PL409989A1 - Method and the system for the analysis of the geological structure and relative stresses in the layers situated over the mining headings in the deep mines - Google Patents

Method and the system for the analysis of the geological structure and relative stresses in the layers situated over the mining headings in the deep mines

Info

Publication number
PL409989A1
PL409989A1 PL409989A PL40998914A PL409989A1 PL 409989 A1 PL409989 A1 PL 409989A1 PL 409989 A PL409989 A PL 409989A PL 40998914 A PL40998914 A PL 40998914A PL 409989 A1 PL409989 A1 PL 409989A1
Authority
PL
Poland
Prior art keywords
seismic
mine
mining
measurement data
recorded
Prior art date
Application number
PL409989A
Other languages
Polish (pl)
Other versions
PL230219B1 (en
Inventor
Zbigniew Isakow
Przemysław Sieradzki
Zenon Pilecki
Kazimierz Siciński
Rafał Czarny
Original Assignee
Instytut Technik Innowacyjnych Emag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instytut Technik Innowacyjnych Emag filed Critical Instytut Technik Innowacyjnych Emag
Priority to PL409989A priority Critical patent/PL230219B1/en
Priority to RU2015101763/28A priority patent/RU2587521C1/en
Priority to CN201480002443.2A priority patent/CN105765408B/en
Priority to UAA201501087A priority patent/UA118543C2/en
Priority to PCT/PL2014/000128 priority patent/WO2015002558A2/en
Publication of PL409989A1 publication Critical patent/PL409989A1/en
Publication of PL230219B1 publication Critical patent/PL230219B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • G01V1/303Analysis for determining velocity profiles or travel times
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/12Signal generation
    • G01V2210/123Passive source, e.g. microseismics
    • G01V2210/1236Acoustic daylight, e.g. cultural noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/612Previously recorded data, e.g. time-lapse or 4D
    • G01V2210/6122Tracking reservoir changes over time, e.g. due to production
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/612Previously recorded data, e.g. time-lapse or 4D
    • G01V2210/6122Tracking reservoir changes over time, e.g. due to production
    • G01V2210/6124Subsidence, i.e. upwards or downwards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/622Velocity, density or impedance
    • G01V2210/6222Velocity; travel time

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Sposób analizy struktury geologicznej i względnych zmian naprężeń w warstwach usytuowanych nad wyrobiskami górniczymi kopalni głębinowej polegający na tym, że do stacjonarnego centrum przetwarzania (1) przekazywane są dane z mobilnego rejestratora danych pomiarowych (3) oraz z centralnej stacji kopalnianego systemu sejsmicznego (10) uzyskiwane w wyniku ściśle skorelowanej czasowo rejestracji niskoczęstotliwościowych szumów sejsmicznych (Dn.cz.) z systemu powierzchniowego oraz wstrząsów sejsmicznych generowanych eksploatacją górniczą (Dw.cz.). Następnie zarejestrowane dane pomiarowe w oknach czasowych, korzystnie 30 sekundowych, w postaci trójskładowych rejestracji niskoczęstotliwościowych szumów sejsmicznych (Dn.cz.) i wstrząsów sejsmicznych generowanych eksploatacją górniczą (Dw.cz.) podlegają przetwarzaniu z zastosowaniem metody interferometrii sejsmicznej dla zapisów szumowych oraz tomografii pasywnej prędkościowej i/lub tłumieniowej dla zapisów wstrząsów kopalnianych. Następnie na tej podstawie wyznaczane są dla badanego obszaru górotworu (7) izolinie prędkości fali poprzecznej oraz izolinie prędkości i/lub tłumienia fali podłużnej w metodzie tomografii pasywnej prędkościowej i/lub tłumieniowej, które w efekcie końcowym odwzorowują uśredniony stan względnych zmian naprężeń w warstwach usytuowanych nad wyrobiskami górniczymi (B). Przy czym, w momencie wystąpienia wstrząsu górniczego (W) następuje korelacja parametrów lokalizacji współrzędnych (X, Y i Z) i wyliczonego czasu (To) wystąpienia tego w ognisku, z czasami pierwszych wejść fali podłużnej generowanej przez niego w zapisach niskoczęstotliwościowych trójskładowych stacji pomiarowych (5) rejestrowanych na powierzchni kopalni oraz odpowiadających im czasów narastania sygnału od pierwszego wejścia fali podłużnej do chwili osiągnięcia przez rejestrowany sygnał zapisu wstrząsu (W) pierwszego maksimum w każdej stacji pomiarowej (5). W układzie stacjonarne centrum przetwarzania (1) połączone jest z jednej strony, korzystnie poprzez modem łączności GSM (2) z mobilnym rejestratorem danych pomiarowych (3), a z drugiej strony z centralną stacją kopalnianego systemu sejsmicznego (10), która połączona jest z zegarem (GPS) i z modułem wizualno - sygnalizacyjnym (11) oraz poprzez układ iskrobezpiecznej transmisji cyfrowej (12) i kopalnianą sieć teletransmisyjną (13) z dołowymi stacjami sejsmometrycznymi i/lub z sejsmicznymi stacjami geofonowymi.The method of analyzing the geological structure and relative changes in stress in the layers located above the mining excavations of the underground mine consists in the fact that data from the mobile measurement data recorder (3) and from the central station of the mine seismic system (10) obtained to the stationary processing center (1) as a result of closely time-correlated registration of low-frequency seismic noise (Dn.) from the surface system and seismic shocks generated by mining operations (Dw.cz.). Then recorded measurement data in time windows, preferably 30 seconds, in the form of three-component recording of low-frequency seismic noise (Dn) and seismic shocks generated by mining operations (BW) are processed using the seismic interferometry method for noise recording and passive tomography velocity and / or damping for mine tremor records. Then, on this basis, the isoline of the transverse wave velocity as well as the isoline of velocity and / or suppression of the longitudinal wave in the passive tomography and / or attenuation tomography method are determined for the studied rock mass (7), which in the end reflect the average state of relative stress changes in the layers located above mining excavations (B). At the same time, when the mining shock (W) occurs, the parameters of coordinate location (X, Y and Z) and the calculated time (To) of this occurrence in the focus correlate with the times of the first longitudinal wave inputs generated by him in the records of low-frequency three-component measuring stations ( 5) recorded on the surface of the mine and the corresponding signal rise times from the first longitudinal wave input until the recorded shock recording signal (W) reaches the first maximum at each measuring station (5). In the system, the stationary processing center (1) is connected on one side, preferably via a GSM communication modem (2) with a mobile measurement data recorder (3), and on the other with a central mine seismic system station (10), which is connected to a clock ( GPS) and with the visual-signaling module (11) and through the intrinsically safe digital transmission system (12) and the mine teletransmission network (13) with underground seismometric stations and / or with seismic geophone stations.

