10 2012-09-04 The Esab Group, Inc. Retract start plasma torch with reversible coolant flow
CN201467557U (zh) * 2009-08-10 2010-05-12 北京光耀电力设备股份有限公司 一种新型的等离子枪
EP2537399B1 (en) * 2010-02-18 2020-09-02 Hypertherm, Inc Improved alignment features for a plasma torch connector assembly
CN201618865U (zh) 2010-03-25 2010-11-03 常州比优特机械设备制造有限公司 一种立式卡盘
US8633417B2 (en) * 2010-12-01 2014-01-21 The Esab Group, Inc. Electrode for plasma torch with novel assembly method and enhanced heat transfer
MX2013007670A (es) * 2011-02-28 2013-12-06 Thermal Dynamics Corp Electrodo de alta corriente para un soplete de arco de plasma.
CN202224681U (zh) 2011-09-15 2012-05-23 吴红 机床用立式卡盘
EP2640167B1 (de) 2012-03-15 2018-02-14 Manfred Hollberg Plasmaelektrode für eine Plasma-Schneidvorrichtung
US9737954B2 (en) * 2012-04-04 2017-08-22 Hypertherm, Inc. Automatically sensing consumable components in thermal processing systems
KR101349949B1 (ko) 2012-10-16 2014-01-15 현대삼호중공업 주식회사 플라즈마 토치용 노즐 및 이를 포함하는 플라즈마 토치
ES2682718T3 (es) * 2013-01-31 2018-09-21 Oerlikon Metco (Us) Inc. Boquilla térmica optimizada y método de uso de la misma
US10716199B2 (en) * 2013-07-25 2020-07-14 Hypertherm, Inc. Devices for gas cooling plasma arc torches and related systems and methods
US9313871B2 (en) * 2013-07-31 2016-04-12 Lincoln Global, Inc. Apparatus and method of aligning and securing components of a liquid cooled plasma arc torch and improved torch design
US9572243B2 (en) * 2014-05-19 2017-02-14 Lincoln Global, Inc. Air cooled plasma torch and components thereof
US9967964B2 (en) * 2014-05-30 2018-05-08 Hypertherm, Inc. Cooling plasma cutting system consumables and related systems and methods
CN104244557B (zh) * 2014-08-11 2017-02-15 北京交通大学 一种气氛保护同轴送粉等离子枪
DE202015002334U1 (de) * 2014-10-14 2015-06-17 Hypertherm, Inc. Verbrauchsteile mit hoher Zugänglichkeit für ein Plasmalichtbogenschneidsystem
US9867268B2 (en) * 2015-06-08 2018-01-09 Hypertherm, Inc. Cooling plasma torch nozzles and related systems and methods
JP2018523896A (ja) * 2015-08-04 2018-08-23 ハイパーサーム インコーポレイテッド 液冷プラズマアークトーチ用カートリッジ
US10561010B2 (en) * 2015-12-21 2020-02-11 Hypertherm, Inc. Internally energized electrode of a plasma arc torch
EP3443820B1 (en) * 2016-04-11 2022-03-02 Hypertherm, Inc. Plasma gas swirl ring and method for controlling a plasma gas flow through the swirl ring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2177677C2 (ru) * 1997-03-14 2001-12-27 Линкольн Глобал, Инк. Сопло плазменной горелки (варианты)
US5977510A (en) * 1998-04-27 1999-11-02 Hypertherm, Inc. Nozzle for a plasma arc torch with an exit orifice having an inlet radius and an extended length to diameter ratio
US20120055906A1 (en) * 2006-09-13 2012-03-08 Hypertherm, Inc. Forward Flow, High Access Consumables for a Plasma Arc Cutting Torch
US20080217305A1 (en) * 2007-02-16 2008-09-11 Hypertherm, Inc. Gas-Cooled Plasma Arc Cutting Torch

