PL442495A1 - Sposób wytwarzania półprzewodnikowej warstwy azotku galu o przewodnictwie typu n - Google Patents

Sposób wytwarzania półprzewodnikowej warstwy azotku galu o przewodnictwie typu n

Info

Publication number
PL442495A1
PL442495A1 PL442495A PL44249522A PL442495A1 PL 442495 A1 PL442495 A1 PL 442495A1 PL 442495 A PL442495 A PL 442495A PL 44249522 A PL44249522 A PL 44249522A PL 442495 A1 PL442495 A1 PL 442495A1
Authority
PL
Poland
Prior art keywords
sup
gallium nitride
semiconductor layer
producing
mixture
Prior art date
Application number
PL442495A
Other languages
English (en)
Inventor
Paweł Prystawko
Michał Boćkowski
Eliana Kamińska
Monika Masłyk
Ewa GRZANKA
Original Assignee
Instytut Wysokich Ciśnień Polskiej Akademii Nauk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instytut Wysokich Ciśnień Polskiej Akademii Nauk filed Critical Instytut Wysokich Ciśnień Polskiej Akademii Nauk
Priority to PL442495A priority Critical patent/PL442495A1/pl
Publication of PL442495A1 publication Critical patent/PL442495A1/pl

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Przedmiotem zgłoszenia jest sposób wytwarzania półprzewodnikowej warstwy azotku galu o przewodnictwie typu n w procesie magnetronowego rozpylania katodowego w atmosferze gazowej charakteryzujący się tym, że proces z zastosowaniem targetu mocowanego na katodzie, rozpylania katodowego prowadzi się w temperaturze pokojowej, przy zasilaniu katody prądem o częstotliwości radiowej, atmosferę gazową stanowi mieszanina azotu i argonu, przy czym ciśnienie całkowite tej mieszaniny mieści się w zakresie od 0,1 do 15 paskali, objętościowy udział azotu w tej mieszaninie wynosi nie mniej niż 5%, a jako target stosuje się objętościowy monokrystaliczny azotek galu domieszkowany tlenem na poziomie z zakresie od 0,5 do 10 x 10<sup>19</sup> cm<sup>-3</sup>, w którym sumaryczna zawartość pozostałych zanieczyszczeń jest nie większa niż poniżej 0,3 x 10<sup>19</sup> cm<sup>-3</sup>.
PL442495A 2022-10-11 2022-10-11 Sposób wytwarzania półprzewodnikowej warstwy azotku galu o przewodnictwie typu n PL442495A1 (pl)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL442495A PL442495A1 (pl) 2022-10-11 2022-10-11 Sposób wytwarzania półprzewodnikowej warstwy azotku galu o przewodnictwie typu n

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL442495A PL442495A1 (pl) 2022-10-11 2022-10-11 Sposób wytwarzania półprzewodnikowej warstwy azotku galu o przewodnictwie typu n

Publications (1)

Publication Number Publication Date
PL442495A1 true PL442495A1 (pl) 2024-04-15

Family

ID=89076127

Family Applications (1)

Application Number Title Priority Date Filing Date
PL442495A PL442495A1 (pl) 2022-10-11 2022-10-11 Sposób wytwarzania półprzewodnikowej warstwy azotku galu o przewodnictwie typu n

Country Status (1)

Country Link
PL (1) PL442495A1 (pl)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188983A1 (en) * 2013-05-21 2014-11-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and formation method thereof
US20150050776A1 (en) * 2010-12-17 2015-02-19 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing the same, and method for manufacturing semiconductor device
WO2017094028A1 (en) * 2015-12-02 2017-06-08 Indian Institute Of Technology Bombay Method and apparatus for forming silicon doped gallium nitride (gan) films by a co-sputtering technique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150050776A1 (en) * 2010-12-17 2015-02-19 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing the same, and method for manufacturing semiconductor device
WO2014188983A1 (en) * 2013-05-21 2014-11-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and formation method thereof
WO2017094028A1 (en) * 2015-12-02 2017-06-08 Indian Institute Of Technology Bombay Method and apparatus for forming silicon doped gallium nitride (gan) films by a co-sputtering technique

Similar Documents

Publication Publication Date Title
TWI393191B (zh) 低溫薄膜電晶體製程、裝置特性、和裝置穩定性改進
JP5528612B1 (ja) 半導体装置
Chanin et al. Mobilities of mercury ions in helium, neon, and argon
US4576829A (en) Low temperature growth of silicon dioxide on silicon
CN106711022B (zh) 一种生长掺杂界面清晰的碳化硅外延薄膜的制备方法
CN107119258A (zh) p型掺杂氧化镓薄膜及其制备方法
CN107488828B (zh) 形成薄膜的方法以及形成氮化铝薄膜的方法
US4965248A (en) Method of fabricating thin layers from high-temperature oxide superconductors
PL442495A1 (pl) Sposób wytwarzania półprzewodnikowej warstwy azotku galu o przewodnictwie typu n
Yang et al. Phosphorus Doping and Sharp Profiles in Silicon and Silicon‐Germanium Epitaxy by Rapid Thermal Chemical Vapor Deposition
US10388751B2 (en) Semiconductor device and method for forming n-type conductive channel in diamond using heterojunction
CN104878445A (zh) 一种低掺杂浓度碳化硅外延的制备方法
Balmer et al. On the incorporation mechanism of Fe in GaN grown by metal‐organic vapour phase epitaxy
JP2007227621A (ja) 絶縁ゲート構造体を有する半導体装置とその製造方法
CN108538970A (zh) 一种发光二极管的制备方法
Hackam et al. Positive ion mobilities and conversion rates in a helium afterglow
Hackam Temperature variation of positive ion mobilities and conversion rates in neon
TWI698397B (zh) 碳化矽粉體的純化方法
JP2022118459A (ja) Liドープp型NiO薄膜の製造方法
Cho et al. High performance thin film transistor with HfSiO x dielectric fabricated at room temperature RF-magnetron sputtering
CN220652021U (zh) 一种GaN基HEMT器件结构
CN113488463B (zh) 新型GaN共源放大器及其制备方法
CN112164740B (zh) 一种基于电子缓冲器的深紫外发光二极管及其制作方法
CN102280331B (zh) 具有电子发射增强的混合相氮化物薄膜场发射阴极及其制备方法
CN110423985B (zh) 一种在脉冲激光沉积系统中降低Sr2RuO4薄膜制备温度的方法