PL409989A 2014-10-30 2014-10-30 Method and the system for the analysis of the geological structure and relative stresses in the layers situated over the mining headings in the deep mines PL230219B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL409989A PL230219B1 (en) 2014-10-30 2014-10-30 Method and the system for the analysis of the geological structure and relative stresses in the layers situated over the mining headings in the deep mines
RU2015101763/28A RU2587521C1 (en) 2014-10-30 2014-11-07 Method and scheme for analysis of geological structure and relative changes of stress in layers located over openings of underground mine
CN201480002443.2A CN105765408B (en) 2014-10-30 2014-11-07 For analyzing the method and system of the layer above mining site tunnel located underground
UAA201501087A UA118543C2 (en) 2014-10-30 2014-11-07 Method and system for analysis of geological structure and relative changes in stress in the layers located above the workings of an underground mine
PCT/PL2014/000128 WO2015002558A2 (en) 2014-10-30 2014-11-07 Method and system for analysis of geological structure and relative changes in stress in the layers located above the workings of an underground mine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL409989A PL230219B1 (en) 2014-10-30 2014-10-30 Method and the system for the analysis of the geological structure and relative stresses in the layers situated over the mining headings in the deep mines

Publications (2)

Publication Number Publication Date
PL409989A1 true PL409989A1 (en) 2016-05-09
PL230219B1 PL230219B1 (en) 2018-10-31

Family

ID=52004033

Family Applications (1)

Application Number Title Priority Date Filing Date
PL409989A PL230219B1 (en) 2014-10-30 2014-10-30 Method and the system for the analysis of the geological structure and relative stresses in the layers situated over the mining headings in the deep mines

Country Status (5)

Country Link
CN (1) CN105765408B (en)
PL (1) PL230219B1 (en)
RU (1) RU2587521C1 (en)
UA (1) UA118543C2 (en)
WO (1) WO2015002558A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL422137A1 (en) * 2017-07-10 2019-01-14 Pytel Witold Method for forecasting spontaneous seismic effects induced by mining exploitation

