WO2019154007A1 - 灯具 - Google Patents

灯具 Download PDF

Info

Publication number
WO2019154007A1
WO2019154007A1 PCT/CN2019/071267 CN2019071267W WO2019154007A1 WO 2019154007 A1 WO2019154007 A1 WO 2019154007A1 CN 2019071267 W CN2019071267 W CN 2019071267W WO 2019154007 A1 WO2019154007 A1 WO 2019154007A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical element
angle
luminaire
point
Prior art date
Application number
PCT/CN2019/071267
Other languages
English (en)
French (fr)
Inventor
杨毅
Original Assignee
杨毅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨毅 filed Critical 杨毅
Priority to US16/967,574 priority Critical patent/US11519586B2/en
Publication of WO2019154007A1 publication Critical patent/WO2019154007A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/048Refractors for light sources of lens shape the lens being a simple lens adapted to cooperate with a point-like source for emitting mainly in one direction and having an axis coincident with the main light transmission direction, e.g. convergent or divergent lenses, plano-concave or plano-convex lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0083Array of reflectors for a cluster of light sources, e.g. arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • F21V7/0033Combination of two or more reflectors for a single light source with successive reflections from one reflector to the next or following
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the invention relates to the field of illumination, in particular to the field of decorative lighting.
  • Lamps belong to the traditional field, and a wide variety of lamps are available. When LEDs appear, the luminaires that use LEDs as the light source are also endless. However, with the improvement of people's living standards, there is an increasing demand for lighting, especially decorative lighting, and this demand has not yet been fully met.
  • the beam is directed to the collimating optical element in a reflective or refractive manner and collimated to form parallel light after collimation of the collim
  • the light collecting angle of the collimating optical element is B, and the light collecting angle is less than half of the light emitting angle of the light emitting point, so that at least two different angles of light emitted from the light emitting point can be projected to the light through the light guiding member of the light collecting device.
  • FIG. 1 is a schematic structural view of a lamp according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of a lamp according to another embodiment of the present invention.
  • 3a and 3b are views showing the structure of a lamp according to another embodiment of the present invention.
  • the present invention provides a luminaire, and a schematic structural view of the first embodiment is shown in FIG.
  • the luminaire includes a light source 1101, the light source including at least one light-emitting point S0, the light-emitting full point of the light-emitting point S0 being A, and A being greater than 60 degrees.
  • a collimating optical element 1104 having a focal point at a distance F from the plane of the element and an effective aperture of the collimating optical element being D; the collimating optical element for illuminating from a focus position
  • B is the full angle of the light of the collimating optical element, that is, the opening angle of the element facing the focus.
  • the full-angle B of light is less than half A/2 of the full angle of the light-emitting point S0.
  • the luminaire further includes a light-receiving device between the light source 1101 and the optical path of the collimating optical element 1104, the light-receiving device comprising at least two light guiding members 1102 and 1103 for respectively collecting the light beam 1301 emitted from different angles of the light-emitting point of the light source And 1303, and respectively, the collected light beams are guided to the collimating optical element 1104 in a reflective manner, and collimated by the collimating optical elements to form parallel light. Also included is a mirror array 1105 for reflecting parallel light to form an array of reflected spots.
  • each of the sub-mirrors on the mirror array is capable of reflecting a portion of the parallel light incident thereon and forming a small beam that forms a small spot on the far field screen.
  • This small spot is the image formed by the light source after collimating the optical element and the sub-mirror. It can be understood how many small spots can be formed by how many sub-mirrors there are. In the case of decorative lighting, the more the number of small spots and the brighter the small spots, the better the effect.
  • the more sub-mirrors the more small spots, but the more sub-mirrors, the smaller the sub-mirrors, so that less energy is projected onto them, which reduces the brightness of small spots.
  • the size of the sub-mirrors is limited by cutting and assembly and cannot be very small. That is to say, increasing the number of small spots by increasing the number of sub-mirrors is contrary to the brightness performance of small spots. Therefore, it is desirable to find a method that can increase the number of sub-mirrors while increasing the number of small spots. The present invention proposes such a method.
  • the light guiding member is a mirror, and two mirrors (light guiding members) 1102 and 1103 are drawn in FIG.
  • the upwardly directed beam 1301 from the source S0 is reflected by the mirror 1102 and directed to the light collimating element 1104, and the deflected beam 1303 from the source S0 is reflected by the mirror 1103 and directed to the light collimating element 1104.
  • the two beams 1301 and 1303 respectively correspond to the two virtual light-emitting points S1 and S2, that is to say, the optical effects are the same as those of the two beams emitted from the virtual light-emitting points S1 and S2. .
  • the position of the light collimating element 1104 is designed such that the virtual light-emitting points S1 and S2 are located on the focal plane of the light collimating element 1104, it is possible to realize that the two beams form a parallel beam after passing through the light collimating element.
