NO860348L - FUEL ADDITIVE. - Google Patents

FUEL ADDITIVE.

Info

Publication number
NO860348L
NO860348L NO860348A NO860348A NO860348L NO 860348 L NO860348 L NO 860348L NO 860348 A NO860348 A NO 860348A NO 860348 A NO860348 A NO 860348A NO 860348 L NO860348 L NO 860348L
Authority
NO
Norway
Prior art keywords
amine
lubricant additive
lubricant
approx
weight
Prior art date
Application number
NO860348A
Other languages
Norwegian (no)
Inventor
Leroy Schieler
Original Assignee
Bank Of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bank Of America filed Critical Bank Of America
Publication of NO860348L publication Critical patent/NO860348L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M133/10Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/12Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having a phosphorus-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/044Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms having cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/067Polyaryl amine alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/068Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings having amino groups bound to polycyclic aromatic ring systems, i.e. systems with three or more condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/061Metal salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

Foreliggende oppfinnelse omhandler et høyt detergent/dis-pergent inneholdende tilsetningsmiddel for bruk med vanlige innvendige forbrenningsmotor-smøremidler for å fremskaffe et smøremiddel passende for bruk i innvendige forbrenningsmotorer som forbrenner alkohol eller alkoholinneholdende drivstoff så som metanol eller etanoldrivstoff. Foreliggende oppfinnelse er også rettet mot en smøremiddelblanding inneholdende nevnte smøremiddeltilsetning, fremgangsmåte for fremstilling av smøremiddelblandingen og en fremgangsmåte for å inhibere korrosjon og vesentlig motorslitasje ved å bruke nevnte smøreblanding. The present invention relates to a high detergent/dispersant containing additive for use with common internal combustion engine lubricants to provide a lubricant suitable for use in internal combustion engines that burn alcohol or alcohol-containing fuels such as methanol or ethanol fuel. The present invention is also directed to a lubricant mixture containing said lubricant additive, method for producing the lubricant mixture and a method for inhibiting corrosion and significant engine wear by using said lubricant mixture.

Vanlig brukte automotive smøremidler er ikke effektive i alkoholforbrennende motorer som kommer til uttrykk ved vesentlig motorslitasje og progressivtøkende grader av smøremiddelforbruk. En grunn for dette er den store for-skjell i kjemisk reaktivitet av forbrenningsprodukter fra bensin og alkoholautomotive brennstoffsystemer. I et alkohol-brennstoffsystem opptrer et antall smøremiddel ned-brytningsreaksjoner som ikke påtreffes i bensindrivstoff-system. Disse kjemiske reaksjoner forårsaker den økede korrosjon til alkoholdrivstoff. Foreksempel oksyderer metanol lett for å danne formaldehyd og maursyre. Denne reaksjon er representert av ligning 1. Commonly used automotive lubricants are not effective in alcohol-burning engines, which is expressed by significant engine wear and progressively increasing levels of lubricant consumption. One reason for this is the large difference in chemical reactivity of combustion products from petrol and alcohol automotive fuel systems. In an alcohol-fuel system, a number of lubricant degradation reactions occur that do not occur in a gasoline-fuel system. These chemical reactions cause the increased corrosion of alcohol fuel. For example, methanol readily oxidizes to form formaldehyde and formic acid. This reaction is represented by equation 1.

De fleste kjøretøyer som bruker metanoldrivstoff lider av vesentlig korrosjon av de øvre sylindere og lagerslitasje som resulterer fra maursyren som dannes ved metanolforbrenning. Maursyre reagerer med vanlige automotive smøre-midlers organiske amintilsetninger som virker som antioksy-danter, korrosjonsinhibitorer og antislitasjemidler. Amin-tilsetningene nøytraliserer maursyren. Imidlertid synes vanlige tilsetninger ute av stand passende å nøytralisere mengden av maursyre som dannes ved metanolforbrenning. Most vehicles using methanol fuel suffer from significant corrosion of the upper cylinders and bearing wear resulting from the formic acid produced by methanol combustion. Formic acid reacts with common automotive lubricants' organic amine additives that act as antioxidants, corrosion inhibitors and antiwear agents. The amine additions neutralize the formic acid. However, common additives seem unable to adequately neutralize the amount of formic acid formed during methanol combustion.

Disse reaksjoner er representert i ligningene 2 og 3. These reactions are represented in equations 2 and 3.

Formaldehyd er svært reaktivt med amintilsetninger. Formaldehyd reagerer med aminene som brukes som antioksidanter, syrefjernere og askefrie dispergerende midler. Disse form-aldehydreaksjoner representert ved ligning 4 bidrar i vesentlig grad til å oljenedbryting i et metanol-drivstoff-system. Formaldehyde is highly reactive with amine additions. Formaldehyde reacts with the amines used as antioxidants, acid scavengers and ashless dispersants. These formaldehyde reactions represented by equation 4 contribute significantly to oil degradation in a methanol-fuel system.

Det er behov for en smøremiddeltilsetning som minimaliserer oksydasjonen av metanol til formaldehyd og maursyre og minimaliserer overskytende formaldehyd og maursyrereaksjon-er for å forlenge levetiden til smøremiddeltilsetningene som raskt fjernes ved reaksjon med formaldehyd og maursyre. På lignende måte er det behov for en smøremiddeltilsetning som minimaliserer oksydasjonen av etanol til acetaldehyd og eddiksyre og minimaliserer ytterligere reaksjoner til disse komponenter. There is a need for a lubricant additive that minimizes the oxidation of methanol to formaldehyde and formic acid and minimizes excess formaldehyde and formic acid reaction to extend the life of the lubricant additives that are rapidly removed by reaction with formaldehyde and formic acid. Similarly, there is a need for a lubricant additive that minimizes the oxidation of ethanol to acetaldehyde and acetic acid and minimizes further reactions to these components.

Et annet vesentlig problem i alkohol brennstoffsystemer er at sinkdialkylditiosulfat, et vesentlig multifunksjonelt additiv i de fleste smøremidler, lett transesterifiseres og derved taper mange av sine antislitasje-egenskaper. Transesterifiseringsreaksjonen innebefatter utbyttingen av en alkoholalkylgruppe så som metanol eller etanol med en eksisterende ester så som sink dialkylditiofosfat for å danne en ny ester. En transesterifiseringsreaksjon er representert i ligning 5. Another significant problem in alcohol fuel systems is that zinc dialkyldithiosulfate, an essential multi-functional additive in most lubricants, is easily transesterified and thereby loses many of its anti-wear properties. The transesterification reaction involves the exchange of an alcohol alkyl group such as methanol or ethanol with an existing ester such as zinc dialkyl dithiophosphate to form a new ester. A transesterification reaction is represented in equation 5.

Transesterifiseringsreaksjonen er syrekatalysert og opptrer derfor etter at aminbasetilsetningene i smøremiddelet er oppbrukt ved reaksjon med aldehyder og syrer dannet i forbrenningsprosessen. Transesterifisering er ikke en hovedmekanisme for oljenedbryting i hydrokarbon brennstoffsystemer men er en hovedmekanisme for å oljenedbryting i metanol og andre alkohol brennstoffsystemer. Foreksempel når metanol og etanol blandes med bensin er størrelsen til transesterifiseringsreaksjonen proposjonal med mengden av alkohol i blandingen. The transesterification reaction is acid-catalysed and therefore occurs after the amine base additives in the lubricant have been used up by reaction with aldehydes and acids formed in the combustion process. Transesterification is not a major mechanism for oil degradation in hydrocarbon fuel systems but is a major mechanism for oil degradation in methanol and other alcohol fuel systems. For example, when methanol and ethanol are mixed with gasoline, the magnitude of the transesterification reaction is proportional to the amount of alcohol in the mixture.

En annen grunn forøket korrosivitet i alkoholforbrennende motorer er denøkede oppløselighet av karbondioksyd i alko-holen. Foreksempel er karbondioksyd meget mer oppløselig i metanol enn i vann. Både vann og metanol er vaneligvis tilstede de kjøligere deler av veivhuset som forbrenningsprodukter. Vann reagerer med drivstoff forbrenningsprod-uktene så som SO^, NC>2 og CO^for å danne de tilsvar- Another reason for increased corrosivity in alcohol-burning engines is the increased solubility of carbon dioxide in the alcohol. For example, carbon dioxide is much more soluble in methanol than in water. Both water and methanol are usually present in the cooler parts of the crankcase as combustion products. Water reacts with fuel combustion products such as SO^, NC>2 and CO^ to form the corresponding

ende syrer, svovelsyre, saltpetersyre og kullsyre som representert i ligningen 6, 7 og 8. end acids, sulfuric acid, nitric acid and carbonic acid as represented in equations 6, 7 and 8.

Disse syrer som reagere med metaller i motoren er av hoved-årsaker til korrosjon i en innvendig forbrenningsmotor. Smøremidlene som vanligvis brukes i hydrokarbon forbrenn-ingssystemer nøytraliserer effektivt disse syrer med bas- iske tilsetninger så som organiske aminer og alkaliske metallforbindelser. Imdlertid er kullsyrenivået signifikant høyere i metanol eller andre alkohol bensinsystemer enn i et bensinbrennstoffsystem på grunn av den økede opp-løselighet av CO,, i alkoholer. Det samme kan være til-felle for salpetersyre dannet fra NC>2 forbrenningsprodukter. Absorpsjon av karbondioksyd tyder på å være en viktig grunn for den uventede høye korrosivitet av alkohol drivstoff. These acids which react with metals in the engine are one of the main causes of corrosion in an internal combustion engine. The lubricants usually used in hydrocarbon combustion systems effectively neutralize these acids with basic additives such as organic amines and alkaline metal compounds. Meanwhile, carbon dioxide levels are significantly higher in methanol or other alcohol fuel systems than in a gasoline fuel system due to the increased solubility of CO2 in alcohols. The same can be the case for nitric acid formed from NC>2 combustion products. Absorption of carbon dioxide appears to be an important reason for the unexpected high corrosivity of alcohol fuel.

Smøremiddelanalyse indikerer at korrosjonsinhibitorer bestående av sulfonater, naftenater eller andre alkalimetallsalter i utstrakt grad forbrukes ved reaksjon med kullsyre og resulterer i utfelling av uløselige karbonater av alkali Lubricant analysis indicates that corrosion inhibitors consisting of sulfonates, naphthenates or other alkali metal salts are extensively consumed by reaction with carbonic acid and result in the precipitation of insoluble carbonates of alkali

-metallene. Utfellingsreaksjonen er representert av ligning 9 og 10. - the metals. The precipitation reaction is represented by equations 9 and 10.

