RU103961U1 - Световая панель с торцевым вводом излучения (варианты) - Google Patents

Световая панель с торцевым вводом излучения (варианты) Download PDF

Info

Publication number
RU103961U1
RU103961U1 RU2010150258/12U RU2010150258U RU103961U1 RU 103961 U1 RU103961 U1 RU 103961U1 RU 2010150258/12 U RU2010150258/12 U RU 2010150258/12U RU 2010150258 U RU2010150258 U RU 2010150258U RU 103961 U1 RU103961 U1 RU 103961U1
Authority
RU
Russia
Prior art keywords
panel
radiation
light
light guide
source
Prior art date
Application number
RU2010150258/12U
Other languages
English (en)
Inventor
Виктор Федорович Герасев
Александр Васильевич Семененко
Сергей Константинович Сигалаев
Алексей Николаевич Алексахин
Игорь Викторович Проценко
Original Assignee
Общество С Ограниченной Ответственностью "Новые Энергетические Технологии"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Новые Энергетические Технологии" filed Critical Общество С Ограниченной Ответственностью "Новые Энергетические Технологии"
Priority to RU2010150258/12U priority Critical patent/RU103961U1/ru
Application granted granted Critical
Publication of RU103961U1 publication Critical patent/RU103961U1/ru

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)

Abstract

1. Световая панель с торцевым вводом излучения, содержащая световодный панельный элемент и источник излучения, отличающаяся тем, что световодный панельный элемент представляет собой световод, выполненный в виде трехгранной призмы, одна боковая грань которой меньше двух других боковых граней, при этом источник излучения располагают перед упомянутой меньшей боковой гранью. ! 2. Панель по п.1, отличающаяся тем, что упомянутые две другие боковые грани выполнены с плоскими поверхностями. !3. Панель по п.1, отличающаяся тем, что упомянутые две другие боковые грани выполнены с неплоскими поверхностями. ! 4. Световая панель с торцевым вводом излучения, содержащая световодный панельный элемент и источник излучения, отличающаяся тем, что световодный панельный элемент представляет собой световод, выполненный в виде многогранной призмы, при этом источник излучения располагают перед одной из упомянутых боковых граней упомянутого световода, а другие упомянутые боковые грани образуют выпуклую многогранную поверхность для вывода излучения от упомянутого источника излучения и вогнутую многогранную поверхность для отражения излучения от упомянутого источника излучения соответственно. ! 5. Панель по п.4, отличающаяся тем, что боковые грани упомянутых многогранных поверхностей представляют собой плоские поверхности. ! 6. Панель по п.4, отличающаяся тем, что боковые грани упомянутых многогранных поверхностей представляют собой неплоские поверхности.