Also Published As

Publication number Publication date
US10638591B2 (en) 2020-04-28
US20170291244A1 (en) 2017-10-12
CN112911779A (zh) 2021-06-04
CN206908932U (zh) 2018-01-19
US10716200B2 (en) 2020-07-14
BR112018068894A2 (pt) 2019-01-22
RU2675420C2 (ru) 2018-12-19
RU2017114669A (ru) 2018-10-29
EP3443818B1 (en) 2024-09-04
CN107295737B (zh) 2021-02-26
CN108135068A (zh) 2018-06-08
US20170295637A1 (en) 2017-10-12
US20180084631A1 (en) 2018-03-22
KR20180129930A (ko) 2018-12-05
EP4294133A2 (en) 2023-12-20
EP3443819B1 (en) 2023-11-08
AU2017250489B2 (en) 2021-07-15
EP3443819A1 (en) 2019-02-20
CN107398626A (zh) 2017-11-28
CN112911779B (zh) 2024-05-28
RU2661355C1 (ru) 2018-07-16
RU2655430C1 (ru) 2018-05-28
EP3443820A1 (en) 2019-02-20
US10681799B2 (en) 2020-06-09
EP3443819C0 (en) 2023-11-08
CN107398626B (zh) 2019-09-06
RU176471U1 (ru) 2018-01-22
RU2017114669A3 (ru) 2018-10-29
US20170295636A1 (en) 2017-10-12
KR102408315B1 (ko) 2022-06-10
CN207039985U (zh) 2018-02-23
CN107454730A (zh) 2017-12-08
CA3017243A1 (en) 2017-10-19
EP3443817A1 (en) 2019-02-20
CN207013853U (zh) 2018-02-16
US10492286B2 (en) 2019-11-26
WO2017180552A1 (en) 2017-10-19
CA3017243C (en) 2024-03-12
WO2017180553A1 (en) 2017-10-19
WO2017180551A1 (en) 2017-10-19
US20170295635A1 (en) 2017-10-12
CN107454730B (zh) 2020-03-03
CN107360660A (zh) 2017-11-17
EP3443818A1 (en) 2019-02-20
MX2023010427A (es) 2023-09-18
CN206650910U (zh) 2017-11-17
BR112018068894B1 (pt) 2023-05-02
US10129969B2 (en) 2018-11-13
WO2017180550A1 (en) 2017-10-19
EP3443820B1 (en) 2022-03-02
RU2662444C1 (ru) 2018-07-26
AU2017250489A1 (en) 2018-09-20
MX2018011668A (es) 2019-05-30
EP4294133A3 (en) 2024-03-27
CN107295737A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
RU176854U1 (ru) Система для плазменно-дуговой резки, включающая трубки для охладителя и другие расходные компоненты
EP1802179B1 (en) Plasma arc torch, and methods of assembling and disassembling a plasma arc torch
RU2524919C2 (ru) Охлаждающая труба, электродержатель и электрод для плазменно-дуговой горелки, а также состоящие из них устройства и плазменно-дуговая горелка с ними
US8552341B2 (en) Torch for arc welding gun
US11014188B2 (en) Center pipe for plasma torch, electrode, and plasma torch
US9398679B2 (en) Air cooled plasma torch and components thereof
RU175548U1 (ru) Усовершенствованная система для плазменно-дуговой резки, расходные компоненты и способы работы
US20150334818A1 (en) Air cooled plasma torch and components thereof
US9572242B2 (en) Air cooled plasma torch and components thereof
US10625364B2 (en) Insulation guide for plasma torch, and replacement part unit
US10582606B2 (en) Nozzle for a plasma arc torch
RU180547U1 (ru) Система для плазменно-дуговой резки, включающая завихрительные кольца и другие расходные компоненты, и соответствующие способы работы
JP2018537818A (ja) プラズマアークトーチの内側で通電される電極

Legal Events

Date Code Title Description
MZ9K Utility model declared void at owner's request

Effective date: 20180719