Denne utfellingsreaksjon konkurrerer med nøytraliseringen av kullsyre av organiske aminer. Selv om nøytraliseringen er raskere og oppstår mer sannsynlig øker reaksjonen med alkalimetallsalter ettersom de organiske aminer forbrukes. Således er det behov for en smøremiddeltilsetning hvor forbruk av organiske amintilsetninger på grunn av nøytraliser-ing av maursyre eller eddiksyre og kullsyre finner sted mindre raskt for således å minke sannsynligheten for at alkaliske metallsalter vil forbrukes av utfellingsreaksjon-ene representert i ligningene 9 og 10. This precipitation reaction competes with the neutralization of carbonic acid by organic amines. Although the neutralization is faster and more likely to occur, the reaction with alkali metal salts increases as the organic amines are consumed. Thus, there is a need for a lubricant additive where consumption of organic amine additives due to neutralization of formic acid or acetic acid and carbonic acid takes place less quickly in order to thus reduce the probability that alkaline metal salts will be consumed by the precipitation reactions represented in equations 9 and 10.

Det er et generelt mål for foreliggende oppfinnelse å fremskaffe en smøremiddeltilsetning for bruk i alkoholdrivstoff forbrennende innvendige forbrenningsmotorer og som gir beskyttelse mot korrosjon og motorslitasjeeffekter forårsaket av alkohol. It is a general object of the present invention to provide a lubricant additive for use in alcohol fuel burning internal combustion engines and which provides protection against corrosion and engine wear effects caused by alcohol.

Det er et annet mål for foreliggende oppfinnelse å frem skaffe en smøremiddeltilsetning med et høy detergent/dis-pergent innhold for å emulsifisere flytende alkoholdråter så som metanol eller etanol tilført smøremiddelet ved ut-blåsningsgasser under forbrenning og derved redusere motor-slitas je . It is another aim of the present invention to provide a lubricant additive with a high detergent/dispersant content to emulsify liquid alcohol threads such as methanol or ethanol added to the lubricant by exhaust gases during combustion and thereby reduce engine wear.

Det er annet mål for foreliggende oppfinnelse å fremskaffe en smøremiddeltilsetning med øket kapasitet for å nøytrali-sere syrer. Another aim of the present invention is to provide a lubricant additive with increased capacity to neutralize acids.

Det er et ytterligere mål for foreliggende oppfinnelse å fremskaffe en smøremiddeltilsetning som består av et anti-slitasjemiddel som ikke nedbrytes av metanol eller etanol. Foreliggende oppfinnelse gir en smøremiddeltilsetning som kan tilsettes vanlige automotive smøremidler som møter minimumskravene til the American Petroleum Institute (API) for tungoljer (SF/CD) eller the Committee of Common Market Automobile Constructors (CCMC) for 2,2 service gradoljer og andre interne forbrenningsmotorsmøremidler valgt fra gruppen bestående enkel viskositet og multippel viskositetsgrad mineral og syntetiske oljer med SAE på 5 til 50 for å danne et smøremiddel passende for bruk i en alkohol eller alkohol -inneholdende brennstoff-forbrukende motor og som består av en hovedmengde av et organisk amin valgt fra gruppen bestående av alifatiske primære aminer, alifatiske sekundære aminer, cykloalifatiske primære aminer, aromatiske primære aminer, aromatiske sekundære aminer og blandinger derav og en liten mengde av en fosforsyreester. Fortrinnsvis består smøremiddeltilsetningen ifølge foreliggende oppfinnelse av ca. 68,75 til 75,0 vekt-% av et organisk amin valgt fra ovenfor nevnte gruppe og ca. 31,25 til 25,0 vekt-% av en fosforsyreester. It is a further object of the present invention to provide a lubricant additive which consists of an anti-wear agent which is not degraded by methanol or ethanol. The present invention provides a lubricant additive that can be added to common automotive lubricants that meet the minimum requirements of the American Petroleum Institute (API) for heavy oils (SF/CD) or the Committee of Common Market Automobile Constructors (CCMC) for 2.2 service grade oils and other internal combustion engine lubricants selected from the group consisting of single viscosity and multiple viscosity grade mineral and synthetic oils with an SAE of 5 to 50 to form a lubricant suitable for use in an alcohol or alcohol-containing fuel-consuming engine and comprising a major amount of an organic amine selected from the group consisting of aliphatic primary amines, aliphatic secondary amines, cycloaliphatic primary amines, aromatic primary amines, aromatic secondary amines and mixtures thereof and a small amount of a phosphoric acid ester. Preferably, the lubricant additive according to the present invention consists of approx. 68.75 to 75.0% by weight of an organic amine selected from the group mentioned above and approx. 31.25 to 25.0% by weight of a phosphoric acid ester.

Aminkomponenten av smøremiddeltilsetningen ifølge foreliggende oppfinnelse kan være et alifatisk amin, et cykloalifatisk amin, et aromatisk primært amin, et aromatisk sekundært amin eller enhver blanding derav. Fortrinnsvis er aminkomponenten et alifatisk primært eller sekundært amin; et cykloalifatisk primært amin; en blanding av et alifatisk primært eller sekundært amin eller et cykloalifatisk primært amin med et aromatisk primært amin, et aromatisk sekundært amin eller begge deler; en blanding av et alifatisk primært eller sekundært amin og et cykloalifatisk primært amin eller en blanding av et aromatisk primært amin og et aromatisk sekundært amin. Et alifatisk primært eller sekundært amin alene er den mest foretrukkede aminkomponent. The amine component of the lubricant additive according to the present invention may be an aliphatic amine, a cycloaliphatic amine, an aromatic primary amine, an aromatic secondary amine or any mixture thereof. Preferably, the amine component is an aliphatic primary or secondary amine; a cycloaliphatic primary amine; a mixture of an aliphatic primary or secondary amine or a cycloaliphatic primary amine with an aromatic primary amine, an aromatic secondary amine or both; a mixture of an aliphatic primary or secondary amine and a cycloaliphatic primary amine or a mixture of an aromatic primary amine and an aromatic secondary amine. An aliphatic primary or secondary amine alone is the most preferred amine component.

Foretrukkede aromatiske primære aminer innebefatter orto-, meta- og para-fenylendiamin, orto-, meta- og para-toluidin, anilin, xylidin, naftylamin, benzylamin, toluendiamin og naftalediamin. Et mer foretrukket primært aromatisk amin er orto-fenylendiamin. Foretrukkede aromatiske sekundære aminer innebefatter N-fenyl-2-naftylamin, fenyl-a-naftylamin, f enyl-f$-naf tylamin , tolylnaf tylamin , difenylamin, ditolylamin, fenyltolylamin, 4,4'-diaminodifenylamin og N-metylanilin. Et mer foretrukket aromatisk sekundært amin er N-fenyl-2-naftylamin. Foretrukkede alifatiske aminer er alifatiske aminer med 10 til 30 karbonatomer. Et mer foretrukket alifatisk amin har 12 til 30 karbonatomer. Det mest foretrukkede alifatiske amin er octadecylamin. Foretrukkede cykloalifatiske aminer innebefatter cykloheksylamin og metylcykloheksylamin. Preferred aromatic primary amines include ortho-, meta- and para-phenylenediamine, ortho-, meta- and para-toluidine, aniline, xylidine, naphthylamine, benzylamine, toluenediamine and naphthalediamine. A more preferred primary aromatic amine is ortho-phenylenediamine. Preferred aromatic secondary amines include N-phenyl-2-naphthylamine, phenyl-α-naphthylamine, phenyl-α-naphthylamine, tolylnaphthylamine, diphenylamine, ditolylamine, phenyltolylamine, 4,4'-diaminodiphenylamine and N-methylaniline. A more preferred aromatic secondary amine is N-phenyl-2-naphthylamine. Preferred aliphatic amines are aliphatic amines having 10 to 30 carbon atoms. A more preferred aliphatic amine has 12 to 30 carbon atoms. The most preferred aliphatic amine is octadecylamine. Preferred cycloaliphatic amines include cyclohexylamine and methylcyclohexylamine.

Foretrukkede fosforsyreestere innebefatter orto-, meta-eller para-tricresylfosfat, dibutylfenylfosfat, tributylfosfat, tri-2-etyl-heksylfosfat, trioktylfosfat, difenyl orto-fosfonat, decresyl orto-fosfonat, trilauryl orto-fosfonat, og tristearyl orto-fosfonat. En mer foretrukket fosforsyreester er para-tricresylfosfat. Preferred phosphoric acid esters include ortho-, meta- or para-tricresyl phosphate, dibutylphenyl phosphate, tributyl phosphate, tri-2-ethylhexyl phosphate, trioctyl phosphate, diphenyl ortho-phosphonate, decresyl ortho-phosphonate, trilauryl ortho-phosphonate, and tristearyl ortho-phosphonate. A more preferred phosphoric acid ester is para-tricresyl phosphate.

En foretrukket sammensetning av smøremiddeltilsetningen ifølge foreliggende oppfinnelse består av ca. 68,75 til 75,0 vekt-% av oktadecylamin og ca. 35,25 til 25,0 vekt-% av para-tricresylfosfat. A preferred composition of the lubricant additive according to the present invention consists of approx. 68.75 to 75.0% by weight of octadecylamine and approx. 35.25 to 25.0% by weight of para-tricresyl phosphate.

En annen foretrukket sammensetning av smøremiddeltilsetn- ingen ifølge foreligggende oppfinnelse består av ca. 68,75 til 75,0 vekt-% av oktadecylamin og ca. 31,25 til 25,0 vekt-% av de blandede isomere av tricresylfosfat. Another preferred composition of the lubricant additive according to the present invention consists of approx. 68.75 to 75.0% by weight of octadecylamine and approx. 31.25 to 25.0% by weight of the mixed isomers of tricresyl phosphate.

Alle av de ovenfor nevnte kjemikalier er kommersielt til-gjengelige. Smøremiddeltilsetningen ifølge foreliggende oppfinnelse dannes ved å blande sammen en liten mengde smøremiddeltilsetning bestående av en hoveddel av et organisk amin valgt fra gruppen bestående av alifatiske primære aminer, alifatiske sekundære aminer, cykloalifatiske primære aminer, aromatiske primære aminer, aromatiske sekundære aminer og blandinger derav og en liten del av en fosforsyreester og en hoveddel av en smøremiddelblanding som møter minimumskravene til API for SF/CD grad oljer eller CCMC for 2,2 service grad oljer eller enhver annen smøre-middelblanding valgt fra gruppen bestående av enkel eller multippel viskositetsgrad mineral og syntetiske oljer med en SAE på ca. 5 til 50. Fortrinnsvis fremstilles smøre-middeltilsetningen ifølge foreliggende oppfinnelse ved å blande sammen mca. 1,0 til 8 vekt-% av en nevnte amin, ca. 0,25 til 2,5 vekt-% av nevnte fosforsyreester og ca. 89,5 til 98,75 vekt-% av nevnte smøremiddelblanding. All of the above-mentioned chemicals are commercially available. The lubricant additive according to the present invention is formed by mixing together a small amount of lubricant additive consisting of a major part of an organic amine selected from the group consisting of aliphatic primary amines, aliphatic secondary amines, cycloaliphatic primary amines, aromatic primary amines, aromatic secondary amines and mixtures thereof and a minor portion of a phosphoric acid ester and a major portion of a lubricant blend meeting the minimum requirements of API for SF/CD grade oils or CCMC for 2.2 service grade oils or any other lubricant blend selected from the group consisting of single or multiple viscosity grade mineral and synthetic oils with an SAE of approx. 5 to 50. The lubricant additive according to the present invention is preferably prepared by mixing together approx. 1.0 to 8% by weight of a mentioned amine, approx. 0.25 to 2.5% by weight of said phosphoric acid ester and approx. 89.5 to 98.75% by weight of said lubricant mixture.

