PL409990A1 - Method and the system for the assessment of the occurrence of a hazard of high-power shocks, generated by the underground exploitation - Google Patents

Method and the system for the assessment of the occurrence of a hazard of high-power shocks, generated by the underground exploitation

Info

Publication number
PL409990A1
PL409990A1 PL409990A PL40999014A PL409990A1 PL 409990 A1 PL409990 A1 PL 409990A1 PL 409990 A PL409990 A PL 409990A PL 40999014 A PL40999014 A PL 40999014A PL 409990 A1 PL409990 A1 PL 409990A1
Authority
PL
Poland
Prior art keywords
measurements
occurrence
total station
shocks
space
Prior art date
Application number
PL409990A
Other languages
Polish (pl)
Other versions
PL230226B1 (en
Inventor
Zbigniew Isakow
Jacek Juzwa
Wiesław Piwowarski
Grażyna Dzik
Original Assignee
Instytut Technik Innowacyjnych Emag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instytut Technik Innowacyjnych Emag filed Critical Instytut Technik Innowacyjnych Emag
Priority to PL409990A priority Critical patent/PL230226B1/en
Priority to AU2014299418A priority patent/AU2014299418A1/en
Priority to UAA201501089A priority patent/UA117661C2/en
Priority to CN201480002452.1A priority patent/CN105765582B/en
Priority to RU2015101762/28A priority patent/RU2587520C1/en
Priority to PCT/PL2014/000130 priority patent/WO2014209141A2/en
Priority to AU2014101639A priority patent/AU2014101639A4/en
Publication of PL409990A1 publication Critical patent/PL409990A1/en
Publication of PL230226B1 publication Critical patent/PL230226B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/01Measuring or predicting earthquakes
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/612Previously recorded data, e.g. time-lapse or 4D
    • G01V2210/6122Tracking reservoir changes over time, e.g. due to production
    • G01V2210/6124Subsidence, i.e. upwards or downwards

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

Sposób oceny wystąpienia zagrożenia wstrząsami wysokoenergetycznymi generowanymi eksploatacją podziemną polega na tym, że dokonuje się jednocześnie w ścisłej koincydencji czasowej i przestrzennej pomiarów drgań (EpomI) na powierzchni z trójskładowych czujników drgań (4) i pomiarów parametrów wstrząsów (EpomII) pod ziemią z kopalnianego systemu sejsmicznego do lokalizacji wstrząsów (12) oraz pomiarów przemieszczeń (Upom) na powierzchni z trójskładowych czujników przemieszczeń punktów powierzchni (9), korygowanych okresowo tachimetrycznym zestawem pomiarowym (B) oraz rejestracji tych pomiarów w repozytoriach danych pomiarowych mikroprocesora analitycznego (2a). Następnie zbiory tych pomiarów poddaje się przetworzeniu w mikroprocesorze analitycznym (2a) i dokonuje się prognozy wystąpienia zagrożenia wstrząsami wysokoenergetycznymi w czasoprzestrzeni poprzez estymację zjawisk krytycznych uwzględniających skojarzenie obserwacji w postaci quasi deterministycznego i rozległego czasoprzestrzennie procesu deformacji górotworu oraz zjawisk parasejsmicznych w postaci krótkotrwałych drgań cząstek górotworu w dziedzinie czasu i częstotliwości. Przy czym, ich łączne oddziaływanie ma charakter funkcjonału nad przestrzenią lokalnie sumowaną. System składa się z centrum przetwarzania (1), gdzie usytuowany jest serwer przetwarzający (2), do którego podłączony jest modem komunikacji bezprzewodowej (5), układ analityczny (2a) oraz kopalniany system sejsmiczny do lokalizacji wstrząsów (12), który połączony jest przewodowo z czujnikami sejsmometrycznymi (11). Z kolei na obserwowanym obszarze górniczym (15) zabudowane są zestawy pomiarowe. Natomiast na obszarze niepodlegającym deformacji pod wpływem eksploatacji górniczej zabudowany jest tachimetryczny zestaw pomiarowy (B) wyposażony w tachimetr automatyczny (6) z laserową alidadą (6a), do którego podłączony jest odbiornik nawigacji satelitarnej tachimetru (3) oraz modem komunikacji bezprzewodowej (5).The method of assessing the occurrence of the risk of high-energy shocks generated by underground exploitation consists in the fact that simultaneously, in strict temporal and spatial coincidence, vibration measurements (EpomI) are carried out on the surface from three-component vibration sensors (4) and shock parameters measurements (EpomII) underground from the mine seismic system for location of shocks (12) and displacement measurements (Upom) on the surface from three-point surface displacement sensors (9), corrected periodically with a total measurement set (B) and registration of these measurements in the analytical microprocessor measurement data repositories (2a). Next, sets of these measurements are processed in an analytical microprocessor (2a) and a prediction of the occurrence of the risk of high-energy shocks in space-time is made by estimating critical phenomena taking into account the combination of observations in the form of quasi deterministic and extensive space-time process of rock mass deformation and paraseismic phenomena in the form of short-term vibrations of rock mass particles time and frequency domain. At the same time, their combined impact is functional over locally summed space. The system consists of a processing center (1), where a processing server (2) is located, to which a wireless communication modem (5) is connected, an analytical system (2a) and a mine seismic system for shock locations (12), which is wired with seismometric sensors (11). In turn, measuring sets are installed in the observed mining area (15). However, in the area not subject to deformation under the influence of mining operations, a total station measuring set (B) is equipped with an automatic total station (6) with a laser alidada (6a), to which the total station satellite navigation receiver (3) and a wireless communication modem (5) are connected.

