CN102279410A - Real-time monitoring system and method for underground mining activities of mine - Google Patents

Real-time monitoring system and method for underground mining activities of mine Download PDF

Info

Publication number
CN102279410A
CN102279410A CN201110166685A CN201110166685A CN102279410A CN 102279410 A CN102279410 A CN 102279410A CN 201110166685 A CN201110166685 A CN 201110166685A CN 201110166685 A CN201110166685 A CN 201110166685A CN 102279410 A CN102279410 A CN 102279410A
Authority
CN
China
Prior art keywords
real
vibration
underground mining
vibration sensor
monitoring system
Prior art date
Application number
CN201110166685A
Other languages
Chinese (zh)
Inventor
张增奇
徐孟军
王宗省
蔡广银
Original Assignee
北京蓝尊科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京蓝尊科技有限公司 filed Critical 北京蓝尊科技有限公司
Priority to CN201110166685A priority Critical patent/CN102279410A/en
Publication of CN102279410A publication Critical patent/CN102279410A/en

Links

Abstract

The invention discloses a real-time monitoring system for underground mining activities of a mine. The system comprises: a signal collection processing unit, wherein the signal collection processing unit includes vibration sensors and detection plates as well as the vibration sensor and a detection plate are arranged in a mining area; a space positioning unit; and a positioning releasing unit. The detection plates carry out filtering and noise reduction on vibration signals by a rapid algorithm of a wavelet, wherein the algorithm is based on DSP; and the signals are digitalized to identify blasting seismic waves. Stereo geographic coordinate data and time of a blasting point are solved. And stereo geographic coordinate data that is processed by coordinate transformation is marked on an electronic map of the mining area, wherein the electronic map is displayed on a display. Beneficial effects of the invention are as follows: construction is easy to carry out; stability is high; and a monitoring precision is high.

Description

矿山地下开采活动实时监测系统及其方法 Underground mining activities in real-time monitoring system and method

技术领域 FIELD

[0001] 本发明涉及一种矿山地下开采活动实时监测系统及其方法。 [0001] The present invention relates to underground mining activities real-time monitoring systems and methods. 背景技术 Background technique

[0002] 通过对矿山地下开采所产生的行为分析发现,大部分开采活动都为厚厚的岩、土层所覆盖,能准确探测地下200-800米的开采活动的现成技术极为缺少,主要有边界振动电磁感应、建立在井下人员定位基础上的开采定位两种技术。 [0002] by the behavior of underground mining generated analysis found that most mining activities are thick rock, covered with soil, 200-800 meters can accurately detect underground mining activities is extremely lack of readily available technology, there are boundary vibration electromagnetic induction, establishing two techniques mining positioned in the positioning based on the miner.

[0003] 边界振动电磁感应技术,通俗的讲就是埋线圈,该技术较为简单,不用复杂的计算模型,只是通过地下爆破时产生的振动,对电磁感应线圈(一种类型的传感器装置)产生影响,产生电磁感应微电流,通过微处理芯片转化为数字信号,然后通过并联导线依一定的通讯协议传送给终端服务器产生预预警信号。 [0003] with a moving electromagnetic induction technology, popular talk is buried the coil, this technique is simple, without complicated computational model, only when vibration generated by underground blasting, impact on the electromagnetic induction coil (type of sensor device) , micro-current electromagnetic induction, by conversion into a digital signal microprocessor chip, and then transmitted on a certain communication protocol parallel wires produce a pre-warning signal to the terminal server. 该技术只对震对信息进行感应性采集,无法计算震源的位置,需要铺设较长距离的回路电缆并实时供电,并且由于需要在矿区边界深挖填埋,施工成本非常高。 The technology only for shock induction of the information collected, can not calculate the positions of the sources, and the need to lay a cable loop over longer distances and in real-time power supply, and the need to dig deep in the mining area boundary landfill, the construction cost is very high. 同时回路任何一个点遭到破坏,很难查找,需要全部更换。 At the same time the destruction of the loop at any point, it is difficult to find, to be completely replaced.

[0004] 井下人员定位基础上的开采定位技术是井下人员定位技术的延伸,井下人员定位是通过下井人员携带的射频卡(多装于安全帽)与射频采集卡的作用关系来进行的定位。 [0004] positioned on the mining location technology based miner extending underground personnel positioning technology, underground personnel positioning by RF card carried by a person to go down (to fit more helmet) the relationship between the positioning action of the radio frequency to the acquisition card. 建立在这种技术上的开采定位也能实时的对采矿动态进行监测,但因为设备必须携带入井下,同时因下井人员的主观原因(如故意超层越界时可以不带此设备),不能保证越界活动被监控,并且对建设巷道必须同时进行射频采集器的布点,给越界开采带来一定的不确定因素。 We can establish real-time dynamic monitoring of mining exploitation locate in this technology, but because the device must carry into the underground, at the same time due to subjective reasons to go down staff (can not bring this device when willfully super-layer cross-border), is not guaranteed cross-border activity is monitored, and the construction of the roadway must be stationing of RF collector at the same time, bring some uncertainty to the cross-border exploitation.

发明内容 SUMMARY

[0005] 为解决以上技术上的不足,本发明提供了一种便于施工,稳定性高,监测精度高的矿山地下开采活动实时监测系统及其方法。 [0005] To solve the above technical deficiencies, the present invention provides a real time monitoring activity underground mining system and method for facilitating construction, high stability, high accuracy of monitoring.

[0006] 本发明是通过以下措施实现的: [0006] The present invention is achieved by the following measures:

[0007] 本发明的一种矿山地下开采活动实时监测系统,包括: [0007] An underground mining activities real time monitoring system of the present invention, comprising:

[0008] 信号采集处理单元,包括布置在矿区的振动传感器和检测板,振动传感器采集振动信号,检测板将振动信号进行滤波处理和数字化; [0008] Signal acquisition and processing unit comprises a vibration sensor disposed in a mine and a detection plate, a vibration sensor to collect vibration signal, the vibration signal detection plate and digital filtering process;

[0009] 空间定位单元,包括连接检测板的主机,将检测板处理后的信号进行计算,得出爆破点的立体地理坐标数据; [0009] The spatial positioning unit comprises a detecting plate connected to the host, the signal detection plate processing calculation, the three-dimensional geographical coordinate data burst point;

[0010] 定位发布单元,包括远程监测服务器和显示器,远程监测服务器接收立体地理坐标数据,并标注在显示器显示的矿区电子地图上。 [0010] positioned release means comprises a remote monitoring server and the monitor, remote monitoring server receives a perspective geographic coordinate data, and marked on the electronic map displayed by the display mine.

[0011] 为了能够较全面地采集到三维空间内的振动信号,上述振动传感器为布置在不同平面上的4〜5个三轴振动传感器。 [0011] In order to fully capture the vibration signal into three-dimensional space than the 4 to 5 triaxial vibration sensor is arranged on different planes of vibration sensors.

[0012] 上述主机连接有GPS授时模块,用于给主机实时授时,减少了时间基准带来的测 When [0012] The host computer is connected to GPS timing means for real-time feedback to the host, reducing the measurement time to bring the reference

量误差,使定位精度更高。 The amount of error, a higher positioning accuracy.