Smøremiddeltilsetningen ifølge foreliggende oppfinnelse kan anvendes ved å tilsette ca. 0,94 1 smøremiddeltilsetning til 4,7 1 olje. Smøremiddeltilsetningen ifølge foreliggende oppfinnelse vil gi effektivt beskyttelse mot korrosjon og motorslitasje-effekter forårsaket av metanol, etanol eller andre alkohol eller alkoholinneholdende drivstoff for oljebytteintervaller på mer enn 6400 km og i enkelte til-feller opp til 9600 km. The lubricant additive according to the present invention can be used by adding approx. 0.94 1 lubricant additive to 4.7 1 oil. The lubricant additive according to the present invention will provide effective protection against corrosion and engine wear effects caused by methanol, ethanol or other alcohol or alcohol-containing fuel for oil change intervals of more than 6400 km and in some cases up to 9600 km.

Fosforsyreesteren, fortrinnsvis para-tricresylfosfat eller de blandede isomere av tricresylfosfat, virker som et metanol eller etanol oppløsningsmiddel og en ikke-aske deter-gent/dispergent for alkoholdråper så som metanol eller etanol i smøremiddelet. Et oppløsningsmiddel av denne type er krevet å oppløses eller dispergeres i relativt store mengd er alkohol så som metanol eller etanol tilført i smøre-middelet under forbrenningsprosessen i en alkoholforbrennende motor. Fosforsyreesteren oppløser og dispergerer alkoholdråpene av metanol eller etanol og forhindrer derved tørre flekker på de bevegelige deler av den interne forbrenningsmotor. Ved fravær av fosforsyreester er metanol eller etanol uløselig i hydrokarbonsmøremidler og tørre flekker kan oppstå som resulterer i utstrakt motorslitasje. The phosphoric acid ester, preferably para-tricresyl phosphate or the mixed isomers of tricresyl phosphate, acts as a methanol or ethanol solvent and a non-ash detergent/dispersant for alcohol droplets such as methanol or ethanol in the lubricant. A solvent of this type is required to be dissolved or dispersed in a relatively large amount if alcohol such as methanol or ethanol is added to the lubricant during the combustion process in an alcohol-burning engine. The phosphoric acid ester dissolves and disperses the alcohol droplets of methanol or ethanol and thereby prevents dry spots on the moving parts of the internal combustion engine. In the absence of phosphoric acid ester, methanol or ethanol is insoluble in hydrocarbon lubricants and dry patches may occur resulting in extensive engine wear.

Fosforsyreesteren virker også som antislitasjemiddel og når den brukes med metanol eller etanol-drivstoff er den over-legen i forhold til det vanlige anti-slitasjemiddel, sink dialkylditiofosfat. Sink dialkylditiofosfat er nesten universelt brukt i automotive smøremidler for bensinfor-brenningsmotorer men taper sine anti-slitasjeegenskaper raskt i metanol eller etanolforbrennende motorer fordi den lett transesterifiseres med alkoholene. The phosphoric acid ester also acts as an anti-wear agent and when used with methanol or ethanol fuel it is superior to the usual anti-wear agent, zinc dialkyldithiophosphate. Zinc dialkyldithiophosphate is almost universally used in automotive lubricants for gasoline combustion engines but loses its anti-wear properties rapidly in methanol or ethanol combustion engines because it is easily transesterified with the alcohols.

Aminkomponenten virker som en basetalltilsetning for å nøy-tralisere maur- eller eddik- og kullsyrer dannet ved oksidasjon av metanol eller etanol og ved reaksjonen til vann og karbondioksyd henholdsvis. Aminkomponenten virker også som en anti-oksidant og minimaliserer oksidasjonen av metanol eller etanol til deres respektive aldehyder og syrer. The amine component acts as a base number addition to neutralize formic or acetic and carbonic acids formed by oxidation of methanol or ethanol and by the reaction of water and carbon dioxide respectively. The amine component also acts as an anti-oxidant and minimizes the oxidation of methanol or ethanol to their respective aldehydes and acids.

Tilstedeværelsen av store mengder (ca. 68,75 til 75,0 vekt-%) av organiske aminer i smøremiddeltilsetningen ifølge foreliggende oppfinnelse tillater fremstilling av et smøremiddel inneholdende ca. 1,0 til 8,0 vekt-% av organiske aminer sammenlignet med ca. 0,25 vekt-% organiske aminer i smøremidler inneholdende vanlige smøremiddeltil-setninger og minimaliserer fjerning av alkaliske metallsalter så som naftenater og sulfonater. De alkaliske metallsalter fjernes når de reagerer med kullsyre for å danne uløselige karbonater og konkurrerer med nøytraliser-ingen av kullsyre. Nøytraliseringsreaksjonen er raskere og skjer mer sannsynlig men utfellingsreaksjonen blir et problem når de organiske aminer blir fjernet. Med mer organ iske aminer tilstede nøytraliseres mer kullsyre og det er mindre kullsyre tilgjengelig for å reagere med de alkaliske metallsalter. The presence of large amounts (about 68.75 to 75.0% by weight) of organic amines in the lubricant additive according to the present invention allows the production of a lubricant containing about 1.0 to 8.0% by weight of organic amines compared to approx. 0.25% by weight organic amines in lubricants containing common lubricant additives and minimizes the removal of alkali metal salts such as naphthenates and sulphonates. The alkali metal salts are removed when they react with carbonic acid to form insoluble carbonates and compete with the neutralization of carbonic acid. The neutralization reaction is faster and more likely to occur, but the precipitation reaction becomes a problem when the organic amines are removed. With more organic amines present, more carbon dioxide is neutralized and less carbon dioxide is available to react with the alkali metal salts.

Analyse av smøremiddelet etter bruk i en bilmotor gir en passende og pålitelig indikasjon på motorslitasje under et oljeskiftintervall så kort som et par tusen kilometer. Analysis of the lubricant after use in a car engine gives a suitable and reliable indication of engine wear during an oil change interval as short as a few thousand kilometres.

Smøremiddeltilsetningen kan vurderes basert på mengdene av slitasje-elementer så som jern, bly, kobber, krom, nikkel, tinn, aluminium og molybden påvist i en oljeprøve ved spektrokjemisk analyse etter at motoren har blitt drevet et antall mil etter et oljebytte. Disse metaller eller slit-as je-elementer viser seg i smøremiddelet som et resultat av utstrakt korrosjon av eller svikt i enkelte motorkomponent-er laget av dette metall såvel som normal mekanisk slitasje. The lubricant addition can be assessed based on the amounts of wear elements such as iron, lead, copper, chromium, nickel, tin, aluminum and molybdenum detected in an oil sample by spectrochemical analysis after the engine has been driven a number of miles after an oil change. These metals or wear elements appear in the lubricant as a result of extensive corrosion of or failure of individual engine components made of this metal as well as normal mechanical wear.

Siden materialene for konstruksjon av biler varierer meget er det ikke teknisk mulig å bestemme nøyaktig hvilket slitasje-elementinnhold i en anvendt oljeanalyse som indikerer utstrakt motorslitasje. Imidlertid er generelle kriterier for vurdering av smøremiddelslitasjelementer til-gjengelige og er angitt i tabell 1. De primære og sekundære kilder i motoren for hvert slitasje-element er gitt såvel som den gjennomsnitlige mengde i ppm til hvert slitasje -element som vil finnes i oljen i innkjøringsperioden og etter~innkjøringsperioden. Motorslitasjenivå under inn-kjøringsperioden har en tendens til å være relativt høye. Etter at motoren er innkjørt når slitasjenivåene et platå og forblir stabile i ca. 80 000 km avhengig av det spesi-elle kjøretøy og vedlikeholdsgraden. Innkjøringsperioden for en gjennomsnitlig motor er vanligvis i størrelsesorden 0 - 15 000 km. Vurderingskriteriene vist i tabell 1 kan anvendes for å vurdere data angitt i eksemplene 1-13. Since the materials for the construction of cars vary greatly, it is not technically possible to determine exactly which wear element content in an applied oil analysis indicates extensive engine wear. However, general criteria for evaluating lubricant wear elements are available and are listed in Table 1. The primary and secondary sources in the engine for each wear element are given as well as the average amount in ppm of each wear element that will be found in the oil in the run-in period and the post-run-in period. Engine wear levels during the break-in period tend to be relatively high. After the engine is broken in, wear levels reach a plateau and remain stable for approx. 80,000 km depending on the special vehicle and the degree of maintenance. The break-in period for an average engine is usually in the order of 0 - 15,000 km. The assessment criteria shown in table 1 can be used to assess the data given in examples 1-13.

Den mest brukbare indikasjon på utstrakt motorslitasje er-holdes fra plutselige avvik i et gitt slitasje-elementinn hold i et bruktolje analysemønster som tidligere har blitt etablert for en gitt motor i en gitt service ved bruk av en spesiell olje. The most useful indication of extensive engine wear is from sudden deviations in a given wear element content in a used oil analysis pattern that has previously been established for a given engine in a given service using a particular oil.

Basetall er et mål på oljedetergentvirkningen og dets egen-skap for å hindre korrosjon. Nye automotive oljer har vanligvis et basetall på 4 - 5. For enhver olje indikerer et tall på 1 eller mindre et farlig forbruk at tilsetnings-reserver. Et basetall på 2 er generelt antatt å gi en passende sikkerhetsmargin i i en bensinmotor. Base number is a measure of the oil detergent effect and its property to prevent corrosion. New automotive oils usually have a base number of 4 - 5. For any oil, a number of 1 or less indicates a dangerous consumption that additive reserves. A base number of 2 is generally believed to provide a suitable margin of safety in a petrol engine.

Kriterier for vurdering av smøremiddelslitasjeelementdata Criteria for evaluating lubricant wear element data

Eksempel 1 Example 1

En oljeprøve beståo ende av ca. 98,68 vekt-% Kendall TM 40 vekt-% automotiv smøremiddel og ca. 1,32 vekt-% av smøre-middeltilsetningen ifølge foreliggende oppfinnelse bestående av ca. 75,0 vekt-% oktadecylamin og ca. 25,0'vekt-% paratricresylfosfat ble tatt fra veivhuset i en metanol-brukende 1981 Chevrolet Citation motor som hadde blitt kjørt 146 962 km med et oljeskift ved ca. hver 6450 km tidligere. Metanoldrivstoffet som ble brukt var en 88,0 % metanol/12,0 % blyfri vanlig bensin (87 oktan) blanding. An oil sample consisted of approx. 98.68% by weight Kendall TM 40% by weight automotive lubricant and approx. 1.32% by weight of the lubricant additive according to the present invention consisting of approx. 75.0% by weight octadecylamine and approx. 25.0% by weight paratricresyl phosphate was taken from the crankcase of a methanol-using 1981 Chevrolet Citation engine that had been driven 146,962 km with an oil change at approx. every 6450 km previously. The methanol fuel used was an 88.0% methanol/12.0% unleaded regular gasoline (87 octane) blend.