  • the two parallel beams formed at this time are equivalently emitted by the two virtual light-emitting points S1 and S2, that is, corresponding to the two light-emitting points, and the two parallel lights are reflected by the mirror array 1105, and then reflected.
  • Each sub-mirror on the mirror array can be respectively irradiated by two parallel beams, that is, two small beams are formed, and two small spots are formed, which are images of the virtual light-emitting points S1 and S2, respectively. In this way, the effect of doubling the number of small spots without increasing the number of sub-mirrors is achieved.
  • the reason why the scheme can be established is that the light collecting angle of the light collimating element is less than half of the light emitting angle of the light emitting point S0.
  • the invention can be understood as follows: the illumination angle A emitted by the S0 is divided into a plurality of parts by the light guide of the light-receiving device, each part corresponding to a virtual light-emitting point, and each part can realize the light divergence angle of B, so that The beam emitted by each of the virtual light-emitting points is capable of covering the range of the light collimating elements and is collimated by the light collimating elements, respectively.
  • each part can realize the light divergence angle of B, which requires B. ⁇ A/2.
  • the light beam 1302 near the optical axis of the light-emitting point S0 is not guided by the light-receiving means, but is directly emitted and projected onto the light collimating element 1104.
  • this portion of the light can also pass through the light collimating element 1104 and form parallel light, and a plurality of small spots are formed after the reflection of the mirror array. Therefore, in the embodiment, the light-emitting point S0 is additionally added by the function of the light-receiving device, and two virtual light-emitting points S1 and S2 are additionally added, that is, three light-emitting points corresponding to S0, S1, and S2 are simultaneously illuminated in the optical effect.
  • FIG. 1 only shows two light guiding members 1102 and 1103 in the paper surface, and there is room for adding other light guiding members outside the paper surface, so that more small spots can be formed.
  • B ⁇ A/2 under the premise of B ⁇ A/2, at least a small number of small mirrors can be achieved by a reasonable design.
  • the full-angle A of the light-emitting point S0 is greater than 60 degrees, for example, A is 70 degrees.
  • the full angle B of the collimating optical element should be less than 35 degrees. If B is smaller, for example, B is equal to 20 degrees, then the illumination of the illumination point S0 can be divided into more parts and equivalent to a plurality of virtual illumination points, the light of full angle B is projected onto the collimating optical element. In fact, the full angle of illumination of S0 can also be 40 degrees, and B can satisfy the requirements of the present invention as long as it is less than 20 degrees.
  • the light source further includes a convex lens or a lens group for compressing the light-emitting angle of the large-angle light emitted by the light-emitting point of the light source.
  • the convex lens or lens group functions to receive a large angle of incident light and to compress the exiting light at a relatively small angle, and obviously other light angle compression elements including the reflector can achieve the same purpose. That is, the light source includes a light angle compression element for receiving light from the light source that emits an angle range C, and emits light of full angle A, where C>A.
  • S0 is used as a real light-emitting point, and two virtual light-emitting points S1 and S2 are formed by the light-receiving device.
  • the optical paths of the virtual light-emitting points S1 and S2 are the same (up and down symmetrical) and can be simultaneously located on the focal plane of the light collimating element.
  • the optical path of the illuminating 1302 of S0 is obviously shorter than the illuminating optical path of S1 (this is because the optical path of S1 is reflected by the mirror 1102 and then reaches the optical collimating element. According to the triangle principle, the sum of the two side lengths is necessarily greater than the third side. ).
  • S0 is necessarily located between the focal plane and the light collimating element, so that the beam 1302 emitted by the out-of-focus S0 is not perfected by the light collimating element. Collimation, the small spot formed by the mirror array will be too large.
  • another light guide is used to form another virtual illumination point, which solves this problem.
  • a schematic structural view of this embodiment is shown in FIG. 2.
  • the present embodiment differs from the embodiment shown in FIG. 1 in that, in the present embodiment, another light guide 2107 including a convex lens is used, wherein the convex lens 2107 is for collecting light emission around the optical axis of the light-emitting point.
  • the mirror is used to collect the illuminating point away from the optical axis.
  • the light beam emitted from the light-emitting point S0 is refracted by the convex lens 2107 and transmitted to the light collimating element.
  • the equivalent virtual light-emitting point S0' is located on the side of the real light-emitting point S0 away from the light collimating element.
  • S0', S1 and S2 can be made to have the same optical path and are located on the focal plane of the light collimating element. In this way, it is possible to simultaneously ensure that the three beams of light pass through the light collimating element to achieve perfect collimation, further ensuring that the small spot is minimized and brightest.