[0013] 为了方便信号传输,上述主机与远程监测服务器之间无线通信。 [0013] For convenience of signal transmission, the wireless communication between the host and the remote monitoring server. [0014] 一种矿山地下开采活动实时监测系统的监测方法,包括以下步骤: [0014] A method of monitoring real-time monitoring system for underground mining activities, comprising the steps of:

[0015] a.振动传感器采集矿区振动信号发送给检测板,检测板通过基于DSP的小波的快速算法对振动信号进行滤波去噪,并将信号数字化,识别出爆破地震波; . [0015] a vibration sensor to a vibration signal acquisition mine detection plate, detection plate of the vibration signal is filtered by flash denoising algorithm based on wavelet DSP, and digital signals, identified seismic wave;

[0016] b.主机对爆破地震波进行频谱分析,建立爆破监测定位数学模型,采用共轭向量基算法求解病态线性方程组,解出爆破点的立体地理坐标数据和时间; . [0016] b host spectrum of the seismic wave analysis, monitoring and location blasting mathematical model, using the conjugate vector based algorithms for solving ill linear equations solved for the time data and the three-dimensional geographical coordinates bursting point;

[0017] c.远程监测服务器接收到主机发送的爆破点立体地理坐标数据,并采用迭代的方法对数据进行坐标转换,标注在显示器显示的矿区电子地图上。 [0017] c. Remote monitoring server receives the bursting point perspective geographic coordinate data sent by the host and the iterative method of coordinate transformation data, marked on the map displayed by the display mine.

[0018] 优选的,在步骤a中,采用地表布点法,将振动传感器固定在两米左右钢管上,插入地表;或者采用深埋法,采用钻井设备钻10-60米的井洞,将振动传感器放入井洞,振动传感器采集来自三维空间内的振动信号。 [0018] Preferably, in step a, using the surface distribution method, the vibration sensor is fixed to the steel tube about two meters, the surface is inserted; or with deep method using the drilling apparatus drill boreholes 10-60 m, the vibration into boreholes sensor, a vibration sensor from a vibration signal acquired three-dimensional space.

[0019] 时间基准是计算结果准确性的关键,整个系统通过GPS进行授时,减少了时间基准带来的测量误差,使定位精度更高。 [0019] The reference time is critical computing accuracy of the results, the entire system is granted by GPS, reducing the measurement error caused by the reference time, a higher positioning accuracy.

[0020] 优选的,上述主机与远程监测服务器之间通过无线或\和有线通信。 [0020] Preferred or wired communication between the host computer and the remote monitoring server via a wireless \,.

[0021] 本发明的有益效果是: [0021] Advantageous effects of the present invention are:

[0022] 1.相对于基于井下人员定位技术,有效排除人为因素的干预;与射频卡定位方式相比,系统自动完成对爆破地震波的采集与处理,不需要人工参与,减少了人为干预。 [0022] 1 with respect to the underground personnel based positioning technology effectively exclude the intervention of human factors; compared to the RF card targeting methods, the system automatically acquisition and processing of seismic wave does not require manual intervention, reduce human intervention. 与此同时,整个系统采用一点定位、多点监控相结合的监控措施(即一个点就能完成定位,但为了保障定位精度与抗故障特性,实行多点定位),并且对监控状态又进行了故障报警设计, 加上对设备维护的考核性措施,可保证设备时刻在线,时刻监控,基本上排除人为干预。 At the same time, the entire system one-point positioning, multi-point control measures to monitor combination (ie, a point will be able to complete the positioning, but in order to guarantee the positioning accuracy with a fail-safe properties, implement multi-point positioning), and the state has conducted monitoring fault alarm design, coupled with measures to assess equipment maintenance, equipment can ensure always-on, always monitoring, basically rule out human intervention.

[0023] 2.先进的波形提取技术与定位算法;波形提取技术与核心的数学模型是系统的灵魂,对波形的选取是建立在多次实验的基础之上的,最终选用了波形特征明显,提取效果最好的小波变换提取地震波信号,小波算法计算量大,存储量大,运算时间长,在底层硬件中实现小波算法有很大的难度,尤其为了保证系统的实时性,系统中采用了快速小波变换及其反变换。 [0023] 2. advanced extraction technology and localization algorithm waveform; waveform mathematical model extraction technology is the soul and core of the system, the selection of the waveform is built on the basis of many experiments on the final selection of the waveform characteristics significantly, extracting wavelet transformation to extract the best seismic signal, wavelet algorithm capacity, storage capacity, long operation time, be implemented in hardware underlying wavelet algorithm is very difficult, especially in order to ensure real-time system, the system used fast wavelet transform and inverse transform. 为了进一步减小程序的运行时间和存储量,对快速小波变换的编程进行了优化,实测进行一次256字长度的小波去噪算法时,系统仅用0. 2ms的时间,达到了实时性的要求。 In order to further reduce the running time and storage procedures, for fast wavelet transformation program is optimized, we found 256 once Wavelet Denoising Algorithm word length, the system only 0. 2ms time, achieve real-time requirements . 保证了爆破信号采集的准确性。 Ensure the accuracy of the blasting signal acquisition. 同时,对于核心计算模型,经过了反复选取、模拟验证、实际验证,最终确实了最先进的共轭向量基算法计算模模型,攻克了快速高精度的定位技术难题。 Meanwhile, the calculation model for the core, after repeated selection, simulation and verification, the actual verification, did eventually most advanced conjugate vector mode algorithm based model, a rapid high-precision positioning overcome technical problems. 采用迭代的方法实现精确求解,提供了高精度的坐标变换技术。 Iterative method to achieve accurate solution, a high-precision coordinate transformation technique.

[0024] 3.本系统选择的数学模型,完全满足了一点定位,即在只有一个检测点时,也可以进行爆破点的定位,但一点在精确度,故障破坏性上均可能存在问题,基于这种考虑,我们采用了多点定位,多个算法,同时采用CAN总线(或GPRS)进行数据互连,可增加检测点数提高定位精度,具有极强的可扩展性。 [0024] 3. The mathematical model of the system chosen, positioned to fully meet a little, i.e. only one detection point may be positioned blasting point, but that does the accuracy, there may be problems both destructive fault, based on with this in mind, we have adopted a multi-point positioning, a plurality of algorithms, cAN bus (or GPRS) data interconnect, the positioning accuracy can be increased to improve the detection points, with strong scalability. 这种综合设计不但有效提高了预警精度,同时又保证了对抗故障的能力。 This integrated design not only improve the accuracy of early warning, while ensuring the ability to fight failure.

[0025] 4.时间基准的科学性、准确性;时间基准是计算结果准确性的关键,系统采用了GPS模块进行精确授时,减少了时间基准带来的测量误差,使定位精度更高。 Science [0025] 4. The time reference of accuracy; time reference is the key calculation accuracy, the system uses GPS precision timing module, reducing the measurement error caused by the reference time, a higher positioning accuracy.