Oljeprøven med et basetall på 3,14 som er godt over den akseptable basetallverdi på 2 og som indikerer at oktadecylamin ikke hadde blitt fjernet og fremdeles var tilgjengelig for å nøytralisere syrer og forhindre oksidasjon av metanol for å danne maursyre og formaldehyd. The oil sample with a base number of 3.14 which is well above the acceptable base number value of 2 and which indicates that octadecylamine had not been removed and was still available to neutralize acids and prevent oxidation of methanol to form formic acid and formaldehyde.

Spektrokjemisk analyse viste at følgende mengder slitasje-elementer var tilstede i oljeprøven: 25 ppm jern; 49 ppm bly; 83 ppm kobber; 1 ppm krom; 3 ppm aluminium; 1 ppm nikkel; 15 ppm tinn og 2 ppm molybden. Fordi motoren hadde blitt kjørt 146 926 km ble etterinnkjøringskriteriene fra tabell brukt for å vurdere slitasje-elementinnholdet. Spectrochemical analysis showed that the following amounts of wear elements were present in the oil sample: 25 ppm iron; 49 ppm lead; 83 ppm copper; 1 ppm chromium; 3 ppm aluminium; 1 ppm nickel; 15 ppm tin and 2 ppm molybdenum. Because the engine had been driven 146,926 km, the run-in criteria from the table were used to assess the wear element content.

Under referanse til tabell 1 var jern, bly, krom, aluminium nikkel og molybdeninnholdet innenfor det gjennomsnitlige slitasje-element inneholdområdet for disse slitasje-elementer ved etter-innkjøringsstrekningen. Kobberinnholdet var over gjennomsnitt men ikke vesentlig. I henhold til tabell 1 var tinninnholdet ansett å være stort imidlertid var tinninnholdet i oljeprøven tatt fra veivhuset under oljeskiftet ved 6450 km før foreliggende oljeskift 14 ppm som indikerer ingen signifikant forandring i tinninnholdet og således ingen vesentlig motorslitasje. Som nevnt tidligere indikerer et plutselig avvik av slitasje-elementinnhold i en brukt-oljeanalyse bedre motorslitasje enn de generaliserte kriteriene i tabell 1. Referring to Table 1, the iron, lead, chromium, aluminum nickel and molybdenum contents were within the average wear element content range for these wear elements at the post run-in stretch. The copper content was above average but not significant. According to table 1, the tin content was considered to be high, however, the tin content in the oil sample taken from the crankcase during the oil change at 6450 km before the present oil change was 14 ppm, which indicates no significant change in the tin content and thus no significant engine wear. As mentioned earlier, a sudden deviation of wear element content in a used oil analysis indicates better engine wear than the generalized criteria in table 1.

Eksempel 2Example 2

En oljeprøve bestående av 98,68 vekt-% av smøremiddelet anvendt i eksempel 1 og 1,32 vekt-% av smøremiddeltilsetn-ingen anvendt i eksempel 1 ble tatt fra veivhuset til samme metanoldrevende motor som i eksempel 1. Motoren hadde blitt kjørt 153 128 km og således fant det tidligere oljeskift sted 6202 km tidligere. An oil sample consisting of 98.68% by weight of the lubricant used in Example 1 and 1.32% by weight of the lubricant additive used in Example 1 was taken from the crankcase of the same methanol-driven engine as in Example 1. The engine had been run 153,128 km and thus the previous oil change took place 6202 km earlier.

Oljeprøven hadde et basetall på 2,8 som er godt over den akseptable basetallverdi på 2 og indikerer at oktadecyl-amininnholdet ikke hadde blitt tømt. The oil sample had a base number of 2.8 which is well above the acceptable base number value of 2 and indicates that the octadecylamine content had not been depleted.

Spektrokjemisk analyse viste at de følgende mengder av sli-tas je-elementer var tilstede i oljeprøven: 34 ppm jern; 72 ppm bly; 95 ppm kobber; 0 ppm krom; 4 ppm aluminium; 1 ppm nikkel; 19 ppm tinn og 3 ppm molybden. Kriteriene for etterinnkjøring fra tabell 1 ble anvendt. Spectrochemical analysis showed that the following amounts of wear elements were present in the oil sample: 34 ppm iron; 72 ppm lead; 95 ppm copper; 0 ppm chromium; 4 ppm aluminium; 1 ppm nickel; 19 ppm tin and 3 ppm molybdenum. The criteria for post-run-in from table 1 were applied.

Under referanse til tabell 1 var jern, bly, krom, aluminium og nikkelinnholdene innenfor gjennomsnitlige slitasje-elementområdet for disse slitasje-elementer ved etter-innkjøringsstrekning. Kobberinnholdet var over gjennomsnitt men ikke stort og hadde ikke signifikant fraveket det tidligere kobberinnhold beskrevet i eksempel 1. Tinn og molybdeninnholdet var ansett å være stort i henhold til tabell 1 men det var ingen signifikant fravikelse fra de tidligere tinn og molybdeninnholdt beskrevet i eksempel 1 og indikerte således ingen stor motorslitasje. Referring to Table 1, the iron, lead, chromium, aluminum and nickel contents were within the average wear element range for these wear elements at the post-run-in stretch. The copper content was above average but not large and had not significantly deviated from the previous copper content described in example 1. The tin and molybdenum content was considered to be large according to table 1 but there was no significant deviation from the previous tin and molybdenum content described in example 1 and thus indicating no major engine wear.

Eksempel 3Example 3

En oljeprøve bestående av ca. 98,68 vekt-% av smøremiddelet anvendt i eksempel 1 og 2 og ca. 1,32 vekt-% av smøremidd-eltilsetningen brukt i eksemplene 1 og 2 ble tatt fra veivhuset i samme metanoldrevende motor brukt i eksemplene 1 og 2 som hadde blitt kjørt 159 285 km. Således fant forrige oljeskift sted ca. 6157 km før foreliggende oljeskift. Prøven hadde et basetall på 3,02 som indikerer at oktade-cylaminet ikke hadde blitt fjernet. An oil sample consisting of approx. 98.68% by weight of the lubricant used in examples 1 and 2 and approx. 1.32% by weight of the lubricant additive used in Examples 1 and 2 was taken from the crankcase of the same methanol powered engine used in Examples 1 and 2 which had been driven 159,285 km. Thus, the previous oil change took place approx. 6157 km before the current oil change. The sample had a base number of 3.02 indicating that the octadecylamine had not been removed.

Spektrokjemisk analyse avslørte følgende mengder av slit-as j e-elementer å være tilstede i oljeprøven: 20 ppm jern; 49 ppm bly; 97 ppm kobber; 1 ppm krom; 2 ppm alumium; 2 ppm nikkel; 19 ppm tinn og 2 ppm molybden. Prøven ble vurdert ved å bruke etterinnkjøringskriteriene fra tabell 1. Spectrochemical analysis revealed the following amounts of wear-as j e elements to be present in the oil sample: 20 ppm iron; 49 ppm lead; 97 ppm copper; 1 ppm chromium; 2 ppm aluminum; 2 ppm nickel; 19 ppm tin and 2 ppm molybdenum. The sample was assessed using the post-run-in criteria from Table 1.

Under referanse til tabell 1 var jern, bly, krom, aluminium, nikkel og molybdeninnholdet innenfor gjennomsnitlig slitasje-element innholdområdet for disse slitasje-elementer ved etterinnkjøringsstrekning. Kobberinnholdet var over gjennomsnitlig men ikke stort. Tinninnholdet ble ansett for å være stort ifølge tabell 1 imidlertid var det ingen forandring i det hele tatt fra det tidligere oljeskift og således var det ingen indikasjon på utstrakt motorslitasje. With reference to Table 1, the iron, lead, chromium, aluminium, nickel and molybdenum content was within the average wear element content range for these wear elements at the post-run-in stretch. The copper content was above average but not great. The tin content was considered to be high according to table 1, however there was no change at all from the previous oil change and thus there was no indication of extensive engine wear.

Eksempel 4Example 4

En oljeprøve bestående av ca. 98,68 vekt-% av Kendall 30 wt automotiv smøremiddel og ca. 1,32 vekt-% av smøremiddel-tilsetningen ifølge foreliggende oppfinnelse bestående av ca. 75,0 vekt-% oktadecylamin og 25,0 vekt-% paratricresylfosfat ble tatt fra veivhuset til en metanoldrevet 1982 Chevrolet S-10 motor som hadde blitt kjørt ca. 128 358 km med et oljebytte ved ca. hver 6500 km. Metanoldrivstoffet som ble brukt var en 88,0 % metetanol/12,0 blyfri vanlig bensin (oktan nr. 87) blanding. An oil sample consisting of approx. 98.68% by weight of Kendall 30 wt automotive lubricant and approx. 1.32% by weight of the lubricant additive according to the present invention consisting of approx. 75.0 wt% octadecylamine and 25.0 wt% paratricresyl phosphate were taken from the crankcase of a methanol fueled 1982 Chevrolet S-10 engine that had been run approx. 128,358 km with an oil change at approx. every 6500 km. The methanol fuel used was an 88.0% methanol/12.0 unleaded regular gasoline (87 octane) blend.

Basetallet til prøven var 2,52 som indikerer at oktadecyl-aminet ikke hadde blitt fjernet. The base number of the sample was 2.52 indicating that the octadecylamine had not been removed.

Spektrokjemisk analyse viste at følgende mengder slitasje-elementer var tilstede i oljeprøven. 96 ppm jern; 27 ppm bly; 49 ppm kobber; 3 ppm krom; 14 ppm aluminium; 2 ppm nikkel; 5 ppm tinn og 7 ppm molybden. Etterinnkjørings-kriteriene fra tabell 1 ble brukt fordi 128 358 km repres- Spectrochemical analysis showed that the following amounts of wear elements were present in the oil sample. 96 ppm iron; 27 ppm lead; 49 ppm copper; 3 ppm chromium; 14 ppm aluminium; 2 ppm nickel; 5 ppm tin and 7 ppm molybdenum. The run-in criteria from table 1 were used because 128,358 km repre-

enterer en etterinnkjøringsstrekning.enters an after-run stretch.

Under referanse til tabell 1 var jern, bly, kobber, krom, aluminium, nikkel og tinninnholdet innenfor gjennomsnitlig slitasje-elementinnhold for disse slitasje-elementer ved etterinnkjøringsstrekning. Molybdeninnholdet var ansett å være stort ifølge tabell 1 men som vist i eksempel 5 og 6 nedenfor var det intet plutselig avvik i molybdeninnholdet ved de forskjellige oljeskift og således var det ingen indikasjon på stor motorslitasje. With reference to Table 1, the iron, lead, copper, chromium, aluminium, nickel and tin content were within the average wear element content for these wear elements at the post-run-in stretch. The molybdenum content was considered to be high according to table 1, but as shown in examples 5 and 6 below, there was no sudden deviation in the molybdenum content at the various oil changes and thus there was no indication of heavy engine wear.