PL409990A 2014-10-30 2014-10-30 Method and the system for the assessment of the occurrence of a hazard of high-power shocks, generated by the underground exploitation PL230226B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL409990A PL230226B1 (en) 2014-10-30 2014-10-30 Method and the system for the assessment of the occurrence of a hazard of high-power shocks, generated by the underground exploitation
AU2014299418A AU2014299418A1 (en) 2014-10-30 2014-11-13 Method and system for assessing a risk of high-energy earth bursts generated by underground mining
UAA201501089A UA117661C2 (en) 2014-10-30 2014-11-13 Method and system for assessing a risk of high-energy earth bursts generated by underground mining
CN201480002452.1A CN105765582B (en) 2014-10-30 2014-11-13 Method and system for assessing risk of high energy earth fractures created by underground mining
RU2015101762/28A RU2587520C1 (en) 2014-10-30 2014-11-13 Method and system for evaluating risk of high-energy shocks caused by underground development
PCT/PL2014/000130 WO2014209141A2 (en) 2014-10-30 2014-11-13 Method and system for assessing a risk of high-energy earth bursts generated by underground mining
AU2014101639A AU2014101639A4 (en) 2014-10-30 2014-11-13 Method and system for assessing a risk of high-energy earth bursts generated by underground mining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL409990A PL230226B1 (en) 2014-10-30 2014-10-30 Method and the system for the assessment of the occurrence of a hazard of high-power shocks, generated by the underground exploitation

Publications (2)

Publication Number Publication Date
PL409990A1 true PL409990A1 (en) 2016-05-09
PL230226B1 PL230226B1 (en) 2018-10-31

Family

ID=52016852

Family Applications (1)

Application Number Title Priority Date Filing Date
PL409990A PL230226B1 (en) 2014-10-30 2014-10-30 Method and the system for the assessment of the occurrence of a hazard of high-power shocks, generated by the underground exploitation

Country Status (6)

Country Link
CN (1) CN105765582B (en)
AU (2) AU2014101639A4 (en)
PL (1) PL230226B1 (en)
RU (1) RU2587520C1 (en)
UA (1) UA117661C2 (en)
WO (1) WO2014209141A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL422137A1 (en) * 2017-07-10 2019-01-14 Pytel Witold Method for forecasting spontaneous seismic effects induced by mining exploitation
CN110674983A (en) * 2019-09-05 2020-01-10 辽宁工程技术大学 Working face gas early warning method based on copula function tail correlation analysis