  • the other function of applying the convex lens 2107 is that the light beam has a light-emitting angle B (corresponding to the light-collecting angle of the light collimating element) after the light beam is folded by the convex lens, and the light-collecting angle of the convex lens is necessarily greater than B, that is, greater than the reflection.
  • B the light-emitting angle of the convex lens
  • the angle of receipt of the mirror Therefore, compared with the virtual light-emitting points S1 and S2, the light emitted from the virtual light-emitting point S0' contains more energy, and the resulting small light spot is also larger.
  • the advantage of this is that a plurality of small spots formed by the mirror array are large, small, bright and dark, and the decorative effect is better and the visual sense is more stereoscopic.
  • the convex lens 2107 can both make the energy of the intermediate beam more, and at the same time enable the virtual light-emitting point S0' to be located on the focal plane of the light collimating element, so that the small spot formed by the virtual light-emitting point S0' is brighter and clearer.
  • light guides have been used in many places, and light guides may refer to different elements.
  • the light guides are mirrors 1102 and 1103.
  • some of the light guides are still mirrors, and some of the light guides are convex lenses; in the latter embodiment, the light guides may also be prisms.
  • the guide beam is transmitted to the light collimating element. Therefore, in the present specification, such elements are collectively referred to as light guide members without causing misunderstanding of the description.
  • the different light guides may be different components and do not affect the reader's understanding of the solution of the present invention.
  • a mirror is used as the light guide. It is actually also possible to use a prism as a light guide. The mirror directs the beam to the light collimating element in a reflective manner, while the prism directs the beam to the light collimating element in a refractive manner.
  • the light emitted by the light-emitting point S0 is divided into two parts in the up and down direction, the upper half 3301 is incident on the upper half of the prism 3102, and the lower half 3303 of the light is incident on the prism 3102. The lower part.
  • the two portions of light 3301 and 3303 are respectively refracted at different positions of the prism and respectively led to the light collimating element 3104, and are collimated by the light collimating element 3104 and reflected by the mirror array 3105 to form a plurality of small Spot.
  • the two portions of light 3301 and 3303 correspond to the virtual light-emitting points S1 and S2, respectively, so that a small spot twice the number of sub-mirrors on the mirror array can be realized.
  • the light collecting means is a prism 3102, and the light collecting means comprises two light guiding members, one light guiding member is a prism of the upper half of the prism 3102, and the other light guiding member is a lower portion of the prism.
  • a half-part prism, the two light guides are integrally formed to form a large prism.
  • the illuminating points of the two light guiding members ie, the upper and lower portions of the prism 3102) have the same illuminating angle, and the symmetrical design can ensure that the optical paths of the two portions are the same, so that two virtual illuminating lights can be designed.
  • Points S1 and S2 are simultaneously located on the focal plane of the light collimating element.
  • a front view of the prism 3102 is shown in Figure 3b.
  • the light collecting means is composed of three light guiding members 3102a, 3102b and 3102c, each of which is a small prism which guides the light beams emitted from different directions to the light collimating elements. It can be understood that three virtual light-emitting points can be formed in this way, thereby finally achieving a small spot three times the number of sub-mirrors.
  • the light source includes at least two light-emitting points, and the two light-emitting points can respectively apply a light-receiving device to generate a virtual light-emitting point.
  • the light guiding members of the light-receiving devices of different light-emitting points are shared. This has the advantage of reducing system complexity and cost.
  • the same mirror when used as the light guide, it can be used as a light guide of two real light-emitting points to respectively generate two corresponding virtual light-emitting points.
  • the prisms shown in FIG. 3a and FIG. 3b are also the same, and can also be used as light guides of two real light-emitting points to respectively generate corresponding virtual light-emitting points.
  • the number of virtual light-emitting points can be greatly increased, thereby increasing the number of small spots.
  • the light source is not explained.
  • the light source comprises a laser and a fluorescent element, and a point at which the laser light emitted from the laser is incident on the fluorescent element is a light-emitting point, and the light-emitting point generates a broad spectrum of light. Due to the concentration of laser energy emitted by the laser, it is easier to produce a smaller spot.
  • the fluorescent element can be excited to generate high-intensity white light at this small excitation point, realizing a light source with a small light-emitting point area.
  • the light source further comprises an aperture at the rear end of the optical path of the fluorescent element and in close contact with the fluorescent element, the transparent aperture of the aperture covering the light-emitting point of the light source. This can make the edge of the light-emitting point of the light source sharper, thereby achieving a small spot array with higher contrast and achieving a better visual effect.
  • the light collimating element is a convex lens
  • the mirror arrays are all convex shapes.
  • the light collimating element can also be a curved mirror, and the mirror array can also be a convex shape.
  • the light collimating element and the mirror array are not limited to the specific form as long as they can implement the functions defined by the present invention.