Eksempel 5Example 5

En oljprøve bestående av ca. 98,68 vekt-% av smøremiddelet brukt i eksempel 4 og ca. 1,32 vekt-% av smøremiddeltil-setningen brukt i eksempel 4 ble tatt fra veivhuset til samme metanoldrevende motor brukt i eksempel 4 som hadde blitt kjørt 135 144 km. Således fant det tidligere oljeskift sted ca. 6751 km før foreliggende oljeskift. An oil sample consisting of approx. 98.68% by weight of the lubricant used in example 4 and approx. 1.32% by weight of the lubricant additive used in Example 4 was taken from the crankcase of the same methanol-powered engine used in Example 4 which had been driven 135,144 km. Thus, the previous oil change took place approx. 6751 km before the current oil change.

Oljeprøven hadde et basetall på 1,93 som er meget nær til den akseptable basetallverdi 2 og indikerte således tilstrekkelige mengder oktadecylamin for å nøytralisere syrer og minimalisere metanoloksidasjon. The oil sample had a base number of 1.93 which is very close to the acceptable base number value of 2 and thus indicated sufficient amounts of octadecylamine to neutralize acids and minimize methanol oxidation.

Spektrokjemisk analyse viste at følgende mengder slitasje-elementer var tilstede i oljeprøven: 57 ppm jern; 26 ppm bly; 42 ppm kobber; 2 ppm krom; 16 ppm aluminium; 2 ppm nikkel; 0 ppm tinn og 18 ppm molybden. Etterinnkjørings-kriteriene fra tabell 1 ble benyttet. Spectrochemical analysis showed that the following amounts of wear elements were present in the oil sample: 57 ppm iron; 26 ppm lead; 42 ppm copper; 2 ppm chromium; 16 ppm aluminium; 2 ppm nickel; 0 ppm tin and 18 ppm molybdenum. The follow-in criteria from table 1 were used.

Under referanse til tabell 1 var jern, bly, kobber, krom, nikkel og tinninnholdet innenfor gjennomsnitlig slitasje-elementinnholdområdet for disse slitasje-elementer ved etterinnkjøringsstrekning. Aluminiuminnholdet var noe over gjennomsnitlig men ikke stort. Molybdeninnholdet er ansett å være stort ifølge tabell 1 men hadde ikke forandret seg signifikant fra innholdet ved siste oljeskift og indikerte With reference to Table 1, the iron, lead, copper, chromium, nickel and tin content were within the average wear element content range for these wear elements at the post run-in stretch. The aluminum content was slightly above average but not large. The molybdenum content is considered to be high according to table 1, but had not changed significantly from the content at the last oil change and indicated

ingen stor motorslitasje.no major engine wear.

Eksempel 6Example 6

En oljeprøve bestående av ca. 98,68 vekt-% av smøremiddelet brukt i eksempel 4 og 5 og ca. 1,32 vekt-% av smøremiddel-tilsetningen brukt i eksempel 4 og 5 ble tatt fra veivhuset til en metanoldrevet motor brukt i eksempel 4 og 5 som hadde blitt kjørt tilsvarende 142 409 km. Således fant det tidligere oljeskift sted ca. 7264 km før foreliggende oljeskift. An oil sample consisting of approx. 98.68% by weight of the lubricant used in examples 4 and 5 and approx. 1.32% by weight of the lubricant additive used in Examples 4 and 5 was taken from the crankcase of a methanol fueled engine used in Examples 4 and 5 which had been driven the equivalent of 142,409 km. Thus, the previous oil change took place approx. 7264 km before the current oil change.

Basetallet til prøven var ca. 1,62 som er noe lavere enn den mer akseptable tallverdi på 2 men er fremdeles større enn 1 og indikerer således at tilstrekkelige mengder oktadecylamin var tilstede.. The base number for the sample was approx. 1.62 which is somewhat lower than the more acceptable numerical value of 2 but is still greater than 1 and thus indicates that sufficient amounts of octadecylamine were present.

■Spektrokjemisk analyse viste at følgende mengder slitasje-elementer var tilstede i oljeprøven: 71 ppm jern; 22 ppm bly; 41 ppm kobber; 1 ppm krom; 16 ppm aluminium; 1 ppm nikkel;.0 ppm tinn og 34 ppm molybden. Etterinnkjørings-kriteriene fra tabell 1 kunne brukes for å vurdere olje-prøven fordi 142 409 km er ansett å være en etteririnkjør-ingsstrekning-. ■ ■Spectrochemical analysis showed that the following amounts of wear elements were present in the oil sample: 71 ppm iron; 22 ppm lead; 41 ppm copper; 1 ppm chromium; 16 ppm aluminium; 1 ppm nickel; .0 ppm tin and 34 ppm molybdenum. The run-in criteria from table 1 could be used to assess the oil sample because 142,409 km is considered to be a run-in stretch. ■

Under referanse til tabell 1 var jern, bly, kobber, krom, nikkel og tinn slitasje-elementinnholdene innenfor gjennomsnitlig slitasje-elementinnholdområdet for etterinnkjør-ingsstrekning. Aluminiuminnholdet var over gjennomsnitt men ikke stort. Molybdeninnholdet var ansett å være stort ifølge tabell 1 men molybdeninnholdet hadde ikke forandret seg signifikant fra innholdet ved begge de tidligere oljeskift og indikerte ingen stor motorslitasje. Referring to Table 1, the iron, lead, copper, chromium, nickel and tin wear element contents were within the average wear element content range for the run-in section. The aluminum content was above average but not large. The molybdenum content was considered to be high according to table 1, but the molybdenum content had not changed significantly from the content at both previous oil changes and indicated no major engine wear.

Eksempel 7Example 7

Eh oljeprøve bestående av ca. 98,68 vekt-% avKendall<TM>Eh oil sample consisting of approx. 98.68% by weight of Kendall<TM>

30 wt automotivt smøremiddel og ca. 1,32 vekt-% av smøre- ifølge foreliggende oppfinnelse bestående av ca. 75,0 vekt-% oktadecylamin og ca. 25,0 vekt-% paratricresylfosfat ble tatt fra veivhuset til en metanoldrevet 1982 Chevrolet S-10 motor som hadde blitt kjørt 123 330 km med et oljeskift ved ca, hver 5216 km før dette. Metanoldrivstoffet som ble brukt var en 88,0 metanol/12,0 % blyfri vanlig bensin (oktan nr. 87) blanding. 30 wt automotive lubricant and approx. 1.32% by weight of lubricant according to the present invention consisting of approx. 75.0% by weight octadecylamine and approx. 25.0 wt% paratricresyl phosphate was taken from the crankcase of a methanol fueled 1982 Chevrolet S-10 engine that had been driven 123,330 km with an oil change at approximately every 5216 km prior to this. The methanol fuel used was an 88.0 methanol/12.0% unleaded regular gasoline (87 octane) blend.

Oljeprøven hadde et basetall på 3,3 som er godt over den akseptable basetallverdi på 2 og indikerte at oktadecyl-aminet ikke hadde blitt fjernet og var fremdeles tilgjengelig for å nøytralisere syrer og minimalisere metanoloksidasjon. The oil sample had a base number of 3.3 which is well above the acceptable base number value of 2 and indicated that the octadecylamine had not been removed and was still available to neutralize acids and minimize methanol oxidation.

Spektrokjemisk analyse viste at følgende mengder slitasje-elementer var tilstede i oljeprøven: 50 ppm jern; 10 ppm bly; 56 ppm kobber; 2 ppm krom; 9 ppm aluminium; 0 ppm nikkel; 0 ppm tinn og 3 ppm molybden. Etterinnkjørings-kriteriene fra tabell 1 ble brukt for å vurdere oljeprøven fordi 123 330 km representerer en etterinnkjøringsstrekn-ing. Spectrochemical analysis showed that the following amounts of wear elements were present in the oil sample: 50 ppm iron; 10 ppm lead; 56 ppm copper; 2 ppm chromium; 9 ppm aluminium; 0 ppm nickel; 0 ppm tin and 3 ppm molybdenum. The run-in criteria from table 1 were used to assess the oil sample because 123,330 km represents a run-in stretch.

Under referanse til tabell 1 var jern, bly, kobber, krom, aluminium, nikkel og tinninnholdene innenfor gjennomsnitlig slitasje-elementinnholdsområdet for disse slitasje-elementer ved etterinnkjøringsstrekning. Molybdeninnholdet var ansett å være stort ifølge tabell 1 men som vist i eksemplene 8 og 9 nedenfor var det intet plutselig avvik i molybdeninnholdet ved de forskjellige oljeskift og indikerte således ingen stor motorslitasje. Referring to Table 1, the iron, lead, copper, chromium, aluminium, nickel and tin contents were within the average wear element content range for these wear elements at the post-run-in stretch. The molybdenum content was considered to be high according to table 1, but as shown in examples 8 and 9 below, there was no sudden deviation in the molybdenum content at the various oil changes and thus indicated no major engine wear.

Eksempel 8Example 8

En oljeprøve bestående av ca. 98,68 vekt-% av smøremiddelet brukt i eksempel 7 og ca. 1,32 vekt-% av smøremiddeltil-setningen brukt i eksempel 7 ble tatt fra veivhuset til samme metanoldrevende motor brukt i eksempel 7 som hadde blitt kjørt 130 670 km. Således fant det tidligere olje skift sted ved ca. 7340 km før foreliggende oljeskift. An oil sample consisting of approx. 98.68% by weight of the lubricant used in example 7 and approx. 1.32% by weight of the lubricant additive used in Example 7 was taken from the crankcase of the same methanol-powered engine used in Example 7 which had been driven 130,670 km. Thus, the previous oil change took place at approx. 7340 km before the current oil change.

Basetallet til oljeprøven var 3,64 som er godt over den akseptabel basetallverdi på 2 og indikerte at oktadecyl-aminet ikke hadde blitt fjernet. The base number of the oil sample was 3.64 which is well above the acceptable base number value of 2 and indicated that the octadecylamine had not been removed.

Spektrokjemisk analyse viste at følgende mengder slitasje-elementer var tilstede i oljeprøven: 39 ppm jern; 9 ppm bly; 27 ppm kobber, 2 ppm krom; 7 ppm aluminium; 0 ppm nikkel; 0 ppm tinn og 11 ppm molybden. Spectrochemical analysis showed that the following amounts of wear elements were present in the oil sample: 39 ppm iron; 9 ppm lead; 27 ppm copper, 2 ppm chromium; 7 ppm aluminium; 0 ppm nickel; 0 ppm tin and 11 ppm molybdenum.