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807312B (en) * 2016-03-15 2018-01-26 大连理工大学 Coal mine roof plate rock mass vertical zoning based on micro seismic monitoring determines method
CN107645330A (en) * 2016-07-21 2018-01-30 中斗科技(江苏)有限公司 A kind of satellite communication apparatus
CN107037496A (en) * 2017-04-01 2017-08-11 重庆地质矿产研究院 On-site dynamic detection method for surface mine
CN107368938B (en) * 2017-06-03 2021-09-21 中国人民解放军后勤工程学院 Quantitative evaluation method for risk loss of single landslide
CN108960665B (en) * 2018-07-20 2021-11-19 天地科技股份有限公司 Near-field surrounding rock impact risk evaluation method for mining space by using electromagnetic wave CT
CN109188507B (en) * 2018-09-12 2020-02-07 中国矿业大学 Based on CO2Mine earthquake advanced detection method of cannon
JP7202989B2 (en) * 2019-08-23 2023-01-12 東京瓦斯株式会社 Sensor maintenance system, information processing device, and program
CN112241712B (en) * 2020-10-22 2023-04-07 山东省地质矿产勘查开发局第一地质大队 Mineral resource acquisition and monitoring system
CN112324506B (en) * 2020-11-20 2024-05-14 上海大屯能源股份有限公司江苏分公司 Dynamic early warning method for preventing rock burst of coal mine based on microseism
CN112610215B (en) * 2020-12-15 2022-12-02 金奥深海装备技术(深圳)有限责任公司 Mining parameter determination method of gas lift method, terminal and storage medium
CN112798474A (en) * 2020-12-18 2021-05-14 西安科技大学 Method and device for monitoring rock mass grouting diffusion range
CN112710447B (en) * 2020-12-29 2023-07-25 内蒙古黄陶勒盖煤炭有限责任公司 Underground coal mine safety protection support evaluation system
CN113094641B (en) * 2021-06-04 2021-10-08 北京建筑大学 K-nearest neighbor rock burst prediction method and device based on big data visualization analysis
CN113756869A (en) * 2021-08-16 2021-12-07 中煤科工开采研究院有限公司 Rock burst local monitoring and early warning system and method
CN113586157B (en) * 2021-09-02 2023-09-22 重庆大学 Extraction working face salient dangerous area rapid division method based on Kriging interpolation
CN113985482B (en) * 2021-10-28 2023-11-03 西安科技大学 Ore earthquake focus positioning method based on underground coal mine communication optical cable
CN114033369B (en) * 2021-11-10 2023-11-28 中煤科工开采研究院有限公司 Bidirectional coal cutting cycle analysis method based on coal cutter position and frame number
CN114778800B (en) * 2022-04-28 2023-08-08 中交第一公路勘察设计研究院有限公司 Multi-factor rock burst prediction method based on analysis method
CN115201916B (en) * 2022-07-08 2023-07-28 中国矿业大学 Real-time quantification method for mine earthquake activity of rock burst mine
CN115542381B (en) * 2022-09-26 2024-02-02 徐州弘毅科技发展有限公司 Mine earthquake well land integrated fusion monitoring system and method based on three-way monitor
CN115755185B (en) * 2022-12-07 2023-10-13 徐州弘毅科技发展有限公司 Method for judging disaster causing performance of high-energy ore earthquake based on microseism monitoring
CN116626752B (en) * 2023-06-08 2023-10-24 大连理工大学 Ground vibration rotation component solving method based on field surface deformation rate

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1694892A1 (en) * 1989-02-06 1991-11-30 Украинский Филиал Всесоюзного Научно-Исследовательского Института Горной Геомеханики И Маркшейдерского Дела Method of control of rock mass disturbance and device for its realization
RU2077067C1 (en) * 1995-05-12 1997-04-10 Александр Александрович Спивак Method for determining rock massif mechanical stability
RU18314U1 (en) * 2001-02-20 2001-06-10 Государственное унитарное предприятие "Научно-исследовательский и проектный институт геофизических методов разведки океана" GEODYNAMIC POLYGON OF MULTI-PURPOSE PURPOSE
PL201953B1 (en) * 2004-05-10 2009-05-29 Ct Elektryfikacji I Automatyza Method and system for recording earth surface vibration and deformation, particularly resulting from mining activities
CN1598857A (en) * 2004-09-21 2005-03-23 北京科技大学 Method for optimizing slope of open-pit mine
US7425902B2 (en) * 2005-11-18 2008-09-16 Honeywell International Inc. Systems and methods for evaluating geological movements
CN101783059A (en) * 2009-01-18 2010-07-21 董长军 Violent earthquake predictor of liquid suspended and magnetic suspended insulation heavy seismometer
PL388051A1 (en) 2009-05-16 2010-11-22 Przedsiębiorstwo Kompletacji I Montażu Systemów Automatyki Carboautomatyka Spółka Akcyjna Method and system for measurement of speed and acceleration of earth tremors and surface jolts
RU2436124C2 (en) * 2009-06-30 2011-12-10 Станислав Васильевич Васильев Method of estimating change in stress condition of geological environment
CN101762830B (en) * 2009-09-29 2013-01-02 中国矿业大学 Distributed coal mine rock burst monitoring method
US8285438B2 (en) * 2009-11-16 2012-10-09 Honeywell International Inc. Methods systems and apparatus for analyzing complex systems via prognostic reasoning
CN102163363B (en) * 2011-04-07 2013-01-30 北京航空航天大学 Landslide real-time monitoring and warning system
RU2467359C1 (en) * 2011-06-16 2012-11-20 Общество С Ограниченной Ответственностью "Институт Геодинамических Инноваций" Method of identifying geodynamic hazard zones of structures
CN102279410A (en) * 2011-06-21 2011-12-14 北京蓝尊科技有限公司 Real-time monitoring system and method for underground mining activities of mine
PL395825A1 (en) 2011-08-01 2013-02-04 Politechnika Slaska Method of forecasting the occurrence of high-energy shock induced by wall exploitation based on continuous measurements of changes in the slope of the mining area
PL395824A1 (en) 2011-08-01 2013-02-04 Politechnika Slaska Prediction of strong induced shock for underground mining operations based on continuous measurements of the displacement of the observation point located on the surface of the mining area in the area of the mining front impact
CN102507121B (en) * 2011-11-23 2014-04-16 浙江大学 Building structure seismic damage assessment system and method based on wireless sensor network
CN102538742B (en) * 2012-01-09 2015-05-20 中国矿业大学 Deformation measurement and early warning system and method integrating satellite positioning and accelerometer
CN103559383B (en) * 2013-09-30 2017-01-18 上海交通大学苏北研究院 Method for predicting and evaluating strong earthquake resistance of nuclear power station breakwater
CN104063616B (en) * 2014-07-04 2017-05-10 重庆大学 Method for evaluating damage loss rate of buildings under action of landslide instability movement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL422137A1 (en) * 2017-07-10 2019-01-14 Pytel Witold Method for forecasting spontaneous seismic effects induced by mining exploitation
WO2019013657A1 (en) * 2017-07-10 2019-01-17 Pytel Witold Method of spontaneous, mining induced, seismic events prediction
CN110674983A (en) * 2019-09-05 2020-01-10 辽宁工程技术大学 Working face gas early warning method based on copula function tail correlation analysis