Abstract

一种灯具,包括光源(1101),包括至少一个发光点(S0);位于光源(1101)和准直光学元件(1104、3104)光路之间的收光装置,该收光装置至少包括两个光引导件(1102、1103、3302),用于分别收集从光源(1101)发光点(S0)沿不同角度发出的光束(1301、1303、3301、3303),并分别将收集到的光束(1301、1303、3301、3303)以反射或折射的方式引导往准直光学元件(1104、3104),并经准直光学元件(1104、3104)的准直后形成平行光;还包括反射镜阵列(1105、3105),用于将平行光反射形成反射光斑阵列。通过收光装置的光引导件(1102、1103、3302),可以将发光点(S0)发出的至少两束不同角度的光束(1301、1303、3301、3303)投射到准直光学元件(1104、3104)并分别形成平行光束,这样等效于发光点(S0)至少变成了两个等效虚发光点(S1、S2),那么在反射镜阵列(1105、3105)的反射后所形成的小光斑的数量至少翻一倍,这样可以提升装饰效果。

Description

灯具 技术领域
本发明涉及照明领域,特别是装饰照明领域。
背景技术
灯具属于传统领域,各种灯具种类繁多。当LED出现后,以LED为光源的灯具也是层出不穷。然而随着人们生活水平的提高,对照明、尤其是装饰照明有了越来越高的需求,而这种需求目前还没有得到完全满足。
发明内容
本发明提出一种灯具,包括光源,包括至少一个发光点,该发光点的发光全角为A;准直光学元件,该准直光学元件的焦点距离该元件平面的距离为F,且该准直光学元件的有效口径是D;该准直光学元件用于将从焦点位置发出的发光全角为B的入射光束准直成平行光,其中B=2*arctg(D/2F),且B小于A/2;位于光源和准直光学元件光路之间的收光装置,该收光装置至少包括两个光引导件,用于分别收集从光源发光点沿不同角度发出的光束,并分别将收集到的该光束以反射或折射的方式引导往准直光学元件,并经准直光学元件的准直后形成平行光;还包括反射镜阵列,用于将所述平行光反射形成反射光斑阵列。
准直光学元件的收光角为B,该收光角小于发光点发光角的一半,这样通过收光装置的光引导件,就可以将发光点发出的至少两束不同角度的光投射到准直光学元件并分别形成平行光束,这样等效于发光点至少变成了两个等效虚发光点,那么在反射镜阵列的反射后所形成的小光斑的数量至少翻一倍,这样可以提升装饰效果。
附图说明
图1表示了本发明第一实施例的灯具的结构示意图;
图2表示了本发明另一实施例的灯具的结构示意图;
图3a、3b表示了本发明另一实施例的灯具的结构示意图。
具体实施方式
本发明提出一种灯具,其第一实施例的结构示意图如图1所示。该灯具包括,光源1101,该光源包括至少一个发光点S0,该发光点S0的发光全角为A,A大于60度。还包括准直光学元件1104,该准直光学元件的焦点距离该元件平面的距离为F,且该准直光学元件的有效口径是D;该准直光学元件用于将从焦点位置发出的发光全角为B的入射光束准直成平行光,其中B=2*arctg(D/2F)。根据光学知识可知,B就是准直光学元件的收光全角,即该元件面向焦点的张角。该收光全角B小于发光点S0发光全角的一半A/2。
灯具还包括位于光源1101和准直光学元件1104光路之间的收光装置,该收光装置至少包括两个光引导件1102和1103,用于分别收集从光源发光点沿不同角度发出的光束1301和1303,并分别将收集到的光束以反射的方式引导往准直光学元件1104,并经准直光学元件的准直后形成平行光。还包括反射镜阵列1105,用于将平行光反射形成反射光斑阵列。
为了清楚地解释本发明的工作原理,先考虑一束平行光入射于反射镜阵列后的情况。反射镜阵列上的每一个子反射镜都能够将入射到其上的一部分平行光反射并形成一个小光束,这个小光束在远场的屏幕上就能够形成一个小光斑。这个小光斑就是光源经过准直光学元件和子反射镜后形成的像。可以理解,有多少个子反射镜,就能够形成多少个小光斑。在装饰照明的场合中,小光斑的数量越多、小光斑越亮,则效果越好。但可以理解,子反射镜越多则小光斑越多,但是子反射镜越多也意味着子反射镜越小,这样投射到其上的能量也少,也就降低了小光斑的亮度。而且在实际中,子反射镜的尺寸受到切割和组装的限制,不可能非常小。也就是说,使用增加子反射镜数量的方法来增多小光斑的数量,与小光斑的亮 度性能是背道而驰的。因此,希望找到一种能够不增加子反射镜数量、同时又能够增多小光斑数量的方法。而本发明就提出了这样的方法。