Jern, bly, kobber, krom, aluminium, nikkel og tinninnholdene var innenfor gjennomsnitlig slitasje-elementinnholdsområdet for disse slitasje-elementer ved etterinnkjørings-strekningen. Molybdeninnholdet var ansett å være stort i henhold til tabell 1 men det var intet plutselig avvik fra innholdet ved de tidligere oljeskift beskrevet i eksempel 7 og indikerte således ingen stor motorslitasje. The iron, lead, copper, chrome, aluminium, nickel and tin contents were within the average wear element content range for these wear elements at the post-run-in stretch. The molybdenum content was considered to be large according to table 1, but there was no sudden deviation from the content at the previous oil changes described in example 7 and thus indicated no major engine wear.

Eksempel 9Example 9

En oljeprøve bestående av ca. 98,86 vekt-% av det automotive smøremiddel brukt i eksempel 7 og 8 og ca. 1,32 vekt-% av smøremiddeltilsetningen brukt i eksempel 7 og 8 ble tatt fra veivhuset til samme metanoldrevende motor brukt i eksemplene 7 og 8 og som hadde blitt kjørt 137 355 km. Således fant det tidligere oljeskift sted ca. 6685 km før foreliggende oljeskift. An oil sample consisting of approx. 98.86% by weight of the automotive lubricant used in examples 7 and 8 and approx. 1.32% by weight of the lubricant additive used in Examples 7 and 8 was taken from the crankcase of the same methanol fueled engine used in Examples 7 and 8 which had been driven 137,355 km. Thus, the previous oil change took place approx. 6685 km before the current oil change.

Basetallet til oljeprøven var 3,36 som er godt over den akseptable basetallverdi på 2 og indikerte at oktadecyl-aminet ikke hadde blitt fjernet. The base number of the oil sample was 3.36 which is well above the acceptable base number value of 2 and indicated that the octadecylamine had not been removed.

Spektrokjemisk analyse viste at følgende mengder slitasje-elementer var tilstede i oljeprøven: 39 ppm jern; 9 ppm bly; 94 ppm kobber; 2 ppm krom; 7 ppm aluminium; 1 ppm nikkel; 0 ppm tinn og 12 ppm molybden. Prøven ble vurdert ved å bruke etterinnkjøringskriteriene fra tabell 1. Spectrochemical analysis showed that the following amounts of wear elements were present in the oil sample: 39 ppm iron; 9 ppm lead; 94 ppm copper; 2 ppm chromium; 7 ppm aluminium; 1 ppm nickel; 0 ppm tin and 12 ppm molybdenum. The sample was assessed using the post-run-in criteria from Table 1.

Under referanse til tabell 1 var jern, bly, krom, aluminium, nikkel og tinninnholdene innenfor gjennomsnitlig sli-tas j e-elementinnholdsområdet for disse slitasje-elementer ved etterinnkjøringsstrekningen. Kobberinnholdet var over gjennomsnitt men ikke meget. Molybdeninnholdet var ansett å være stort i henhold til tabell 1 men øket kun 1 ppm fra tidligere oljeskift beskrevet i eksempel 8 og indikerte således ingen stor motorslitasje. With reference to Table 1, the iron, lead, chromium, aluminium, nickel and tin contents were within the average wear element content range for these wear elements at the post run-in stretch. The copper content was above average but not much. The molybdenum content was considered to be high according to table 1 but only increased 1 ppm from the previous oil change described in example 8 and thus indicated no major engine wear.

Eksempel 10Example 10

En oljeprøve bestående av ca. 98,68 vekt-% Kandall TM 30 wt. automotivt smøremiddel og ca. 1,32 vekt-% av smøremidd-eltilsetningen ifølge foreliggende oppfinnelse bestående av ca. 75,0 vekt-% oktadecylamin og ca. 25,0 vekt-% paratricresylfosfat ble tatt fra veivhuset i metanoldrevet 1982 Chevrolet S-10 motor som hadde blitt kjørt tilsvarende ca. 126 510 km med et oljeskift ca. hver 6849 km før dette. Metanoldrivstoffet som var brukt var en 88,0 % metanol/- 12,0% blyfri vanlig bensin (oktan nr. 87) blanding. An oil sample consisting of approx. 98.68% by weight Kandall TM 30 wt. automotive lubricant and approx. 1.32% by weight of the lubricant additive according to the present invention consisting of approx. 75.0% by weight octadecylamine and approx. 25.0% by weight paratricresyl phosphate was taken from the crankcase of the methanol-fueled 1982 Chevrolet S-10 engine which had been run correspondingly approx. 126,510 km with an oil change approx. every 6,849 km before this. The methanol fuel used was an 88.0% methanol/- 12.0% unleaded regular gasoline (octane no. 87) mixture.

Basetallet til oljeprøven var ca. 3,02 som er godt over den akseptable basetallverdi på 2 og indikerer at oktadecyl-aminet ikke hadde blitt fjernet. The base number for the oil sample was approx. 3.02 which is well above the acceptable base number value of 2 and indicates that the octadecylamine had not been removed.

Spektrokjemisk analyse viste at følgende mengder slitasje-elementer var tilstede i oljeprøven: 130 ppm jern; 15 ppm bly; 69 ppm kobber, 4 ppm krom; 14 ppm aluminium; 2 ppm nikkel; 5 ppm tinn og 11 ppm molybden. Oljerprøven ble vurdert ved å bruke etterinnkjøringsstrekningskriteriene i tabell 1 fordi 126 510 km representerer en etterinnkjør-ingsstrekning. Spectrochemical analysis showed that the following amounts of wear elements were present in the oil sample: 130 ppm iron; 15 ppm lead; 69 ppm copper, 4 ppm chromium; 14 ppm aluminium; 2 ppm nickel; 5 ppm tin and 11 ppm molybdenum. The oil sample was assessed using the run-in distance criteria in table 1 because 126,510 km represents a run-in distance.

Under referanse til tabell 1 var bly, kobber, krom, aluminium, nikkel og tinninnholdene innenfor gjennomsnitlig sli-tas je-elementinneholdsområdet for disse slitasje-elementer ved etterinnkjøringsstrekning. Jerninnholdet var over gjennomsnitt men ikke meget. Molybdeninnholdet var stort ifølge tabell 1 men som vist i eksemplene 11 og 12 avvek molybdeninnholdet ikke plutselig fra det opprettede mønster ved noen av de forskjellige oljeskift og indikerte således ingen stor motorslitasje. With reference to Table 1, the lead, copper, chromium, aluminium, nickel and tin contents were within the average wear element content range for these wear elements at the post-run-in stretch. The iron content was above average but not much. The molybdenum content was large according to table 1, but as shown in examples 11 and 12, the molybdenum content did not suddenly deviate from the established pattern at any of the different oil changes and thus indicated no major engine wear.

Eksempel 11Example 11

En oljeprøve bestående av ca. 98,68 vekt-% av smøremiddelet brukt i eksempel 10 og ca. 1,32 vekt-% av smøremiddeltil-setningen brukt i eksempel 10 ble tatt fra veivhuset til samme metanoldrevende motor brukt i eksempel 10 og som hadde blitt kjørt 131 897 km. Således fant det tidligere oljeskift sted ca. 5386 km før foreliggende oljeskift. An oil sample consisting of approx. 98.68% by weight of the lubricant used in example 10 and approx. 1.32% by weight of the lubricant additive used in Example 10 was taken from the crankcase of the same methanol-driven engine used in Example 10 which had been driven 131,897 km. Thus, the previous oil change took place approx. 5386 km before the current oil change.

Basetallet til oljeprøven var 3,36 som er godt over den akseptable basetallverdi på 2 og indikerte at oktadecyl-aminet ikke hadde blitt fjernet. The base number of the oil sample was 3.36 which is well above the acceptable base number value of 2 and indicated that the octadecylamine had not been removed.

Spektrokjemisk analyse viste at følgende mengder slitasje-elementer var tilstede i oljeprøven: 63 ppm jern; 10 ppm bly; 83 ppm kobber; 3 ppm krom; 9 ppm aluminium; 2 ppm nikkel; 0 ppm tinn og 31 ppm molybden. Etterinnkjørings-kriteriene fra tabell 1 ble brukt for å vurdere oljeprøven. Spectrochemical analysis showed that the following amounts of wear elements were present in the oil sample: 63 ppm iron; 10 ppm lead; 83 ppm copper; 3 ppm chromium; 9 ppm aluminium; 2 ppm nickel; 0 ppm tin and 31 ppm molybdenum. The post-run-in criteria from table 1 were used to assess the oil sample.

Under referanse til tabell 1 var jern, bly, krom, aluminium, nikkel og tinninnholdene innenfor gjennomsnitlig slit-as je-elementinnholdsområdet for disse slitasje-elementer ved etterinnkjøringsstrekning. Kobberinnholdet var over gjennomsnitt men ikke meget. Molybdeninnholdet var ansett å være stort i henhold til tabell 1 men avvek ikke signifikant fra tidligere molybdeninnhold ved tidligere oljeskift som beskrevet i eksempel 10. Således indikerer ikke molybdeninnholdet stor motorslitasje. Videre sank jern, bly, krom, aluminium og tinninnholdet fra eksempel 10 til eksempel 11 noe som indikerer at smøremiddeltilsetningen ifølge foreliggende oppfinnelse effektivt inhiberer korrosjon og motorslitasje. With reference to Table 1, the iron, lead, chromium, aluminium, nickel and tin contents were within the average wear element content range for these wear elements at the post run-in stretch. The copper content was above average but not much. The molybdenum content was considered to be high according to table 1, but did not deviate significantly from previous molybdenum content at previous oil changes as described in example 10. Thus, the molybdenum content does not indicate high engine wear. Furthermore, the iron, lead, chrome, aluminum and tin content decreased from example 10 to example 11, which indicates that the lubricant additive according to the present invention effectively inhibits corrosion and engine wear.

Eksempel 12Example 12

En oljeprøve bestående av ca. 98,68 vekt-% av smøremiddelet brukt i eksempel 10 og 11 og ca. 1,32 vekt-% av smøremidd-eltilsetningen brukt i eksemplene 10 og 11 ble tatt fra veivhuset til samme metanoldrevende motor som ble brukt i eksemplene 10 og 11 og som hadde blitt kjørt 138 807 km. Således fant det tidligere oljeskift sted ca. 6910 km før foreliggende oljeskift. An oil sample consisting of approx. 98.68% by weight of the lubricant used in examples 10 and 11 and approx. 1.32% by weight of the lubricant additive used in Examples 10 and 11 was taken from the crankcase of the same methanol fueled engine used in Examples 10 and 11 which had been driven 138,807 km. Thus, the previous oil change took place approx. 6910 km before the current oil change.

Basetallet til oljeprøven var ca. 2,91 som er godt over den akseptable basetallverdi på 2 og indikerte at oktadecyl-aminet ikke hadde blitt fjernet og fremdeles var tilgjengelig for å nøytralisere syrer og forhindre oksidasjon av metanol til formaldehyd og maursyre. The base number for the oil sample was approx. 2.91 which is well above the acceptable base number value of 2 and indicated that the octadecyl amine had not been removed and was still available to neutralize acids and prevent oxidation of methanol to formaldehyde and formic acid.