Description

Полезная модель относится к световым панелям с торцевым вводом излучения и позволяет получить экономичные, комфортные для восприятия глазом, однородные по излучающей поверхности световые панели со светодиодным источником света для освещения жилых, технологических и технических помещений, может быть использовано в демонстрационных вывесках, указателях различной информации, световых рекламах, осветительных устройствах для медицинских применений и прочих световых устройствах.
Известные осветительные панели с торцевым вводом излучения, например, RU 95886, с необходимостью включают три основных конструктивных элемента, показанных на Фиг.1, а именно световодный элемент 11 (например, плоский волновод), светорассеивающие элементы 12, которые могут быть выполнены как в виде дополнительных слоев, нанесенных на световодный элемент 11, так и в виде каких-либо изменений на поверхности (US 2010014318), и источник излучения 13. Источники поставляют свет для освещения, световодные элементы обеспечивают доставку света вдоль панели от источников к светорассеивающим элементам, а светорассеивающие элементы - вывод света наружу из панели. При этом должны быть обеспечены оптимальные условия освещения. Световые панели могут также содержать различные дополнительные элементы, например, отражающие покрытия. Применяющиеся в известных панелях световодные элементы (световоды) сами по себе практически не выводят излучение наружу: эффективность передачи излучения по световодам превышает 95%. Это происходит потому, что, во-первых, излучение от источников вводится световоды под углом, превышающим угол полного внутреннего отражения. А, во-вторых, форма световодов такова, что распространяющееся излучение в любой точке световода (без рассеивющих элементов) испытывает полное внуреннее отражение.
В оптимальных условиях световая панель формирует из световых пучков источников один или несколько пучков заданных направления и поперечного сечения с максимально равномерным распределением интенсивности (яркости) света по сечению выходных пучков, при возможно большем (возможно близким к 1) КПД по выводу светового излучения. Последний определяется отношением полной мощности света от источников к полной мощности света, выводимого из панели. Для обеспечения освещения абсолютная выходная мощность светового излучения панели должна быть достаточно высокой (сравнимой с мощностью света от ламп накаливания). Характерные поперечные размеры светового пучка, выходящего из панели много больше (в разы), чем поперечные размеры пучка, исходящего от источников, при условии, если измерять поперечное сечение соответствующих пучков на одинаковом расстоянии от источника и от панели. Форма выходящего светового пучка совпадает, как правило, с формой рабочих (выводящих) поверхностей панели.
Таким образом, задача настоящей полезной модели состоит в том, чтобы создать световую панель с торцевым вводом излучения, которая обеспечивала следующие требования:
1. Преобразование световых пучков от источников в один или несколько выходящих световых пучков большего поперечного сечения;
2. Обеспечение более равномерной яркости выходящих пучков по сечению;
3. Обеспечение высокого КПД по вводу-выводу светового излучения;
4. Обеспечения заданного направления (направлений) выходящих пучков.
Необходимость высокого КПД по вводу-выводу светового излучения является одним из отличий осветительных панелей от панелей-экранов (например, мониторов компьютеров, US 7554626). В последних, при необходимости равномерности освещения рабочей поверхности (экрана) не требуется высокая (т.е. сравнимая с мощностью, необходимой для освещения) выводимая мощность и, соответственно, КПД панелей-экранов по вводу-выводу излучения может быть низким.
Недостатком известных осветительных панелей (например, RU 95886, является их сложое устройство, так как передача излучения от источников вдоль панели и вывод излучения из панели и формирование выходного светового пучка происходят в разных конструктивных элементах: в световодах и светорассеивающих элементах, соответственно. Это увеличивает число конструктивных элементов панели. Другим недостатком является не полное решение задач панели (невысокое качество освещения), в частности, равномерной яркости излучения по сечению выходного светового пучка и обеспечения заданного направления пучка. В предлагаемой полезной модели указанные недостатки устраняются с помощью объединения функций передачи излучения от источников вдоль панели и функции вывода излучения из панели и формирования выходного светового пучка в едином конструктивном элементе.
Предлагаемая световая панель представляет собой клинообразный световод или призму (Фиг.2) из прозрачного материала (например, стекла) с плоскими или искривленными (Фиг.5) рабочими поверхностями 21 - большими поверхностями клина. Источники излучения 22 (например, светодиоды) помещают у торцевой (меньшей) поверхности данного световода. Как видно на Фиг.2 специальные светорассеивающие элементы отсутствуют, и рассеяние света происходит при распространении излучения вдоль световода за счет его клинообразной формы.
Принцип работы предлагаемой световой панели поясняется также на Фиг.2, описывающей схему переноса и вывода излучения из предлагаемой клинообразной световой панели, где φ - угол полного внутреннего отражения, α - угол при вершине клинообразного световода, θ - угол, под которым луч от источника 22 падает на торцевую поверхность световода, φ1, φ2,…,φk - углы, под которыми происходят 1, 2,…, k-oe отражения внутри световода.