在本实施例中,光引导件是反射镜,在图1中画出了两个反射镜(光引导件)1102和1103。光源S0发出的偏上的光束1301被反射镜1102反射并被引导到光准直元件1104,光源S0发出的偏下的光束1303被反射镜1103反射并被引导到光准直元件1104。根据光路可逆的原理,这两个光束1301和1303分别对应于两个的虚发光点S1和S2,也就是说其光学效果与从虚发光点S1和S2发出的两束光的效果是相同的。那么只要设计光准直元件1104的位置使得虚发光点S1和S2位于光准直元件1104的焦平面上,也就能够实现这两束光经过光准直元件后形成平行光束。而这时所形成的两束平行光,等效的是由两个虚发光点S1和S2发出的,也就是对应于两个发光点,这两束平行光被反射镜阵列1105反射后,反射镜阵列上每个子反射镜都能够分别被两束平行光分别照射,也就是会形成两个小光束,并形成两个小光斑,这两个小光斑分别是虚发光点S1和S2的像。这样,就实现了在不增加子反射镜个数的前提下,将小光斑的数量增加了一倍的效果。
该方案之所以能够成立,有一个前提,就是光准直元件的收光角小于发光点S0发光角度的一半。可以这样理解本发明:S0发出的发光角度A,被收光装置的光引导件分为了多个部分,每个部分对应于一个虚发光点,每个部分都能够实现B的光发散角,这样每个虚发光点发出的光束都能够覆盖光准直元件的范围并被光准直元件分别的进行准直。这样,为了至少能够将发光点的发光角度A分成两部分(也就是形成两个虚发光点,小光斑数量多一倍),且每一个部分都能够实现B的光发散角,也就要求B<A/2。
在本实施例中,发光点S0的光轴附近的光束1302并没有被收光装置所引导,而是直接出射并投射到光准直元件1104上。当然这部分光也能够经过光准直元件1104的作用并形成平行光,并在反射镜阵列的反射后形成多个小光斑。因此在本实施例中,发光点S0经过收光装置的作用,额外增加了两个虚发光点S1和S2,也就是在光学效果上相当于S0、S1、S2三个发光点同时在发光,这样在经过光准直元件和反射镜阵列后就能够形成三倍于子反射镜数量的小光斑。而容易理解,图1只是在纸面内显示出了两个光引导件1102和1103,那么在纸面外还有空间增加其他光引导件,这样就能够形成更多的小光斑。当然,本发明中,在B<A/2的前提下,经过合理设计,至少能够实现小光斑数量是子反射镜数量的二倍的效果。
在本实施例中,发光点S0的发光全角A大于60度,例如A为70度。此时准直光学元件的收光全角B应小于35度。如果B更小,例如B等于20度,那么发光点S0的发光中就可以被分成更多的部分并等效为多个虚发光点以全角为B的光投射往准直光学元件。实际上,S0的发光全角也可以为40度,此时B只要小于20度,就能够满足本发明的要求。
从另一个角度来说,如果准直光学元件的收光全角B是设定好的,那么发光点S0中只有A角度部分的光被利用,其余光就会造成浪费。例如,设B=20度,A设为60度(满足B<A/2)。考虑到大多数光源发光是接近各项同性的,例如LED光源,其发光全角为180度,因此这180度中只有60度被利用了,其余则浪费了。
为了提高能量利用率,光源还包括一个凸透镜或一个透镜组,用于将光源发光点发出的大角度光的发光角度进行压缩。例如,凸透镜或凸透镜组可以收集光源发出的全角为130度的光,并出射全角为70度的光。这是等效为A=70度,此时B=20度是可以实现本发明的有益效果的,而此时光源发光中有130度的光被利用了,利用率显然远高于只有70度光被利用的情况。凸透镜或透镜组所起的作用是接收大角度入射光,并对其压缩行程相对小角度的出射光,而显然包括反光杯在内的其它光角度压缩元件也可以达到同样的目的。也就是说,光源包括的光角度压缩元件,用于接收光源发出角度范围为C的光,并出射全角为A的光,其中C>A。