Den spektrokjemiske analyse viste at følgende mengder slitasje-elementer var tilstede i oljeprøven: 70 ppm jern; 8 ppm bly; 22 ppm kobber; 1 ppm krom; 12 ppm aluminium; 0 ppm nikkel; 0 ppm tinn og 17 ppm molybden. Oljeprøven ble vurdert ved å bruke etterinnkjøringskriteriene fra tabell 1. The spectrochemical analysis showed that the following amounts of wear elements were present in the oil sample: 70 ppm iron; 8 ppm lead; 22 ppm copper; 1 ppm chromium; 12 ppm aluminium; 0 ppm nickel; 0 ppm tin and 17 ppm molybdenum. The oil sample was assessed using the post-run-in criteria from Table 1.

Under referanse til tabell 1 var jern, bly, kobber, krom, aluminium, nikkel og tinninnholdene innenfor gjennomsnitlig slitasje-elementinnholdsornrådet for disse slitasje-elementer ved etterinnkjøringsstrekning. Molybdeninnholdet var ansett å være stort i henhold til tabell 1 men hadde sunket siden tidligere oljeskift beskrevet i eksempel 11 og indikerte således at smøremiddeltilsetningen er effektiv til å forhindre korrosjon og stor motorslitasje. Videre minket bly, kobber, krom og nikkelinnholdene fra tidligere oljeskift-vurdering beskrevet i eksempel 11 og jern, bly, kobber, krom, nikkel og tinninnholdene minket fra tidligere oljeskift beskrevet i eksempel 10 noe som indikerte at smøremiddeltilsetningen ifølge foreliggende oppfinnelse effektivt inhiberer korrosjon og stor motorslitasje i metanoldrevende motorer. With reference to Table 1, the iron, lead, copper, chromium, aluminium, nickel and tin contents were within the average wear element content range for these wear elements at the post-run-in stretch. The molybdenum content was considered to be high according to Table 1 but had decreased since the previous oil change described in Example 11 and thus indicated that the lubricant addition is effective in preventing corrosion and heavy engine wear. Furthermore, the lead, copper, chromium and nickel contents decreased from the previous oil change assessment described in example 11 and the iron, lead, copper, chromium, nickel and tin contents decreased from the previous oil change described in example 10, which indicated that the lubricant additive according to the present invention effectively inhibits corrosion and high engine wear in methanol-powered engines.

Eksempel 13Example 13

Gjennomsnitlig basetall i oljeprøvevurderingene beskrevet i eksemplene 1 til 12 var 3,15 som er godt over den akseptable basetallverdi på 2. The average base number in the oil sample assessments described in examples 1 to 12 was 3.15, which is well above the acceptable base number value of 2.

Gjennomsnitlig slitasje-elementinnhold i oljeprøvevurder-ingene beskrevet i eksemplene 1 til 12 er som følger: 57,8 ppm jern; 25,5 ppm bly; 63,2 ppm kobber; 1,8 ppm krom; 9,4 ppm aluminium; 1,2 ppm nikkel; 5,25 ppm tinn og 12,5 ppm molybden. Average wear element content in the oil sample evaluations described in Examples 1 to 12 are as follows: 57.8 ppm iron; 25.5 ppm lead; 63.2 ppm copper; 1.8 ppm chromium; 9.4 ppm aluminium; 1.2 ppm nickel; 5.25 ppm tin and 12.5 ppm molybdenum.

Alle av ovenfor nevnte slitasje-elementinnholdsdata som representerer gjennomsnitlige data fra tidligere 12 eksempler var innenfor gjennomsnitlig slitasje-elementinnholdsområdet vist i tabell 1 for etterinnkjøringsstrekning bort-sett fra molybden. Imidlertid indikerte store mengder molybden som beskrevet i foregående 12 eksempler ikke stor motorslitasje fordi det aldri var noen plutselige avvik fra de på forhånd etablerte bruktolje-vurderingsmønster. All of the above-mentioned wear element content data representing average data from previous 12 examples were within the average wear element content range shown in Table 1 for the post-run-in section except for molybdenum. However, large amounts of molybdenum as described in the previous 12 examples did not indicate high engine wear because there were never any sudden deviations from the pre-established used oil rating patterns.

Gjennomsnittsverdiene for basetall og slitasje-elementinnhold beskrevet heri illustreret at smøremiddeltilsetningen ifølge foreliggende oppfinnelse effektivt inhiberer korrosjon og stor motorslitasje i nødvendige forbrenningsmotorer som bruker alkohol eller alkoholinneholdende drivstoff. The average values for base number and wear element content described herein illustrated that the lubricant additive according to the present invention effectively inhibits corrosion and heavy engine wear in necessary internal combustion engines that use alcohol or alcohol-containing fuel.

Claims (29)