Для простоты рассмотрим клинообразный световод с плоскими рабочими поверхностями. Луч от источника, имеющий угол θ относительно оси световода, испытывает первое отражение под углом φ1=π/2-θ-α/2, от левой рабочей поверхности световода и проходит дальше. После второго отражения (отражения от правой рабочей поверхности) φ2=π/2-θ-3α/2, после k-го - φk=π/2-θ-α(k-1/2), т.е. φk уменьшается с каждым отражением. Таким образом, при некотором отражении (на Фиг.2 ) окажется, что - угла полного внутреннего отражения для материала световода с показателем преломления n. При отражении и последующих свет начнет выходить из световода наружу. Таким образом, на начальном этапе распространения света, при происходит его перенос вдоль панели без выхода наружу, а затем, при - и перенос и выход излучения наружу. Лучи источника с большим углом θ относительно оси световода будут выходить ближе к входного торцу световода, а лучи с меньшим θ - дальше от торца. Таким образом, обеспечивают равномерность выхода излучения с боковой поверхности световода. Принцип работы световой панели с неплоскими (искривленными) рабочими поверхностями аналогичен изложенному выше, изменится лишь выражение для φk.
На Фиг.3 показан набор фиктивных источников излучения - изображений источника, находящегося у торцевой (входной) поверхности панели. При расчете положений фиктивных источников, для простоты, полагалось, что настоящий источник помещен в материал световода. Фиктивные источники дают такое же освещение, как и данная световая панель (клинообразная световая панель с плоскими рабочими поверхностями). Цифры 0, 1, 2… соответствуют номеру отражения света исходного источника от рабочих поверхностей панели. Жирные пунктирные стрелки показывают направления суммарных световых пучков от правой и левой рабочих поверхностей панели.
Таким образом, световая панель эквивалентна замене излучения от входного источника на излучение от большего числа фиктивных источников-изображений. Такая замена одного источника на несколько приводит к более равномерному распределению яркости по сечению выходного пучка панели, чем распределение яркости исходного источника. Из Фиг.3 также видно, что из однонаправленного пучка источника панель формирует световые пучки двух направлений. Диаграммы направленности с двумя направлениями распространения световых пучков, практически необходимы, например, для устройств наружного освещения. На Фиг.3 часть фиктивных источников (см. источник, лежащий ниже горизонтальной линии) излучает в направлении, противоположном направлению света (сверху вниз) от исходного источника. Такие фиктивные источники соответствуют отраженному излучению, они определяют КПД данной световой панели. Для малых углов α отражение назад возникает после того, как свет в панели испытал достаточно большое число отражений вперед. Например, для угла α на Фиг.3 - отражение назад возникает после 5 отражений. Таким образом, при малых α потери на отражение назад малы, а КПД панели превышает 90%. При заданном угловом распределении входного источника свойства и характеристики панели с плоскими рабочими поверхностями определяются углом α при вершине клина и показателем преломления n материала панели. Поперечную структуру, направление распространения выходных световых пучков и соотношение яркостей световых пучков можно изменять за счет искривления рабочих поверхностей панели. Анализ положения фиктивных источников (изображений) для настоящего источника, находящегося вне световода, показывает, то его изображения «размазываются» и представляют собой короткие светящиеся нити, расположенные там же, где находятся точечные изображения источника и направленные по радиусам окружностей на фиг.3.
На Фиг.4 показан клинообразный световод с искривленными рабочими поверхностями. В данном примере поверхность панели выбирается таким образом, чтобы обеспечить вывод излучения, в основном, только с одной стороны панели. С другой стороны излучение практически не выводится, несмотря на то, что какие-либо отдельные отражающие элементы (зеркальные покрытия) на этой стороне панели отсутствуют. Отсутствие отражающих элементов упрощает конструкцию и повышает надежность работы панели, т.к. она не содержит зеркальных элементов, например, металлизированных покрытий, подверженных коррозии. Принцип построения световой панели с искривленным покрытием, где обеспечивается вывод излучения, в основном, с одной стороны, поясняется с помощью Фиг.4. Стрелками на Фиг.4 отмечены направления распространения лучей в панели и вне ее.
Имеется точечный источник света 41 с апертурой излучения с угловой расходимостью γ сформированной, например, линзой или диафрагмой. Для случая на Фиг.4 γ=12°. Пространственная конфигурация боковых поверхностей панели 4100 (левая) и 4200 (правая) и направление максимума излучения источника подобраны так, что излучение от источника, на протяжении некоторого числа отражений в панели, испытывает полное внутреннее отражение от поверхности 4200 и не выходит из нее наружу, но не испытывает полного внутреннего отражения от поверхности 4100 и, следовательно, выходит частично через эту поверхность наружу при каждом отражении. Соответствующая форма поверхностей 4100 и 4200 может быть определена, например, согласно следующему алгоритму. Излучение от источника попадает на поверхность 4200 панели и испытывает там первое полное внутреннее отражение: для этого угол падения между крайним лучом 42 от источника и нормалью к плоскому элементу 43 поверхности, от которого совершается первое отражение, должен