[0026] 5.极强适应能力与可靠的通信保障;该系统具有有线、无线两种工作方式,现场可以提供有线的条件时,采用有线方式,可以很快的进行爆破点的准确定位,在现场无法进行有线操作时,可以用GPRS进行数据传送,适合大矿区范围作业。 [0026] The ability to adapt to the highly reliable communication support; the system having a wired, wireless two modes, on-site conditions can be wired, wired manner, accurate positioning can quickly bursting point, in when the scene can not be wired operation, data can be transmitted using GPRS, for a large range of mining operations. 通信采用严格协议规程, 独有的双向通讯协议指令,确保恶劣环境下,指令与数据的可靠传输,彻底杜绝由于数据传输出错而导致的漏报、误报。 Communication strict protocol rules, the unique two-way communication protocol command to ensure that harsh environment, and reliable data transfer instructions, the complete elimination of false negative because of data transmission errors caused by false positives. 附图说明 BRIEF DESCRIPTION

[0027] 图1为本发明的结构示意图。 [0027] FIG. 1 is a schematic structural diagram of the present invention.

[0028] 图中:1振动传感器I,2检测板I,3振动传感器II,4检测板II,5振动传感器III, 6检测板III,7振动传感器IV,8检测板IV,9振动传感器V,10检测板V,11主机,12远程监测服务器,13显示器,14用户终端,15移动终端。 [0028] FIG: a vibration sensor I, 2 detection plate I, 3 vibration sensor II, 4 detection plate II, 5 vibration sensor III, 6 assay plates III, 7 vibration sensor IV, 8 detection plate IV, 9 vibration sensor V , the detection plate 10 V, 11 host, remote monitoring server 12, display 13, user terminal 14, the mobile terminal 15.

具体实施方式 Detailed ways

[0029] 如图1所示,本发明的一种矿山地下开采活动实时监测系统,包括: [0029] As shown in FIG An underground mining activities real-time monitoring system of the present invention, comprising:

[0030] 信号采集处理单元,包括布置在矿区的振动传感器和检测板,每个振动传感器连接一个检测板,振动传感器为4〜5个三轴振动传感器,布置在不同平面上,能够较全面地采集到三维空间内的振动信号。 [0030] Signal acquisition and processing unit, and comprising a vibration sensor disposed in the mine detection plate, each connected to a sensor detecting the vibration plate, the vibration sensor is a triaxial vibration sensor 4 to 5 are arranged on different planes, it can be more comprehensive vibration signal acquired three-dimensional space. 如图中的振动传感器I 1、检测板I 2、振动传感器113、检测板114、振动传感器1115、检测板1116、振动传感器IV7、检测板IV8、振动传感器V9和检测板V10,检测板将振动信号进行滤波处理和数字化。 As shown in the vibration sensor I 1, the detection plate I 2, the vibration sensor 113, a detection plate 114, a vibration sensor 1115, the detection plate 1116, a vibration sensor the IV7, IV8 detection plate, the vibration sensor V9 and VlO detection plate, the vibration plate is detected signal is filtered and digitized.

[0031] 空间定位单元,包括连接检测板的主机11,将检测板处理后的信号进行计算,得出爆破点的立体地理坐标数据;主机11连接有GPS授时模块,用于给主机11实时授时,减少了时间基准带来的测量误差,使定位精度更高。 [0031] The spatial positioning unit including a host connection detection plate 11, the signal detection plate processing calculation, the three-dimensional geographical coordinate data burst point; host 11 is connected to a GPS timing module is configured to the host computer 11 in real time Timing reducing the measurement error caused by the reference time, a higher positioning accuracy.

[0032] 定位发布单元,包括远程监测服务器12和显示器13,远程监测服务器12接收立体地理坐标数据,并标注在显示器13显示的矿区电子地图上。 [0032] positioned release means comprises a remote monitoring server 12 and the display 13, the remote monitoring server 12 receives the three-dimensional geographical coordinate data, and marked on the map display 13 of the mine. 用户终端14也可以访问远程监测服务器12,查询相关信息。 The user terminal 14 may also access remote monitoring server 12, other relevant information.

[0033] 为了方便信号传输,上述主机11与远程监测服务器12之间、检测板和主机11之间通过移动通信基站无线通信,移动终端15也可以接收无线信号。 [0033] For convenience of signal transmission, the host equipment 11 and between the remote monitoring server 12, the detection plate 11, and between the host mobile communication base station via radio communication, mobile terminal 15 can receive a radio signal.

[0034] 其监测方法,包括以下步骤: [0034] The monitoring method thereof, comprising the steps of:

[0035] a.振动传感器采集矿区振动信号发送给检测板,检测板通过基于DSP的小波的快速算法对振动信号进行滤波去噪,并将信号数字化,识别出爆破地震波; . [0035] a vibration sensor to a vibration signal acquisition mine detection plate, detection plate of the vibration signal is filtered by flash denoising algorithm based on wavelet DSP, and digital signals, identified seismic wave;

[0036] b.主机11对爆破地震波进行频谱分析,建立爆破监测定位数学模型,采用共轭向量基算法求解病态线性方程组,解出爆破点的立体地理坐标数据和时间; . [0036] b host 11 pairs of seismic wave spectrum analysis, monitoring and location blasting mathematical model, using the conjugate vector based algorithms for solving ill linear equations solved for the time data and the three-dimensional geographical coordinates bursting point;

[0037] c.远程监测服务器12接收到主机11发送的爆破点立体地理坐标数据,并采用迭代的方法对数据进行坐标转换,标注在显示器13显示的矿区电子地图上。 [0037] c. Remote monitoring server 12 receives the bursting point perspective geographic coordinate data transmitted from the host 11, and the iterative method of coordinate transformation data, marked on the map display 13 of the mine.

[0038] 在步骤a中,采用地表布点法,将振动传感器固定在两米左右钢管上,插入地表; 或者采用深埋法,采用钻井设备钻10-60米的井洞,将振动传感器放入井洞,振动传感器采集来自三维空间内的振动信号。 [0038] In step a, the surface distribution method employed, the vibration sensor is fixed to the steel tube about two meters, the surface is inserted; or with deep method using the drilling apparatus drill boreholes 10-60 meters, into the vibration sensor boreholes, vibration signal from the vibration sensor to collect three-dimensional space.

[0039] 时间基准是计算结果准确性的关键,整个系统通过GPS进行授时,减少了时间基准带来的测量误差,使定位精度更高。 [0039] The reference time is critical computing accuracy of the results, the entire system is granted by GPS, reducing the measurement error caused by the reference time, a higher positioning accuracy.

[0040] 主机11与远程监测服务器12之间通过无线或\和有线通信。 Via a wireless or wired communication and \ between 12 [0040] The host server 11 and the remote monitoring.