Also Published As

Publication number Publication date
RU2587520C1 (en) 2016-06-20
WO2014209141A2 (en) 2014-12-31
AU2014101639A4 (en) 2019-05-02
UA117661C2 (en) 2018-09-10
CN105765582B (en) 2021-03-30
AU2014299418A1 (en) 2016-05-19
WO2014209141A3 (en) 2015-09-03
CN105765582A (en) 2016-07-13
PL230226B1 (en) 2018-10-31
WO2014209141A8 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
PL409990A1 (en) Method and the system for the assessment of the occurrence of a hazard of high-power shocks, generated by the underground exploitation
PL409989A1 (en) Method and the system for the analysis of the geological structure and relative stresses in the layers situated over the mining headings in the deep mines
MX2016004796A (en) Electroseismic surveying in exploration and production environments.
MX2016002428A (en) Correction of motion effect in nuclear magnetic resonance (nmr) logging.
GB2527238A (en) Correlation techniques for passive electroseismic and seismoelectric surveying
MX343815B (en) Extended 1d inversion of electromagnetic measurements for formation evaluation.
IL239103B (en) Navigation system interference locator
GB2545861A (en) Combined NMR-resistivity measurement apparatus, systems, and methods
GB2564766A (en) Methods of selecting an earth model from a plurality of earth models
GB2524704A (en) Systems and methods of providing compensated geological measurements
PL409988A1 (en) Method and the system for detecting and minimising methane hazard within the excavation longwall area
UA118088C2 (en) Method and system for measuring relative changes in stress concentration in front of a longwall
SA519401230B1 (en) Tunable Dipole Moment for Formation Measurements
EA201590605A1 (en) METHOD AND KINEMATIC CALIBRATION SYSTEM FOR MEASUREMENT OF DISPLACEMENTS AND VIBRATIONS OF OBJECTS AND CONSTRUCTIONS
Shi et al. A comparative study of ground and underground vibrations induced by bench blasting
BR112018009315A8 (en) inductive wellhead sensor with center bypass for common mode rejection
WO2019013657A1 (en) Method of spontaneous, mining induced, seismic events prediction
AR112077A1 (en) METHOD TO ACQUIRE A SET OF SEISMIC DATA ON A REGION OF INTEREST AND RELATED SYSTEM
EA201790733A1 (en) SHOOTING WITH INDEPENDENT, SIMULTANEOUS EXCITATION AND REGISTRATION OF VERTICAL SEISMIC PROFILE
Vostrikov et al. Karier multichannel measurement system for deep open pit walls monitoring
Vinoth et al. Slope stability monitoring by quantification and behavior of microseismic events in an opencast coal mine
Verkholantsev et al. Seismic recorder" Ermak-5" as the part of the system of seismological monitoring of Verkhnekamskoe potash deposit
Arpaz et al. Comparison of blast-induced ground vibration predictors in Seyitomer coal mine
Akilan et al. Current scenario of crustal deformation and strain distribution around the equatorial Indian Ocean region using GPS-geodesy
Inao et al. Detection of a segment boundary of lateral faults through gravity anomaly: a case study of the Median Tectonic Line fault zone, Japan