быть равен углу θ=arcsin(1/n) полного внутреннего отражения для материала панели с показателем преломления n. Например, для панели из стекла с n=1.536 на Фиг.4 θ=40.6°. Все лучи, лежащие между крайними лучами 42 и 44 источника, будут испытывать полное внутреннее отражение от элемента 43 поверхности, так как соответствующие этим лучам углы падения θ(1): , где - угол падения крайнего луча 44 от источника, здесь и далее верхний индекс в скобках соответствует номеру отражения. Таким образом, при первом отражении излучение от источника не выходит за пределы панели. Свет источника, полностью отраженный от элемента поверхности 43 внутрь световой пластины, доходит затем до плоского элемента 45 ее боковой поверхности 4100. Элемент 45 повернут относительно элемента 43 (вертикального на Фиг.4) против часовой стрелки на угол γ, поэтому углы падения θ(2) лучей от источника на элемент 45 , т.е. все лучи от источника, за исключением самого крайнего луча с углом падения , при отражении от элемента 45 частично выходят наружу. После частичного отражения от элемента 45 свет от источника доходит до плоского элемента 46 поверхности 4200, который повернут относительно элемента 45 на угол γ, т.е. на угол 2γ относительно вертикали. Так же, как и для элемента 44, все лучи от источника будут испытывать полное внутреннее отражение от элемента 46 и, следовательно, не будут выходить наружу из панели. Затем лучи, отраженные от элемента 46 доходят до элемента 47 поверхности 4100, элемент 47 повернут относительно элемента 46 на угол γ (т.е. на угол 3γ относительно вертикали) против часовой стрелки, поэтому, также как и для элемента 45, ни один из лучей источника (кроме самого крайнего) не будет испытывать полного внутреннего отражения от элемента 47, и все они будут частично выходить через элемент 47 наружу. Аналогичным образом строятся остальные элементы панели, при этом используются построение изображений источника как, например, изображения 48, 49, 410 на Фиг.4. Из Фиг.4 видно, что после достаточно большого числа отражений часть света начнет выходить через поверхность 4200: там показаны направления 411 выхода света из поверхности 2400 4-м отражении от нее. Эффективность работы данной панели, таким образом, должна характеризоваться, в т.ч. относительной долей энергии излучения источника, выходящей через поверхность 4100. Упомянутую эффективность световой панели можно оценить, если воспользоваться известными выражениями для амплитудных коэфициентов отражения , поля световой волны различных (нормальой и параллельной плоскости падения луча) поляризаций. Здесь θ, θ′ - углы падения луча света в панели и его продолжения за пределами панели, соответственно, nsinθ=sinθ′. Используя закон сохранения энергии для падающего, прошедшего и отраженного от поверхности раздела сред излучения в виде можно получить коэфициенты прохождения ТII⊥(θ) по интенсивности (яркости) излучения. Для оценок яркости вышедшего из панели излучения достаточно взять средний по поляризациям поля и по углам падения коэфициент прохождения . Используя последнюю формулу можно найти, что в случае фиг.4 после первого отражения от поверхности 4100 панели из нее выйдет T=0.701, т.е. 70% излучения, после второго -Т(1-T)=0.209-21% а после третьего -T(1-T)2=0.062-6%. Таким образом, эффективность данной панели по выводу излучения через поверхность 4200 составляет не менее 70+21+6=97%. Остальная часть излучения источника может частично выходить через противоположную поверхность 4100. Изменяя апертуру источника можно получать другое распределение энергии ыходного излучения после отражений. Например, оценки для меньшей, чем на Фиг.4 апертуры γ=4° дают, что после первого, второго и третьего отражений из панели выйдет, соответственно, 56%, 25% и 11% энергии излучения, эффективность панели составит при этом 92%.
Данное построение, и пример преобразования излучения панели за счет кривизны ее поверхности, - не единственно возможные. Данная панель может быть оптимизированна, в т.ч. путем подбора ее оптимальной толщины - в зависимости от апертуры источника. Рабочие поверхности панели могут иметь спрямленные углы. Может быть реализован более общий случай источника с более широкой апертурой (ограниченной, например, лучом 412 на Фиг.4) так, что лучи только части апертуры выходят из панели, а лучи другой части испытывают полное внутреннее отражения как на поверхности 4100 так и на поверхности 4200. При этом излучаемая панелью мощность в различных участках может регулироваться, наклоном поверхности соответствующего участка, например, так, что часть апертуры источника, содержащая свет, выходящий из панели, увеличивается с увеличением номера отражения. Это позволит распределять излучаемую мощность по поверхности панели. Данные реализации световой панели несколько более сложные, чем указанная на Фиг.4, принципиально не отличаются от примера представленного на Фиг.4. Могут быть реализованы и другие примеры панелей с искривленными поверхностями, удовлетворяющие запросам потребителя. Например, за счет кривизны поверхности, панель может формировать несколько световых пучков различных направлений. Например, на Фиг.5 представлена панель с цилиндрическими поверхностями, образующие которых - окружности радиусов Rw и Rd, центры окружностей смещены на расстояние Δ. При этом выход излучения со стороны нижней, (радиуса Rd<Rw) поверхности панели практически не происходит за счет эффекта полного внутреннего отражения, весь выжод излучения происходит только со стороны верхней, радиуса Rw поверхности.