[0041] 具体的操作步骤为: [0041] The specific steps are:

[0042] (1)布点; [0042] (1) distribution;

[0043] 根据矿区整体结构,在矿区范围内选择合适的信息采集点(多选用具备供电优势与监管优势的工区)。 [0043] The overall structure of the mining area, select an appropriate information collection point (power supply includes a multi-use advantages and work area regulatory advantage) in the mining area. 对环境纯净的矿区采用地表布点法,将传感器固定在两米左右钢管上,插入地表。 For pure mine environment using surface distribution method, the sensor is fixed to the steel tube about two meters, the insertion surface. 对于干扰较大矿区,采用深埋法,采用钻井设备钻10-60米的井洞(根据实际情况以越过潜水层为最佳),将爆破振动传感器放置于洞底,传感器信号通过引线引升到地面。 For mine interferences, using deep method, using the drill equipment drilling boreholes 10-60 m (to cross the actual situation best aquifer), the blasting vibration sensor is placed in the bottom with the sensor signal through the lead wires L to the ground. 传感器在安装的过程中进行传感器及引线电缆的防水、防土壤腐蚀、防鼠害、防地质灾害拉伸破坏等工作。 During the installation of sensors in the sensor and a lead cable water, soil anti-corrosion, anti-rodent, anti geological disasters tensile breaking work.

[0044] (2)震波采集、爆破地震波识别和传输; [0044] (2) the seismic acquisition, seismic wave transmission and identification;

[0045] 在矿井下爆破发生时,产生的振动波作用于所布点的振动传感器,由振动传感器采集后通过导线电缆传出地面,经过软件智能识别,判断为爆破地震波后,进行存储,并将爆破发生时刻及地点信息发给主机11。 [0045] The vibration wave blasting occurs at the mine, the resulting vibration sensor distribution, the post-acquisition by the vibration sensor outgoing surface via the conductor cable, through software identification, determines that the seismic wave, the store, and blast occurred time and location information to the host 11.

[0046] 由于振动传感器检测的信号含有很多的干扰,这些干扰信号不仅可能淹没了正常的爆破地震波信号,还可能造成对爆破地震波到达时刻的误判,从而导致不能正确检测地震波或引起定位的误差。 [0046] Since the detection vibration sensor signal contains a lot of interference, the interfering signal may not only flooded normal seismic wave signals may also cause to seismic wave arrival misjudgment time, resulting in a failure detect seismic waves correctly or causes an error location . 为了对爆破点进行精确定位,首先应该排除其他信号的干扰。 In order to accurately position the blast site, you should first eliminate the interference of other signals. 主要包括天然地震,脉动,矿车、火车或其它汽车的振动,大风或雷电的干扰,矿震等。 Including natural earthquake, pulsating, vibrating interference tramcar, train or other vehicles, wind or lightning, earthquake and other mines.

[0047] 小波变换是近年来受到十分重视的新技术,面向特征检测以及纹理分析的许多新方法,如多分辨率分析、时频域分析、金字塔算法等,都最终归于小波变换(wavelet transforms)的范畴中。 [0047] The wavelet transform is great importance in recent years by new technology, many new method for texture analysis and feature detection, such as multi-resolution analysis, domain analysis, time-frequency pyramid algorithm, etc., are attributed to the final wavelet transform (wavelet transforms) the category.

[0048] 线性系统理论中的傅立叶变换是以在两个方向上都无限伸展的正弦曲线波作为正交基函数的。 [0048] Fourier transform of the linear system theory based on sinusoidal waves in both directions as infinitely extending orthogonal basis functions. 对于瞬态信号或高度局部化的信号(例如边缘),由于这些成分并不类似于任何一个傅立叶基函数,它们的变换系数(频谱)不是紧凑的,频谱上呈现出一幅相当混乱的构成。 For highly localized transient signal or signals (e.g., an edge), since these components are not similar to any of a Fourier basis functions which transform coefficients (spectral) are not compact, showing a configuration of the spectrum rather confusing. 这种情况下,傅立叶变换是通过复杂的安排,以抵消一些正弦波的方式构造出在大部分区间都为零的函数而实现的。 In this case, the Fourier transform by a complex arrangement, to offset some of the sine wave function constructed in a most section are realized zero.

[0049] 为了克服上述缺陷,使用有限宽度基函数的变换方法逐步发展起来了。 [0049] In order to overcome the above drawbacks, the use of limited width gradually transform basis functions developed. 这些基函数不仅在频率上而且在位置上是变化的,它们是有限宽度的波并被称为小波(wavelet)。 These basis functions not only in frequency but are varied in position, they are limited width and is called the wave wavelet (wavelet). 基于它们的变换就是小波变换。 Their transformation is based on wavelet transform.

[0050] 检测板采用基于DSP的小波的快速算法。 [0050] A fast method for detection plate wavelet based DSP. 对于高斯白噪声这样的非平稳信号,小波去噪法无疑是较好的滤波算法,然而小波算法计算量大,存储量大,运算时间长,在底层硬件中实现小波算法有很大的难度,尤其为了保证系统的实时性,系统中采用了快速小波变换及其反变换。 For non-stationary signals such as white Gaussian noise, wavelet denoising method is undoubtedly better filtering algorithm, but a large amount wavelet algorithm, memory capacity, long operation time, wavelet algorithm underlying hardware is very difficult, in particular, in order to ensure real-time system, the system uses a fast wavelet transform and inverse transform. 为了进一步减小程序的运行时间和存储量,对快速小波变换的编程进行了优化,实测进行一次256字长度的小波去噪算法时,系统仅用0. 2ms的时间,达到了实时性的要求。 In order to further reduce the running time and storage procedures, for fast wavelet transformation program is optimized, we found 256 once Wavelet Denoising Algorithm word length, the system only 0. 2ms time, achieve real-time requirements .

[0051] 为此,使用快速小波变换(DWT),对信号进行重构时,使用快速小波反变换(FWT)。 [0051] To this end, the fast wavelet transform (DWT), when the signal is reconstructed using the inverse fast wavelet transform (FWT). 计算步骤为: Calculated steps:

[0052] (1)将f(x)投影到IVJ 上 [0052] (1) f (x) is projected onto IVJ

[0053] Y4Cn^(InX-U) [0053] Y4Cn ^ (InX-U)

[0054] (2)小波分解算法 [0054] (2) wavelet decomposition algorithm

[0055] 使用多分辨分析的金字塔算法时, When the [0055] multi-resolution pyramid algorithm analysis,

[0056][0057] [0056] [0057]

[0058] [0058]

[0059] [0059]

Figure CN102279410AD00071

[0060]而8„、1111是符号多项式6(2)、!1(2)的系数]_ [0060] and 8 ", 1111 is a sign of the coefficient polynomial 6 (2),! 1 (2)] _

[0061] [0061]

[0062] [0062]

[0063] [0063]

Figure CN102279410AD00072

[0064] 重构时有: [0064] When the reconstruction are:

[0065] [0065]

[0066] [0066]

Figure CN102279410AD00073

[0067] 本系统实现的小波算法与MATLAB中所用的小波算法效果是相当的。 [0067] This system implemented with MATLAB wavelet algorithm used in the wavelet algorithm is comparable effect.