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185223A1 (en) * 2015-05-20 2016-11-24 Optasense, Inc. Interferometric microseismic imaging methods and apparatus
GB201818594D0 (en) * 2018-11-14 2018-12-26 Bp Exploration Operating Co Ltd Passive seismic imaging
CN110794460A (en) * 2019-11-15 2020-02-14 中国矿业大学 Two-dimensional mine earthquake full waveform inversion method under stress value change direction constraint
CN112051548B (en) * 2020-08-11 2024-03-22 武汉工程大学 Rock burst monitoring and positioning method, device and system
US11977197B1 (en) 2020-08-28 2024-05-07 Earthsystems Technologies, Inc. Thermodynamic housing for a geophysical data acquisition system and method of use
CN112346123B (en) * 2020-11-06 2023-02-10 中国地震灾害防御中心 VIA (visual analysis of seismic data) double-parameter analysis method
US11808797B1 (en) 2021-03-19 2023-11-07 Earthsystems Technologies, Inc. Hemispherical dome electrode configuration and method of use
CN113404523B (en) * 2021-07-05 2023-11-10 淮北市平远软岩支护工程技术有限公司 Rock burst monitoring system based on pressure relief blasting
CN113703046A (en) * 2021-08-31 2021-11-26 中煤科工集团重庆研究院有限公司 Underground full-space seismic wave hidden structure identification method and system
CN113985482B (en) * 2021-10-28 2023-11-03 西安科技大学 Ore earthquake focus positioning method based on underground coal mine communication optical cable
CN114895353B (en) * 2022-05-27 2023-03-10 中国矿业大学 Time service alignment method for data collected by monitoring unit of well-ground integrated microseismic monitoring system
CN115542381B (en) * 2022-09-26 2024-02-02 徐州弘毅科技发展有限公司 Mine earthquake well land integrated fusion monitoring system and method based on three-way monitor
CN115933803B (en) * 2023-01-09 2023-06-13 江苏东成工具科技有限公司 Equipment control method, equipment and computer readable medium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859942B2 (en) 2007-03-01 2010-12-28 Christof Stork Measuring and modifying directionality of seismic interferometry data
CA2747426C (en) * 2009-01-09 2017-05-23 Exxonmobil Upstream Research Company Hydrocarbon detection with passive seismic data
US8218394B2 (en) 2009-06-16 2012-07-10 Microseismic, Inc. Method for imaging the earths subsurface using passive seismic interferometry and adaptive velocity filtering
CN101581789A (en) * 2009-06-23 2009-11-18 刘盛东 Mine working face inter-lane seismic wave CT detection method
US8838392B2 (en) * 2009-10-05 2014-09-16 Westerngeco L.L.C. Noise attenuation in passive seismic data
EP2497043B1 (en) * 2009-11-02 2017-10-11 Landmark Graphics Corporation Seismic imaging systems and methods employing a 3d reverse time migration with tilted transverse isotropy
US8737165B2 (en) 2010-10-01 2014-05-27 Westerngeco L.L.C. Interferometric seismic data processing for a towed marine survey
US20130191044A1 (en) * 2011-03-21 2013-07-25 Schlumberger Technology Corporation Method and system for presenting stress domain
US20130003499A1 (en) * 2011-06-28 2013-01-03 King Abdulaziz City For Science And Technology Interferometric method of enhancing passive seismic events
CN102788995A (en) * 2012-08-02 2012-11-21 中煤科工集团西安研究院 Coal mine working face detecting method with cutting vibration as seismic signal
CN103728655B (en) * 2013-12-24 2016-04-06 天地科技股份有限公司 A kind of coal face shock hazard adopts front pre-evaluation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL422137A1 (en) * 2017-07-10 2019-01-14 Pytel Witold Method for forecasting spontaneous seismic effects induced by mining exploitation
WO2019013657A1 (en) * 2017-07-10 2019-01-17 Pytel Witold Method of spontaneous, mining induced, seismic events prediction

Also Published As

Publication number Publication date
WO2015002558A2 (en) 2015-01-08
WO2015002558A3 (en) 2015-09-11
RU2587521C1 (en) 2016-06-20
UA118543C2 (en) 2019-02-11
CN105765408A (en) 2016-07-13
CN105765408B (en) 2019-05-07
PL230219B1 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
PL409989A1 (en) Method and the system for the analysis of the geological structure and relative stresses in the layers situated over the mining headings in the deep mines
SA519401486B1 (en) Collocated multitone acoustic beam and electromagnetic flux leakage evaluation downhole
MX2020008595A (en) Vibration while drilling data processing methods.
CN110703320A (en) Up-down combined microseismic monitoring system and method
CN102434148A (en) Wireless inclinometer while drilling
UA118088C2 (en) Method and system for measuring relative changes in stress concentration in front of a longwall
Naoi et al. Unexpectedly frequent occurrence of very small repeating earthquakes (− 5.1≤ Mw≤− 3.6) in a South African gold mine: Implications for monitoring intraplate faults
JP2011043409A (en) Method for geological exploration during tunnel excavation and tunnel geological exploration apparatus
US20160266268A1 (en) Determining a fracture type using stress analysis
Ugalde et al. Passive seismic monitoring of an experimental CO2 geological storage site in Hontomín (Northern Spain)
CA3120697C (en) Expandable filtration media and gravel pack analysis using low frequency acoustic waves
US20210277767A1 (en) Techniques for evaluating borehole subsurface geologies using stoneley waves
CN104749637A (en) Drill bit vibration source based seismic while drilling side detection method for geologic structures
CA2890788A1 (en) Method and system for density correction for geophysical well logging inside drilling rods
CN110967760B (en) Noise reduction processing method and device for micro-seismic data
US20140123748A1 (en) Borehole Microseismic Systems and Methods
Stroujkova et al. Seismic source studies for chemical explosions in granite
GB2503591A (en) Conduit assembly and method of making and using same
CN202391413U (en) Wireless while-drilling inclinometer
Stroujkova et al. Effect of fractures on seismic amplitudes from explosions
Vinoth et al. Slope stability monitoring by quantification and behavior of microseismic events in an opencast coal mine
Imazu et al. A monitoring system for blasting-induced vibrations in tunneling and its possible uses for the assessment of rock mass properties and in-situ stress inferences
US10202846B2 (en) Stoneley wave based pipe telemetry
Kalab et al. Analysis of seismic events induced by blasting operations in the opencast mine
CN105372697B (en) A kind of big array length shooting on group method of seismic prospecting of loess tableland coal field