在图1所示的实施例中,S0作为实发光点,在收光装置的作用下形成了两个虚发光点S1和S2。然而,虚发光点S1和S2的光路是相同的(上下对称),可以同时位于光准直元件的焦平面上。而S0的发光1302的光路显然短于S1的发光光路(这是因为S1的光路经过反射镜1102的反射后再达到光准直元件,根据三角形原理,两个边长之和必然大于第三边)。因此,当S1和S2位于光准直元件的焦平面上时,S0就必然位于焦平面与光准直元件之间,这样离焦的S0发出的光束1302就不会被光准直元件完美的准 直,它经过反射镜阵列所形成的小光斑就会偏大。
在本发明的另一实施例中,对于实发光点S0的直接发光,使用另一种光引导件,形成了另一个虚发光点,使这个问题得以解决。该实施例的结构示意图如图2所示。
本实施例与图1所示的实施例的区别在于,在本实施例中,还包括另一个包括凸透镜的光引导件2107,其中凸透镜2107用于收集发光点光轴周围的发光。同时反射镜用于收集发光点远离光轴的发光。发光点S0发出的光束,经过凸透镜2107的折射后再透射往光准直元件,而根据光路可逆原理,其等效的虚发光点S0’位于实发光点S0远离光准直元件的一侧。经过合理的设计,可以使得S0’、S1和S2具有相同的光程,并且都位于光准直元件的焦平面上。这样,就可以同时保证三束光经过光准直元件后实现完美的准直,进一步的保证小光斑都达到最小和最亮。
而应用凸透镜2107的另一个作用在于,光束经过凸透镜的收拢后其发光角为B(对应于光准直元件的收光角),那么凸透镜的收光角度也就必然大于B,也就是大于反射镜的收光角度。所以,与虚发光点S1和S2相比,虚发光点S0’发出的光束中所包含的能量更多,最终形成的小光斑也更大。这样所带来的好处是,最终经过反射镜阵列形成的多个小光斑,是有大有小、有明有暗的,这样的装饰效果更好,视觉上更有立体感。因此,凸透镜2107既能够使得中间光束的能量更多,而且同时能够使虚发光点S0’位于光准直元件的焦平面上,这样虚发光点S0’所形成的小光斑更亮、更清晰。
在以上说明中,多处使用了光引导件,而光引导件可能指的是不同的元件。例如在图1所示的实施例中,光引导件就是反射镜1102和1103。而在图2所示的实施例中,有的光引导件仍然是反射镜,而有的光引导件是凸透镜;在后面的实施例中,光引导件还可能是棱镜。无论哪种光引导件,都起到了引导光束透射往光准直元件的作用,因此在不引起说明的误解的前提下,本说明书中统称这样的元件都是光引导件。即使在图2所示的实施例中,不同的光引导件可能是不同的元件,也并不影响读者对本发明的方案的理解。
在上述实施例中,使用了反射镜作为光引导件。实际上也可以使用棱镜作为光引导件。反射镜是以反射的方式来引导光束到达光准直元件的,而棱镜则是以折射的方式来引导光束到达光准直元件的。在图3a所示的另一个实施例中,发光点S0发出的光在上下方向上分为两部分,上半部分3301入射于棱镜3102的上半部分,光的下半部分3303入射于棱镜3102的下半部分。这两部分光3301和3303在棱镜的不同位置得以分别的折射并分别被引往光准直元件3104,并经过光准直元件3104的准直后被反射镜阵列3105所反射而形成多个小光斑。根据光路可逆原理,这两部分光3301和3303分别对应于虚发光点S1和S2,因此能够实现两倍于反射镜阵列上子反射镜的数量的小光斑。
在本实施例中,收光装置是棱镜3102,而该收光装置是包括两个光引导件的,一个光引导件是棱镜3102的上半部分的棱镜,另一个光引导件是棱镜的下半部分的棱镜,这两个光引导件一体成型,形成一个大的棱镜。这两个光引导件(即棱镜3102的上下两部分)所对应的发光点的发光角度相同,这样的对称设计能够保证两部分所引导的光的光程相同,从而可以设计使得两个虚发光点S1和S2同时位于光准直元件的焦平面上。
在本实施例的另一个举例中,棱镜3102的正视图如图3b所示。可以看出,这个收光装置是由三个光引导件3102a、3102b和3102c组成的,每一个光引导件都是一个小棱镜,将不同方位出射的光束引导往光准直元件。可以理解,这样可以形成三个虚发光点,从而最终实现三倍于子反射镜数量的小光斑。