[0068] 在信号传输过程中,现有的振动传感器,其输出信号多为电压信号,随着传输距离增加,电压的衰减也就越大,一般在传输线距离大于10米以后就不能正确的反映振动信号了。 [0068] In signal transmission, the conventional vibration sensor, its output signal is a multi-voltage signal as the transmission distance increases, the greater the voltage decay, after the transmission line is generally a distance greater than 10 meters can not be properly reflect the the vibration signal. 在系统中,应用类驱动电缆技术实现了微弱信号的远距离传送,保证了爆破振动信号的实时可靠检测。 In the system, the application technology of the driving cable type remote weak signal transmission, real-time to ensure reliable blasting vibration detection signal. 解决了震动信号远距离、高精度传输。 Solution vibration signal distance, high-precision transmission.

[0069] (3)快速高精度的定位。 [0069] (3) fast accurate positioning.

[0070] 主机11内在求解爆破位置和时间时,所用的矩阵一般为病态矩阵。 When [0070] The host 11 and the inner position solving blasting time, the matrix is ​​generally used for the ill-conditioned matrix. 求解病态线性方程组的方法一般可以分为直接法,迭代法,以及当今出现的一些先进算法如遗传算法、模拟退火法、混合混沌算法等。 The method of linear equations for solving ill generally be divided into direct method, iterative method, appears today as well as some advanced algorithms genetic algorithm, simulated annealing, etc. The hybrid chaos algorithm. 但由于这些算法都有一定的局限性,它们不能把所有的病态线性方程组较好的求解出来,因此研究求解病态线性方程组的算法是当前一项重要又艰巨的工程。 But because these algorithms have some limitations, they can not put out all the better for solving linear equations ill, so ill Algorithm for solving linear equations is currently an important and difficult project. 在这里使用了共轭向量基算法。 As used herein, a conjugate vector based algorithms.

[0071] 其算法的步骤为: [0072] Stepl :初始化数据。 [0071] step of the algorithm is: [0072] Stepl: initialization data. 任给xl,计算,rl 并置k= 1。 Given any xl, is calculated, rl and set k = 1. [0073] Step2 :计算 [0073] Step2: Calculation

Figure CN102279410AD00081

. 按照下式分别计算 Were calculated according to the formula

α k 和β k 然后计算Pk+1 = α krk+1+ β kpk,置k = k+1。 α k and β k is then calculated Pk + 1 = α krk + 1 + β kpk, set k = k + 1.

[0074] [0074]

Figure CN102279410AD00082

[0075]如果k = η — 1,则算法终止,转到St印4 ;否则转入St印2继续计算。 [0075] If k = η - 1, then the algorithm terminates, St printing to 4; 2 otherwise proceeds to continue the calculation St printing.

[0076] Step4 :计算 [0076] Step4: Calculation

Figure CN102279410AD00083

即得到线性方程组的解。 Solution of linear equations to obtain.

[0077](4)高精度的坐标变换; [0077] (4) high-precision coordinate transformation;

[0078]由于矿区地图为1%4北京坐标系的平面坐标,远程监测服务器12地图为1984世界坐标系的大地坐标,监测系统在对爆破波定位后的坐标要转换成服务器接受的1984世界坐标系下的数据,所以需要进行BJJ4与WGS_84坐标系之间的转换。 [0078] Since the mining map for plane coordinates 1% 4 Beijing coordinate system, the remote monitoring server 12 map for geodetic coordinates 1984 in the world coordinate system, coordinates the blast wave is positioned to be converted to the server to accept the 1984 world coordinate Monitoring System data in the system, it is necessary to convert between the BJJ4 and WGS_84 coordinate system. 而在坐标变换中, 需要通过最小二乘法对不同坐标系转换的七参数进行求解。 In the coordinate transformation, seven parameters need to be solved in different coordinate system converted by the least squares method. 而在坐标变换中,也经常出现病态方程的求解问题,本系统中采用迭代的方法实现精确求解。 In the coordinate transformation, but also to solve the problem often pathological equation, iterative method of the present system to achieve accurate solution.

[0079] WGS-84 坐标系: [0079] WGS-84 coordinate system:

[0080] WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。 [0080] WGS-84 coordinate system is the coordinate system used by GPS, GPS published ephemeris parameters is based on this coordinate system. WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。 The full name WGS-84 coordinate system is World Geodical System-84 (World Geodetic System -84), it is a place ECEF coordinate system. WGS-84坐标系统由美国国防部制图局建立,于1987 年取代了当时GPS所采用的坐标系统-WGS-72坐标系统而成为GPS的所使用的坐标系统。 WGS-84 coordinate system established by the US Defense Mapping Agency, replacing the GPS coordinate system was used -WGS-72 coordinate system in 1987 to become the coordinate system used by the GPS. WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984. 0定义的协议地球极方向,X 轴指向BIH1984. 0的启始子午面和赤道的交点,Y轴与X轴和Z轴构成右手系。 Intersection coordinate origin WGS-84 coordinate system over the earth's center of mass, Z axis pointing BIH1984. 0 protocol defined earth electrode direction, X-axis points BIH1984. 0 to start the meridional plane and the equator, Y-axis and X-axis and Z-axis constitutes a right-handed.

[0081] 1卯4年北京坐标系: [0081] 1 d 4-year Beijing coordinates:

[0082] 1%4年北京坐标系是我国目前广泛采用的大地测量坐标系,是一种参心坐标系统。 [0082] 1% 4 years Beijing coordinate system is widely used in China's current geodetic coordinate system is a reference center coordinate system. 该坐标系源自于原苏联采用过的1942年普尔科夫坐标系。 The coordinate system is derived from the former Soviet Union had adopted in 1942 Pulkovo coordinate system. 该坐标系采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:a = 6378245mf = 1/298. 3。 The coordinate system uses the reference ellipsoid Krassovsky ellipsoid, the ellipsoid of the parameters: a = 6378245mf = 1/298 3.. 我国地形图上的平面坐标位置都是以这个数据为基准推算的。 Plane coordinate our positions on the topographic map are based on the basis of this data extrapolated.

[0083] BJ_54与WGS_84坐标系之间的转换: [0083] BJ_54 conversion between the coordinate system and WGS_84:

[0084] ①首先利用七参数模型,将BJJ4平面直角坐标系转换为WGS_84平面直角坐标系,相应的坐标转换模型为: [0084] ① Firstly, seven-parameter model is converted BJJ4 plane rectangular coordinate system is WGS_84 plane rectangular coordinate system, the coordinate transformation model corresponding to:

[0085] [0085]

Figure CN102279410AD00084

[0086] 式中,ΔΧ,Δ Y,ΔΖ为3个平移参数;θ χ,θ Y, θ Z为3个旋转参数,m为尺度参数。 [0086] In the formula, ΔΧ, Δ Y, ΔΖ three translation parameters; θ χ, θ Y, θ Z three rotation parameters, m is the scale parameter. 为了求得这7个转换参数,至少需要3个公共点,当多余3个公共点时,按最小二乘法求得7个参数的最或然值。 In order to obtain seven transformation parameters, at least three common point, when three redundant common point, by the least squares method to obtain the most probable value of the seven parameters. 在获得已知的7个参数下,便可以进行BJJ4平面坐标系到WGS_84 平面坐标系的转换。 7 is obtained in the known parameters, can be converted into the plane coordinate system BJJ4 WGS_84 plane coordinate system.