Claims (6)

1. Световая панель с торцевым вводом излучения, содержащая световодный панельный элемент и источник излучения, отличающаяся тем, что световодный панельный элемент представляет собой световод, выполненный в виде трехгранной призмы, одна боковая грань которой меньше двух других боковых граней, при этом источник излучения располагают перед упомянутой меньшей боковой гранью.
2. Панель по п.1, отличающаяся тем, что упомянутые две другие боковые грани выполнены с плоскими поверхностями.
3. Панель по п.1, отличающаяся тем, что упомянутые две другие боковые грани выполнены с неплоскими поверхностями.
4. Световая панель с торцевым вводом излучения, содержащая световодный панельный элемент и источник излучения, отличающаяся тем, что световодный панельный элемент представляет собой световод, выполненный в виде многогранной призмы, при этом источник излучения располагают перед одной из упомянутых боковых граней упомянутого световода, а другие упомянутые боковые грани образуют выпуклую многогранную поверхность для вывода излучения от упомянутого источника излучения и вогнутую многогранную поверхность для отражения излучения от упомянутого источника излучения соответственно.
5. Панель по п.4, отличающаяся тем, что боковые грани упомянутых многогранных поверхностей представляют собой плоские поверхности.
6. Панель по п.4, отличающаяся тем, что боковые грани упомянутых многогранных поверхностей представляют собой неплоские поверхности.
Figure 00000001
RU2010150258/12U 2010-12-08 2010-12-08 Световая панель с торцевым вводом излучения (варианты) RU103961U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010150258/12U RU103961U1 (ru) 2010-12-08 2010-12-08 Световая панель с торцевым вводом излучения (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010150258/12U RU103961U1 (ru) 2010-12-08 2010-12-08 Световая панель с торцевым вводом излучения (варианты)

Publications (1)

Publication Number Publication Date
RU103961U1 true RU103961U1 (ru) 2011-04-27

Family

ID=44732001

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010150258/12U RU103961U1 (ru) 2010-12-08 2010-12-08 Световая панель с торцевым вводом излучения (варианты)

Country Status (1)

Country Link
RU (1) RU103961U1 (ru)

Similar Documents

Publication Publication Date Title
CN103562618B (zh) 背光装置及液晶显示装置
JP3529387B2 (ja) 光線指向光学構造体
US5506929A (en) Light expanding system for producing a linear or planar light beam from a point-like light source
CN102149964B (zh) 用于产生均匀准直光的紧凑光学系统和透镜
US8662727B2 (en) Apparatus for efficiently coupling light from a light source into a thin object
US20110013387A1 (en) Directional Linear Light Source
RU2605690C2 (ru) Светильник
KR20010108062A (ko) 대각선 비틀림을 정정하기 위한 백라이트
CN101310143A (zh) 薄型高效光准直设备
CN1272650C (zh) 显示设备的照明系统
US20100118545A1 (en) Lighting structure
CN107166179A (zh) 灯具
WO2017198034A1 (zh) 一种光源系统及其投影设备、照明装置
CN207122765U (zh) 灯具
CN107166180A (zh) 灯具
DK176001B1 (da) Tyndt fladt lampemodul til hyldebelysning
TW200905872A (en) A LED luminaire
RU2442229C1 (ru) Световая панель с торцевым вводом излучения (варианты)
RU103961U1 (ru) Световая панель с торцевым вводом излучения (варианты)
JP4047437B2 (ja) 線状光投射装置ならびに平面照明装置
WO2019154007A1 (zh) 灯具
CN207122764U (zh) 灯具
JP4112197B2 (ja) 平面照明装置
CN207145988U (zh) 灯具
JP2003217326A (ja) 照明装置

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20121209

NF1K Reinstatement of utility model

Effective date: 20130910

MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20151209