在前述实施例中,都只有一个实发光点,再由这个实发光点衍生出至少两个虚发光点,以达到成倍的增多小光斑的目的。而为了进一步的增多小光斑的数量,光源包括至少两个发光点,而这两个实发光点都可以分别的应用收光装置来产生虚发光点。优选的,不同发光点的收光装置中至少部分光引导件是共用的。这样的好处是能够降低系统复杂度和成本。举例来说,同一个反射镜作为光引导件时,就可以作为两个实发光点的光引导件,来分别产生两个对应的虚发光点。而图3a和图3b所示的棱镜也是一样,也可以作为两个实发光点的光引导件,来分别产生对应的虚发光点。这样,并不增加系统复杂度的情况下,能够大幅度的增多虚发光点的数量,从而增多小光斑的数量。
在上述实施例的说明中,并没有对光源做说明。实际上光源可以有很多类型,光源的发光点越小, 则所产生的小光斑越小,装饰效果越好。因此优选的,光源包括激光器和荧光元件,激光器发出的激光入射于荧光元件的点为发光点,该发光点产生宽谱光。由于激光器发出的激光能量集中,更容易产生较小的光斑。而荧光元件在这个小激发点上就能够被激发产生高亮度的白光,实现小发光点面积的光源。更优选的,光源还包括位于荧光元件光路后端并紧贴荧光元件的光阑,该光阑的透光孔覆盖光源的发光点。这样能够使得光源的发光点的边缘更锐利,从而实现对比度更高的小光斑阵列,实现更好的视觉效果。
在以上实施例的说明中,光准直元件是凸透镜,反射镜阵列都是上凸的外形。实际上,光准直元件也可以是曲面的反射镜,反射镜阵列也可以是下凸的外形。显然,光准直元件和反射镜阵列只要能够实现本发明所定义的功能即可,并不限制其具体形式。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种灯具,其特征在于,包括:
    光源,包括至少一个发光点,该发光点的发光全角为A;
    准直光学元件,该准直光学元件的焦点距离该元件平面的距离为F,且该准直光学元件的有效口径是D;该准直光学元件用于将从焦点位置发出的发光全角为B的入射光束准直成平行光,其中B=2*arctg(D/2F),且B小于A/2;
    位于光源和准直光学元件光路之间的收光装置,该收光装置至少包括两个光引导件,用于分别收集从光源发光点沿不同角度发出的光束,并分别将收集到的该光束以反射或折射的方式引导往准直光学元件,并经准直光学元件的准直后形成平行光;
    反射镜阵列,用于将所述平行光反射形成反射光斑阵列。
  2. 根据权利要求1所述的灯具,其特征在于,所述光引导件包括反射镜。
  3. 根据权利要求2所述的灯具,其特征在于,存在另一个包括凸透镜的光引导件,其中凸透镜用于收集发光点光轴周围的发光,反射镜用于收集发光点远离光轴的发光。
  4. 根据权利要求3所述的灯具,其特征在于,所述凸透镜的收光角度大于反射镜的收光角度。
  5. 根据权利要求1所述的灯具,其特征在于,所述光源包括光角度压缩元件,用于接收光源发出角度范围为C的光,并出射全角为A的光,其中C>A。
  6. 根据权利要求1所述的灯具,其特征在于,所述光引导件包括棱镜。
  7. 根据权利要求6所述的灯具,其特征在于,至少两个光引导件包括棱镜,且这两个棱镜所对应的发光点的发光角度相同。
  8. 根据权利要求6所述的灯具,其特征在于,至少两个光引导件包括棱镜,且这两个棱镜一体成型。
  9. 根据权利要求1所述的灯具,其特征在于,所述光源包括至少两个发光点,且不同发光点的收光装置中至少部分光引导件是共用的。
  10. 根据权利要求1至9中的任一项所述的灯具,其特征在于,所述光源包括激光器和荧光元件,激光器发出的激光入射于荧光元件的点为发光点,该发光点产生宽谱光。
PCT/CN2019/071267 2018-01-13 2019-01-11 灯具 WO2019154007A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/967,574 US11519586B2 (en) 2018-01-13 2019-01-11 Lamp