[0087] ②采用高斯投影坐标反算公式,将WGS_84平面直角坐标系转换为大地坐标系。 [0087] ② Rectangular Coordinates Gauss projection formula, converting WGS_84 plane rectangular coordinate system is the world coordinate system. [0088] (a)高斯投影反算:已知某点的高斯投影平面上直角坐标(X,y),求该点在椭球面上的大地坐标(L,B),即(U)的坐标变换。 [0088] (a) Gaussian inverse projection: Cartesian coordinates (X, y) of a point on the known Gauss projection plane, find the point, i.e., (U) coordinates geodetic coordinates (L, B) of the ellipsoid transformation.

[0089] (b)投影变换必须满足的条件: [0089] (b) a projective transformation conditions must be met:

[0090] χ坐标轴投影成中央子午线,是投影的对称轴; [0090] χ axis projected into the central meridian, the projection of the axis of symmetry;

[0091] χ轴上的长度投影保持不变; [0091] χ axis projection length remains unchanged;

[0092] 投影具有正形性质,即正形投影条件。 [0092] Projection shape having a positive nature, i.e. conformal projection conditions.

[0093] (c)投影过程: [0093] (c) the projection process:

[0094] 根据χ计算纵坐标在椭球面上的投影的底点纬度Bf,接着按~计算(Bf-B)及经差1,最后得到B = Bf- (Bf-B)、L = L0+1。 [0094] The ordinate χ calculated latitude Bf projection point on the bottom surface of the ellipsoid, followed by - calculating (Bf-B) was the difference between 1 and finally obtain B = Bf- (Bf-B), L = L0 + 1.

[0095] (d)计算公式: [0095] (d) formula:

Figure CN102279410AD00091

[0097] 当要求转换精度至0.01〃时,可简化为下式: [0097] When the time required to convert to 0.01〃 accuracy, simplifies to the following formula:

[0098] [0098]

Figure CN102279410AD00092

[0099] (5)定位信息的发布: [0099] (5) positioning the release of information:

[0100] 远程监测服务器12在确定爆破点的位置数据后,通过中国移动或中国联通完善的GPRS网络将定位数据上传至监测服务器,并由服务器在矿区的电子地图进行标注。 [0100] remote monitoring server 12 after determining the position of the data burst point by China Mobile or China Unicom's GPRS network to improve China positioning data uploaded to the monitoring server by server tagging electronic map in the mining area. 用户终端14也可以访问远程监测服务器12,查询相关信息。 The user terminal 14 may also access remote monitoring server 12, other relevant information.

[0101] 为了进行爆破波震相分析和确定爆破震源的位置,一般系统中至少布有四个信号采集点,处理器需要通过记录爆破地震波到达检测传感器的准确时间,才能够计算出爆破点的具体位置。 [0101] For blasting wave phases to analyze and determine the location of the blast source, typically at least four distribution system signal collection point, the processor needs to detect the exact time of arrival of seismic wave sensors through a recording, to be able to calculate the bursting point specific location. 然而各分检测点定时误差对定位精度的影响很大,并且不能保证系统在记录时间信息时刻的时间同步。 However, the sub-detection points timing error a great influence on the positioning accuracy, and can not guarantee the synchronization system at the time the recording time information of time. 所以在实现爆破波定位系统中,必须严格保证各分检测点的时间的同步性与同时性。 Therefore, to achieve burst wave positioning system, and must be strictly ensure the synchronization of the time while the sub-detection point. 由于GPS接收机能全天候,实时地接收GPS空间卫星发出的信号, 可以获取精确的导航定位信息和精确的时间信息,时间信息包含年、月、日、时、分、秒和每秒输出的同步脉冲信号。 Since the GPS receiver clock can, in real-time reception of the GPS satellite signal output space, can obtain accurate positioning information and navigation accurate time information, the time information comprises year, month, day, hour, minute, and second output synchronization pulse per second signal.

[0102] 由于从GPS接收机输出的秒脉冲(1PPQ与UTC的上升沿同步,每个秒脉冲误差不超过1 μ s(GN80H模块可以达到30ns的精度),因此利用GPS接收机输出的秒脉冲可以校准系统工作时钟,这就能使系统时钟对应的每一秒的时间间隔与UTC的时钟对应的每一秒的时间间隔基本相同;而在GPS接收机输出秒脉冲的同时,还同时输出一个绝对的UTC时间,利用该时间来修改系统工作时钟,就可以使系统的时间与世界协调时基本一致,而四个(含四个以上的)分检测点都接受GPS接收机授时,确保这些系统以几乎同样的时间同步工作,从而保证处理器在对信号采集过程中的准确记录波形的到达时刻。 [0102] Since (1PPQ UTC synchronization with the rising edge of the second pulse outputted from the GPS receiver, the second pulse of each error is less than 1 μ s (GN80H module can achieve accuracy of 30ns), thus using the second pulse outputted from the GPS receiver work can calibrate the system clock, which enables the system clock every second time interval corresponding to a time interval of each second clock corresponding to substantially the same UTC; while outputting the second pulse in GPS receiver, while the output is also a absolute UTC time, using this time to modify the system clock work, you can make the system a time when coordination is consistent with the world, while four (containing more than four) sub-detection points are awarded when receiving GPS receiver, ensure that these systems synchronization at almost the same time, to ensure accurate arrival time processor recording waveform of the signal acquisition process.

[0103] 信号传输通过CAN总线或用GPRS方式(在不能进行有线传输的环境),将地震波信息打包并附加数据校验信息传输至数据处理单元CPU。 [0103] signals transmitted through the CAN bus or a GPRS mode (wired transmission can not be performed in the environment), and the seismic information packed data check information to the data processing unit CPU.

[0104] 上述实施例所述是用以具体说明本专利,文中虽通过特定的术语进行说明,但不能以此限定本专利的保护范围,熟悉此技术领域的人士可在了解本专利的精神与原则后对其进行变更或修改而达到等效目的,而此等效变更和修改,皆应涵盖于权利要求范围所界定范畴内。 [0104] The above embodiments specifically described in this patent is used, although the text will be described through specific terms are employed, thereby not limiting the scope of protection of the present patent, those familiar with this art can understand the spirit of the present patent after principle be equivalent changes or modifications to achieve the object, and this equivalent alterations and modifications are intended to be included within the scope of the claims as defined by the scope.

Claims (8)

1. 一种矿山地下开采活动实时监测系统,其特征在于,包括:信号采集处理单元,包括布置在矿区的振动传感器和检测板,振动传感器采集振动信号,检测板将振动信号进行滤波处理和数字化;空间定位单元,包括连接检测板的主机,将检测板处理后的信号进行计算,得出爆破点的立体地理坐标数据;定位发布单元,包括远程监测服务器和显示器,远程监测服务器接收立体地理坐标数据,并标注在显示器显示的矿区电子地图上。 An underground mining activities in real-time monitoring system, comprising: a signal acquisition and processing unit comprises a vibration sensor disposed in a mine and a detection plate, a vibration sensor to collect vibration signal, the vibration signal detection plate is filtered and digitized ; spatial positioning unit, comprising a host connection detecting plate, the detecting plate signal processing calculation, the three-dimensional geographical coordinate data burst point; release locating unit including a display and remote monitoring server, the remote monitoring server receives geographical coordinates perspective data, and marked on the electronic map displayed by the display mine.
2.根据权利要求1所述矿山地下开采活动实时监测系统,其特征在于:所述振动传感器为布置在不同平面上的4〜5个三轴振动传感器。 1 according to the underground mining activities real time monitoring system as claimed in claim, wherein: the vibration sensor is a triaxial 4 to 5 are arranged on different planes of vibration sensors.
3.根据权利要求1所述矿山地下开采活动实时监测系统,其特征在于:所述主机连接有GPS授时模块,用于给主机实时授时。 1 according to the underground mining activities real time monitoring system as claimed in claim, wherein: said master module is connected to GPS timing, when the real-time feedback to the host used.
4.根据权利要求1所述矿山地下开采活动实时监测系统,其特征在于:所述主机与远程监测服务器之间无线通信。 1 according to the underground mining activities real time monitoring system as claimed in claim, wherein: a wireless communication between the host and remote monitoring server.
5. 一种利用权利要求1所述的矿山地下开采活动实时监测系统的监测方法,其特征在于,包括以下步骤:a.振动传感器采集矿区振动信号发送给检测板,检测板通过基于DSP的小波的快速算法对振动信号进行滤波去噪,并将信号数字化,识别出爆破地震波;b.主机对爆破地震波进行频谱分析,建立爆破监测定位数学模型,采用共轭向量基算法求解病态线性方程组,解出爆破点的立体地理坐标数据和时间;c.远程监测服务器接收到主机发送的爆破点立体地理坐标数据,并采用迭代的方法对数据进行坐标转换,标注在显示器显示的矿区电子地图上。 A use as claimed in underground mining activity monitoring method of real time monitoring system of claim 1, wherein, comprising the steps of:. A vibration sensor to a vibration signal acquisition mine detection plate, detection plate wavelet-based DSP fast algorithm for the vibration signal is filtered denoising, and the signal is digitized, identified seismic wave;. b host of seismic wave spectrum analysis, blasting monitoring positioning mathematical model, using vector-based algorithm conjugated solving ill linear equations, Solutions of the blast site is a perspective geographic coordinate data and time; C remote monitoring server receives the bursting point perspective geographic coordinate data sent by the host and the iterative method the data coordinate conversion, marked on the map mine monitor display.
6.根据权利要求5所述矿山地下开采活动实时监测系统的监测方法,其特征在于:在步骤a中,采用地表布点法,将振动传感器固定在两米左右钢管上,插入地表;或者采用深埋法,采用钻井设备钻10-60米的井洞,将振动传感器放入井洞,振动传感器采集来自三维空间内的振动信号。 6. The method of monitoring the activities of underground mining real-time monitoring system of claim, wherein: in step a, using the surface distribution method, the vibration sensor is fixed to the steel tube about two meters, the surface is inserted; or using deep Burial using 10-60 meters drilling apparatus drill boreholes, the boreholes into the vibration sensor, the vibration signal in the three-dimensional space from the vibration sensor acquisition.
7.根据权利要求5所述矿山地下开采活动实时监测系统的监测方法,其特征在于:整个系统通过GPS进行授时。 The method of monitoring the activities of underground mining real-time monitoring system of claim, wherein: the system for timing by GPS.
8.根据权利要求5所述矿山地下开采活动实时监测系统的监测方法,其特征在于:所述主机与远程监测服务器之间通过无线或\和有线通信。 8. The method of monitoring underground mining activities real-time monitoring system according to claim, wherein: via a wireless or wired communication between the host and the remote monitoring server \.
CN201110166685A 2011-06-21 2011-06-21 Real-time monitoring system and method for underground mining activities of mine CN102279410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110166685A CN102279410A (en) 2011-06-21 2011-06-21 Real-time monitoring system and method for underground mining activities of mine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110166685A CN102279410A (en) 2011-06-21 2011-06-21 Real-time monitoring system and method for underground mining activities of mine

Publications (1)

Publication Number Publication Date
CN102279410A true CN102279410A (en) 2011-12-14

Family

ID=45104960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110166685A CN102279410A (en) 2011-06-21 2011-06-21 Real-time monitoring system and method for underground mining activities of mine

Country Status (1)

Country Link
CN (1) CN102279410A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779392A (en) * 2012-07-27 2012-11-14 贵州大学 Side slope geological disaster early warning method and device based on small wave sensor
CN103091675A (en) * 2013-01-11 2013-05-08 中南大学 Mining lot exploiting and monitoring method based on interferometric synthetic aperature radar (InSAR) technology
CN103247222A (en) * 2013-04-22 2013-08-14 东莞科学馆 Seismograph simulation demonstration instrument and control system thereof
CN103364823A (en) * 2012-04-11 2013-10-23 中国科学院地质与地球物理研究所 Vibration source real-time positioning and analyzing system
CN103742194A (en) * 2013-12-04 2014-04-23 桂林电子科技大学 Subsurface source positioning method and mining area illegal mining prevention monitoring system
WO2015002557A2 (en) 2014-10-30 2015-01-08 Instytut Technik Innowacyjnych Emag Method and system for measuring relative changes in stress concentration in front of a longwall
CN104700207A (en) * 2015-02-28 2015-06-10 中国地质大学(武汉) Internet-of-things-based mining dynamic real-time monitoring method and system
CN104881711A (en) * 2015-05-18 2015-09-02 中国矿业大学 Underground early-warning mechanism based on miner behavioral analysis
WO2014209141A3 (en) * 2014-10-30 2015-09-03 Instytut Technik Innowacyjnych Emag Method and system for assessing a risk of high-energy earth bursts generated by underground mining
CN105467828A (en) * 2016-01-12 2016-04-06 安徽万泰地球物理技术有限公司 GPS-based surface and subsurface micro earthquake monitoring clock synchronization system and method
CN106199686A (en) * 2016-08-18 2016-12-07 北京蓝尊科技有限公司 The system and method for mining blasting point real-time positioning is realized at shallow layer surface
CN107765294A (en) * 2017-10-20 2018-03-06 重庆泛嘉地质勘查有限公司 Method of seismic source monitoring
CN107783179A (en) * 2017-10-20 2018-03-09 重庆泛嘉地质勘查有限公司 Mining scope monitoring method
CN108104822A (en) * 2017-12-13 2018-06-01 中冶交通建设集团有限公司 A kind of Tunnel Passing large size karst cavity construction geology disaster real-time predicting method
CN108802802A (en) * 2018-04-24 2018-11-13 福建金东矿业股份有限公司 A kind of mineral resources regional area qualitative method
CN108801450A (en) * 2018-07-18 2018-11-13 武汉理工大学 Deep rock mass vibration monitor system and its method based on acceleration transducer steel pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101482623A (en) * 2009-02-10 2009-07-15 中国安全生产科学研究院 Method for positioning seismic source in mine seismic activity
CN101762830A (en) * 2009-09-29 2010-06-30 中国矿业大学 Distributed coal mine rock burst monitoring method
CN101995582A (en) * 2010-08-31 2011-03-30 成都林海电子有限责任公司 Satellite communication-based earthquake real-time monitoring system
CN202119900U (en) * 2011-06-21 2012-01-18 北京蓝尊科技有限公司 Mine underground mining activity real-time monitoring system based on blast source location technology