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810038518 2018-01-13
CN201810124298.5 2018-02-07
CN201810124298.5A CN108167710A (zh) 2018-01-13 2018-02-07 灯具

Publications (1)

Publication Number Publication Date
WO2019154007A1 true WO2019154007A1 (zh) 2019-08-15

Family

ID=62513148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071267 WO2019154007A1 (zh) 2018-01-13 2019-01-11 灯具

Country Status (3)

Country Link
US (1) US11519586B2 (zh)
CN (1) CN108167710A (zh)
WO (1) WO2019154007A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108167710A (zh) 2018-01-13 2018-06-15 杨毅 灯具
CN208185913U (zh) * 2018-05-02 2018-12-04 杨毅 灯具

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059575A (ja) * 2010-09-09 2012-03-22 Panasonic Electric Works Co Ltd スポットライト
CN103765434A (zh) * 2011-08-25 2014-04-30 讯宝科技公司 基于成像的条形码读取器中的对象检测系统
CN204494207U (zh) * 2015-02-13 2015-07-22 深圳市科曼医疗设备有限公司 手术灯
CN105651187A (zh) * 2015-12-29 2016-06-08 重庆科技学院 菲涅尔双棱镜厚度的非接触间接测量方法
CN107166180A (zh) * 2017-06-14 2017-09-15 杨毅 灯具
CN108167710A (zh) * 2018-01-13 2018-06-15 杨毅 灯具
CN207741023U (zh) * 2018-02-07 2018-08-17 杨毅 反射装置、发光装置和灯具
CN207831134U (zh) * 2018-01-13 2018-09-07 杨毅 灯具
CN208185913U (zh) * 2018-05-02 2018-12-04 杨毅 灯具

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4417695C2 (de) * 1994-05-20 1998-01-29 Reitter & Schefenacker Gmbh Kraftfahrzeugleuchte
US7029150B2 (en) * 2004-01-23 2006-04-18 Guide Corporation Catadioptric light distribution system
CN101852347A (zh) * 2009-03-31 2010-10-06 富准精密工业(深圳)有限公司 照明装置
ES2659550T3 (es) * 2014-08-14 2018-03-16 Goodrich Lighting Systems Gmbh Unidad de luz exterior de aeronave y aeronave que comprende la misma

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059575A (ja) * 2010-09-09 2012-03-22 Panasonic Electric Works Co Ltd スポットライト
CN103765434A (zh) * 2011-08-25 2014-04-30 讯宝科技公司 基于成像的条形码读取器中的对象检测系统
CN204494207U (zh) * 2015-02-13 2015-07-22 深圳市科曼医疗设备有限公司 手术灯
CN105651187A (zh) * 2015-12-29 2016-06-08 重庆科技学院 菲涅尔双棱镜厚度的非接触间接测量方法
CN107166180A (zh) * 2017-06-14 2017-09-15 杨毅 灯具
CN108167710A (zh) * 2018-01-13 2018-06-15 杨毅 灯具
CN207831134U (zh) * 2018-01-13 2018-09-07 杨毅 灯具
CN207741023U (zh) * 2018-02-07 2018-08-17 杨毅 反射装置、发光装置和灯具
CN208185913U (zh) * 2018-05-02 2018-12-04 杨毅 灯具

Also Published As

Publication number Publication date
US11519586B2 (en) 2022-12-06
CN108167710A (zh) 2018-06-15
US20210180771A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US7843642B2 (en) Systems and methods for providing compact illumination in head mounted displays
KR200479892Y1 (ko) 최대 집광효과에 도달할 수 있는 조명장치
JP2017199660A (ja) 光ビームを放出するための自動車両ヘッドライト・モジュール
JP2013502697A (ja) 光学くさびによる効率的な光のコリメーション
US7600894B1 (en) Luminaires and optics for control and distribution of multiple quasi point source light sources such as LEDs
JP6222557B2 (ja) 車両用灯具
JP6345488B2 (ja) 光束制御部材、発光装置および照明装置
EP3816724A1 (en) Light source device
US10072812B2 (en) Lens body and vehicle lighting fixture
JP3956351B2 (ja) 導光板
WO2019154007A1 (zh) 灯具
WO2019210709A1 (zh) 灯具
US8459830B2 (en) Light output device with partly transparent mirror
JP2018049748A (ja) 光学素子
US9188730B2 (en) Light source module using laser as light source
WO2013121346A1 (en) Using micro optical elements for depth perception in luminescent figurative structures illuminated by point sources
CN207569800U (zh) 黑板灯透镜
CN207831134U (zh) 灯具
WO2016102354A1 (en) Improvements in and relating to led illumination in microscopy
JP6749084B2 (ja) Led照明装置
CN107037524B (zh) 光导部件、光学组件及照明和/或信号指示设备
CN207741023U (zh) 反射装置、发光装置和灯具
JP2003066239A (ja) 導光板および平面照明装置
CN106873291A (zh) 光源模组和投影设备
CN114216078A (zh) 照明灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750290

Country of ref document: EP

Kind code of ref document: A1