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101482623A (en) * 2009-02-10 2009-07-15 中国安全生产科学研究院 Method for positioning seismic source in mine seismic activity
CN101762830A (en) * 2009-09-29 2010-06-30 中国矿业大学 Distributed coal mine rock burst monitoring method
CN101995582A (en) * 2010-08-31 2011-03-30 成都林海电子有限责任公司 Satellite communication-based earthquake real-time monitoring system
CN202119900U (en) * 2011-06-21 2012-01-18 北京蓝尊科技有限公司 Mine underground mining activity real-time monitoring system based on blast source location technology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑洲顺等: "求解病态线性方程组的共轭向量基算法", 《山东大学学报(理学版)》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364823A (en) * 2012-04-11 2013-10-23 中国科学院地质与地球物理研究所 Vibration source real-time positioning and analyzing system
CN103364823B (en) * 2012-04-11 2016-07-13 中国科学院地质与地球物理研究所 Vibroseis real-time positioning and the system of analysis
CN102779392A (en) * 2012-07-27 2012-11-14 贵州大学 Side slope geological disaster early warning method and device based on small wave sensor
CN103091675A (en) * 2013-01-11 2013-05-08 中南大学 Mining lot exploiting and monitoring method based on interferometric synthetic aperature radar (InSAR) technology
CN103091675B (en) 2013-01-11 2014-07-30 中南大学 Mining lot exploiting and monitoring method based on interferometric synthetic aperature radar (InSAR) technology
CN103247222A (en) * 2013-04-22 2013-08-14 东莞科学馆 Seismograph simulation demonstration instrument and control system thereof
CN103247222B (en) * 2013-04-22 2016-04-13 东莞科学馆 Analog demonstration instrument of earthquake instrument and control system thereof
CN103742194A (en) * 2013-12-04 2014-04-23 桂林电子科技大学 Subsurface source positioning method and mining area illegal mining prevention monitoring system
WO2014209141A3 (en) * 2014-10-30 2015-09-03 Instytut Technik Innowacyjnych Emag Method and system for assessing a risk of high-energy earth bursts generated by underground mining
WO2015002557A2 (en) 2014-10-30 2015-01-08 Instytut Technik Innowacyjnych Emag Method and system for measuring relative changes in stress concentration in front of a longwall
CN104700207B (en) * 2015-02-28 2017-12-29 中国地质大学(武汉) A kind of mining dynamic realtime monitoring method and system based on Internet of Things
CN104700207A (en) * 2015-02-28 2015-06-10 中国地质大学(武汉) Internet-of-things-based mining dynamic real-time monitoring method and system
CN104881711B (en) * 2015-05-18 2018-08-07 中国矿业大学 Underground early warning mechanism method based on miner's behavioural analysis
CN104881711A (en) * 2015-05-18 2015-09-02 中国矿业大学 Underground early-warning mechanism based on miner behavioral analysis
CN105467828A (en) * 2016-01-12 2016-04-06 安徽万泰地球物理技术有限公司 GPS-based surface and subsurface micro earthquake monitoring clock synchronization system and method
CN106199686A (en) * 2016-08-18 2016-12-07 北京蓝尊科技有限公司 The system and method for mining blasting point real-time positioning is realized at shallow layer surface
CN107783179A (en) * 2017-10-20 2018-03-09 重庆泛嘉地质勘查有限公司 Mining scope monitoring method
CN107765294A (en) * 2017-10-20 2018-03-06 重庆泛嘉地质勘查有限公司 Method of seismic source monitoring
CN108104822A (en) * 2017-12-13 2018-06-01 中冶交通建设集团有限公司 A kind of Tunnel Passing large size karst cavity construction geology disaster real-time predicting method
CN108104822B (en) * 2017-12-13 2019-06-07 中冶交通建设集团有限公司 A kind of Tunnel Passing large size karst cavity construction geology disaster real-time predicting method
CN108802802A (en) * 2018-04-24 2018-11-13 福建金东矿业股份有限公司 A kind of mineral resources regional area qualitative method
CN108802802B (en) * 2018-04-24 2019-12-17 福建金东矿业股份有限公司 method for qualitative determination of local area of mineral resource
CN108801450A (en) * 2018-07-18 2018-11-13 武汉理工大学 Deep rock mass vibration monitor system and its method based on acceleration transducer steel pipe

Similar Documents

Publication Publication Date Title
Wang et al. Acoustic emission/microseismic source location analysis for a limestone mine exhibiting high horizontal stresses
CN102768369B (en) Roadway drivage drilling induced polarization advance water probing forecasting method, device and probe
CN101251605A (en) Method for forecasting advanced geology for tunnel construction
CN102373923B (en) Reservoir stratum identification method
CN102062877A (en) Nuclear magnetic resonance detection device and method for advanced detection of water bodies in front
CN101403797B (en) Advanced geological prediction system and method for underground engineering construction
US20140091789A1 (en) Tunnel water inrush advance prediction device using nuclear magnetic resonance difference and method
CN102353996A (en) Directional transient electromagnetic device in drill hole and measurement method thereof
Cherniak et al. Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service
CN102102533B (en) Method for forecasting real-time measurement of spatial geometrical information of coal rock dynamic disaster
Chen et al. The Earthworm based earthquake alarm reporting system in Taiwan
CN101603423B (en) Direct current method for bed-parallel advanced detection of water bearing structure in mine tunnel
Huang et al. The preliminary study of the 4 March 2010 Mw 6.3 Jiasian, Taiwan earthquake sequence
CN102508308A (en) Transient electromagnetic multipoint array-type detection method of tunnel
CN104076393A (en) Recognizing method for concealed mineralization tectonic zone of granite type uranium deposit
Oláh et al. Cosmic muon detection for geophysical applications
CN103913776A (en) Method for detecting spherical boulders in shield construction
CN101957456B (en) Distributed parallel potential acquisition system
CN101833058A (en) Earth fault distance measurement method based on traveling wave modulus time difference
CN101930083A (en) United inversion method for multiple inter-well electromagnetic wave tomography hole pairs
CN102520450A (en) Coal mine full-water goaf detection method
CN100555000C (en) Non-contact mine pressure observing and estimating method
HUANG et al. Wavelet filters based separation of GPS multi-path effects and engineering structure vibrations [J]
CN102385070B (en) Radio wave perspective captive test (CT) method for overlong working surface
CN202300529U (en) Slight shock monitoring sensor arrangement structure in deeply buried long tunnel boring machine (TBM) tunneling process

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)