1. Smøremiddeltilsetning for bruk i innvendige forbrenningsmotorer som bruker alkohol eller alkoholinneholdende drivstoff, karakterisert ved at den består av en hoveddel av en organisk aminkomponent valgt fra gruppen bestående av aromatiske primære aminer, aromatiske sekundære aminer, alifatiske primære aminer, alifatiske sekundære aminer, cykloalifatiske primære aminer og blandinger derav og en liten del av en fosforsyre-ester.1. Lubricant additive for use in internal combustion engines using alcohol or alcohol-containing fuel, characterized in that it consists of a major part of an organic amine component selected from the group consisting of aromatic primary amines, aromatic secondary amines, aliphatic primary amines, aliphatic secondary amines, cycloaliphatic primary amines and mixtures thereof and a small part of a phosphoric acid ester. 2. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at amininnholdet er ca. 68,75 til 75,0 vekt-% og at fosforsyre-esterinnholdet er ca. 25,0 til 31,25 vekt-%.2. Lubricant additive according to claim 1, characterized in that the amine content is approx. 68.75 to 75.0% by weight and that the phosphoric acid ester content is approx. 25.0 to 31.25% by weight. 3. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at aminkomponenten er en blanding bestående av et alifatisk primært amin og et amin valgt fra gruppen bestående av aromatiske primære aminer, aromatiske sekundære aminer og blandinger derav.3. Lubricant additive according to claim 1, characterized in that the amine component is a mixture consisting of an aliphatic primary amine and an amine selected from the group consisting of aromatic primary amines, aromatic secondary amines and mixtures thereof. 4. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at aminkomponenter er en blanding bestående av et alifatisk sekundært amin og et amin valgt fra gruppen bestående av aromatiske primære aminer, aromatiske sekundære aminer og blandinger derav.4. Lubricant additive according to claim 1, characterized in that amine components are a mixture consisting of an aliphatic secondary amine and an amine selected from the group consisting of aromatic primary amines, aromatic secondary amines and mixtures thereof. 5. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at aminkomponenter er en blanding bestående av et cykloalifatisk primært amin og et amin valgt fra gruppen bestående av aromatiske primære aminer, aromatiske sekundære aminer og blandinger derav.5. Lubricant additive according to claim 1, characterized in that amine components are a mixture consisting of a cycloaliphatic primary amine and an amine selected from the group consisting of aromatic primary amines, aromatic secondary amines and mixtures thereof. 6. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at aminkomponenten er et alifatisk primært amin.6. Lubricant additive according to claim 1, characterized in that the amine component is an aliphatic primary amine. 7. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at aminkomponenten er et alifatisk sekundært amin.7. Lubricant additive according to claim 1, characterized in that the amine component is an aliphatic secondary amine. 8. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at aminkomponenten er en blanding bestående av et alifatisk primært amin og et cykloalifatisk primært amin.8. Lubricant additive according to claim 1, characterized in that the amine component is a mixture consisting of an aliphatic primary amine and a cycloaliphatic primary amine. 9. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at aminkomponenten er en blanding bestående av et alifatisk sekundært amin og et cykloalifatisk primært amin.9. Lubricant additive according to claim 1, characterized in that the amine component is a mixture consisting of an aliphatic secondary amine and a cycloaliphatic primary amine. 10. Smø remiddeltilsetning ifølge krav 1, karakterisert ved at aminkomponenten består av et cykloalifatisk primært amin.10. Lubricant additive according to claim 1, characterized in that the amine component consists of a cycloaliphatic primary amine. 11. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at aminkomponenten er en blanding bestående av aromatisk primært amin og et aromatisk sekundært amin.11. Lubricant additive according to claim 1, characterized in that the amine component is a mixture consisting of an aromatic primary amine and an aromatic secondary amine. 12. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at det aromatiske primære amin er valgt fra gruppen bestående av orto-fenylendiamin, meta-fenylendiamin, para-fenylendiamin, orto-toluidin, meta-toluidin, para-toluidin, anilin, xylidin, naftyl -amin, benzylamin, toluendiamin og naftalendiamin.12. Lubricant additive according to claim 1, characterized in that the aromatic primary amine is selected from the group consisting of ortho-phenylenediamine, meta-phenylenediamine, para-phenylenediamine, ortho-toluidine, meta-toluidine, para-toluidine, aniline, xylidine, naphthyl -amine, benzylamine, toluenediamine and naphthalenediamine. 13. Smøremiddeltilsetning ifølge krav 12, karakterisert ved at det aromatiske primære amin er orto-fenylendiamin.13. Lubricant additive according to claim 12, characterized in that the aromatic primary amine is ortho-phenylenediamine. 14. Smø remiddeltilsetning ifølge krav 1, karakterisert ved at det aromatiske sekundære amin er valgt fra gruppen bestående av N-fenyl-2-naftylamin, f enyl-a-naf tylamin , f enyl-fi-naf tylamin , tolyl- naftylamin, difenylamin, ditolylamin, fenyltolyamin, 4,4'-diaminodifenylamin og N-metylanilin.14. Lubricant additive according to claim 1, characterized in that the aromatic secondary amine is selected from the group consisting of N-phenyl-2-naphthylamine, phenyl-a-naphthylamine, phenyl-phen-naphthylamine, tolyl-naphthylamine, diphenylamine , ditolylamine, phenyltolyamine, 4,4'-diaminodiphenylamine and N-methylaniline. 15. Smøremiddeltilsetning ifølge krav 14, karakterisert ved at det aromatiske sekundære amin er N-fenyl-2-metylamin.15. Lubricant additive according to claim 14, characterized in that the aromatic secondary amine is N-phenyl-2-methylamine. 16. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at det alifatiske amin er et alifatisk amin med 10 til 30 karbonatomer.16. Lubricant additive according to claim 1, characterized in that the aliphatic amine is an aliphatic amine with 10 to 30 carbon atoms. 17. Smøremiddeltilsetning ifølge krav 16, karakterisert ved at det alifatiske amin er oktadecylamin.17. Lubricant additive according to claim 16, characterized in that the aliphatic amine is octadecylamine. 18. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at det cykloalifatiske amin er valgt fra gruppen bestående av cykloheksylamin og metylcykloheksylamin.18. Lubricant additive according to claim 1, characterized in that the cycloaliphatic amine is selected from the group consisting of cyclohexylamine and methylcyclohexylamine. 19. Smøremiddeltilsetning ifølge krav 1, karakterisert ved at fosforsyre-esteren er valgt fra gruppen bestående av orto-tricresylfosfat, meta-tricresylfosfat, para-tricresylfosfat, dibutylfenylfosfat, tributylfosfat, tri-2-etylheksylfosfat, trioktylfosfat, difenyl, orto-fosfonat, dicresyl orto-fosfonat, trilauryl orto-fosfonat og tristearyl orto-fosfonat.19. Lubricant additive according to claim 1, characterized in that the phosphoric acid ester is selected from the group consisting of ortho-tricresyl phosphate, meta-tricresyl phosphate, para-tricresyl phosphate, dibutylphenyl phosphate, tributyl phosphate, tri-2-ethylhexyl phosphate, trioctyl phosphate, diphenyl, ortho-phosphonate, dicresyl ortho-phosphonate, trilauryl ortho-phosphonate and tristearyl ortho-phosphonate. 20. Smøremiddeltilsetning ifølge krav 19, karakterisert ved at fosforsyre-esteren er para-tricresylfosfat.20. Lubricant additive according to claim 19, characterized in that the phosphoric acid ester is para-tricresyl phosphate. 21. Fremgangsmåte for inhibere korrosjon og stor motorslitasje i en innvendig forbrenningsmotor som bruker alkohol eller alkoholinneholdende drivstoff, karakterisert ved at den består i å tilsette motoren et innvendig forbrenningsmotorsmøremiddel valgt fra gruppen bestående av enkel viskositet og mult ippel viskositet grad mineral og syntetiske oljer med en SAE på ca. 5 til 50 hvor smø remiddelet som inneholder en smøremiddeltilsetning bestående av en hoveddel av en organisk aminkomponent valgt fra gruppen bestående av aromatiske primære aminer, aromatiske sekundære aminer, alifatiske primære aminer, alifatiske sekundære aminer, cykloalifatiske primære aminer og blandinger derav og en liten mengde av en fosforsyre-ester.21. Method for inhibiting corrosion and heavy engine wear in an internal combustion engine that uses alcohol or alcohol-containing fuel, characterized in that it consists in adding to the engine an internal combustion engine lubricant selected from the group consisting of single viscosity and multiple viscosity grade mineral and synthetic oils with a SAE of approx. 5 to 50 wherein the lubricant containing a lubricant additive consisting of a major portion of an organic amine component selected from the group consisting of aromatic primary amines, aromatic secondary amines, aliphatic primary amines, aliphatic secondary amines, cycloaliphatic primary amines and mixtures thereof and a small amount of a phosphoric acid ester. 22. Fremgangsmåte ifølge krav 21, karakterisert ved at amininnholdet av smøremiddeltilsetningen er ca. 68,75 til 75,0 vekt-% og at fosforsyre-esterinnholdet av smø remiddeltilsetningen er ca.22. Method according to claim 21, characterized in that the amine content of the lubricant additive is approx. 68.75 to 75.0% by weight and that the phosphoric acid ester content of the lubricant additive is approx. 25,0 til 31,25 vekt-%.25.0 to 31.25% by weight. 23. Fremgangsmåte ifølge krav 21, karakterisert ved at smøremiddelet inneholder ca. 1,25 til 10,5 vekt-% av smø remiddeltilsetningen.23. Method according to claim 21, characterized in that the lubricant contains approx. 1.25 to 10.5% by weight of the lubricant additive. 24. Fremgangsmåte ved fremstilling av et innvendig for-brenningsmotorsmøremiddel som inhiberer korrosjon og stor motorslitasje i en innvendig forbrenningsmotor som bruker alkohol eller alkoholinneholdende drivstoff, karakterisert ved steget å blande sammen en hovedmengde av et innvendig forbrenningsmotorsmøremiddel valgt fra gruppen bestående av enkel viskositet og multippel viskositet grad mineral og syntetiske oljer med en SAE på ca. 5 til 50 og en liten mengde av en smø remiddeltil-setning bestående av en hovedmengde av organisk aminkomponent valgt fra gruppen bestående av aromatiske primære aminer, aromatiske sekundære aminer, alifatiske primære aminer, alifatiske sekundære aminer, cykloalifatiske primære aminer, cykloalifatiske sekundære aminer og blandinger derav og en liten mengde av en fosforsyre-ester.24. Method of producing an internal combustion engine lubricant that inhibits corrosion and heavy engine wear in an internal combustion engine using alcohol or alcohol-containing fuel, characterized by the step of mixing together a bulk amount of an internal combustion engine lubricant selected from the group consisting of single viscosity and multiple viscosity grade mineral and synthetic oils with an SAE of approx. 5 to 50 and a small amount of a lubricant additive consisting of a major amount of organic amine component selected from the group consisting of aromatic primary amines, aromatic secondary amines, aliphatic primary amines, aliphatic secondary amines, cycloaliphatic primary amines, cycloaliphatic secondary amines and mixtures thereof and a small amount of a phosphoric acid ester. 25. Fremgangsmåte ifølge krav 24, karakterisert ved at amininnholdet i smø remiddeltilsetningen er ca. 68,75 til 75,0 vekt-% og at fosfosyre-esterinnholdet av smø remiddeltilsetningen er ca.25. Method according to claim 24, characterized in that the amine content in the lubricant additive is approx. 68.75 to 75.0% by weight and that the phosphoacid ester content of the lubricant additive is approx. 25,0 til 31,25 vekt-%.25.0 to 31.25% by weight. 26. Fremgangsmåte ifølge krav 24, karakterisert ved at ca. 89,5 til 98,75 vekt-% av smøremiddelet og ca. 1,25 til 10,5 vekt-% av smøremiddeltilsetningen blandes sammen.26. Method according to claim 24, characterized in that approx. 89.5 to 98.75% by weight of the lubricant and approx. 1.25 to 10.5% by weight of the lubricant additive is mixed together. 27. Smøremiddelblanding som inhiberer korrosjon og stor motorslitasje i en innvendig forbrenningsmotor som bruker alkohol eller alkoholinneholdende drivstoff, karakterisert ved at den består av en hovedmengde av et innvendig forbrenningsmotor-smøremiddel valgt fra gruppen bestående av enkel viskositet og multippel viskositet grad mineral og syntetiske oljer med en SAE på ca. 5 til 50 og en liten mengde av en smøremiddel-tilsetning bestående av en hovedmengde av en organisk aminkomponent valgt fra gruppen bestående av aromatiske primære aminer, aromatiske sekundære aminer, alifatiske primære aminer, alifatiske sekundære aminer, cykloalifatiske primære aminer, cykloalifatiske sekundære aminer og blandinger derav og en liten mengde av en fosforsyre-ester.27. Lubricant composition that inhibits corrosion and heavy engine wear in an internal combustion engine using alcohol or alcohol-containing fuel, characterized in that it consists of a major amount of an internal combustion engine lubricant selected from the group consisting of single viscosity and multiple viscosity grade mineral and synthetic oils with an SAE of approx. 5 to 50 and a small amount of a lubricant additive consisting of a major amount of an organic amine component selected from the group consisting of aromatic primary amines, aromatic secondary amines, aliphatic primary amines, aliphatic secondary amines, cycloaliphatic primary amines, cycloaliphatic secondary amines and mixtures thereof and a small amount of a phosphoric acid ester. 28. Smøremiddelblanding ifølge krav 27, karakterisert ved at amininnholdet av smøremiddeltilsetningen er ca. 68,75 til 75,0 vekt-% og fosforsyre-esterinnholdet av smø remiddeltilsetningen er ca.28. Lubricant mixture according to claim 27, characterized in that the amine content of the lubricant additive is approx. 68.75 to 75.0% by weight and the phosphoric acid ester content of the lubricant additive is approx. 25,0 til 31,25 vekt-%.25.0 to 31.25% by weight. 29. Smøremiddelblanding ifølge krav 27, karakterisert ved at smøremiddelinnhold-et er ca. 89,5 til 98,75 vekt-% og smø remiddeltilsetnings-innholdet er ca. 1,25 til 10,5 vekt-%.29. Lubricant mixture according to claim 27, characterized in that the lubricant content is approx. 89.5 to 98.75% by weight and the lubricant additive content is approx. 1.25 to 10.5% by weight.
NO860348A 1985-02-01 1986-01-31 FUEL ADDITIVE. NO860348L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US69713285A 1985-02-01 1985-02-01

Publications (1)

Publication Number Publication Date
NO860348L true NO860348L (en) 1986-08-04

Family

ID=24799931

Family Applications (1)

Application Number Title Priority Date Filing Date
NO860348A NO860348L (en) 1985-02-01 1986-01-31 FUEL ADDITIVE.

Country Status (11)

Country Link
JP (1) JPS61181897A (en)
KR (1) KR860006532A (en)
CN (1) CN86100790A (en)
AU (1) AU5224386A (en)
BR (1) BR8600369A (en)
DE (1) DE3602507A1 (en)
FR (1) FR2576908A1 (en)
GB (1) GB2170509A (en)
IN (1) IN165021B (en)
NO (1) NO860348L (en)
SE (1) SE8600432L (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE118600T1 (en) * 1988-02-29 1995-03-15 Ebara Corp CONNECTION PIECE FOR PIPES IN A PUMP.
ATE230812T1 (en) * 1992-04-21 2003-01-15 Baker Hughes Inc REACTION PRODUCT OF NITROGEN BASES AND PHOSPHATE ESTERS AS A CORROSION INHIBITOR
US5393464A (en) * 1993-11-02 1995-02-28 Martin; Richard L. Biodegradable corrosion inhibitors of low toxicity
CN1105768C (en) * 1998-12-29 2003-04-16 北京燕山石油化工公司炼油厂 Refining additive for lubricating oil solvent and its compounding process and application in refining
US6191078B1 (en) 1999-09-21 2001-02-20 Exxonmobil Research And Engineering Company Part-synthetic, aviation piston engine lubricant
US7704931B2 (en) * 2004-12-10 2010-04-27 Chemtura Corporation Lubricant compositions stabilized with multiple antioxidants
JP2007009123A (en) * 2005-07-01 2007-01-18 Nippon Oil Corp Lubricating oil composition for oxygen-containing fuel engine
FR3020377B1 (en) * 2014-04-25 2020-11-27 Total Marketing Services LUBRICATING COMPOSITION INCLUDING AN ANTI-CLICKING COMPOUND

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2584884A (en) * 1983-09-16 1985-03-21 Bankamerica Corp. Lubricant for use with alcoholic fuels

Also Published As

Publication number Publication date
GB8601938D0 (en) 1986-03-05
KR860006532A (en) 1986-09-11
IN165021B (en) 1989-08-05
DE3602507A1 (en) 1986-08-07
AU5224386A (en) 1986-08-07
FR2576908A1 (en) 1986-08-08
CN86100790A (en) 1986-07-30
JPS61181897A (en) 1986-08-14
SE8600432L (en) 1986-08-02
GB2170509A (en) 1986-08-06
BR8600369A (en) 1986-10-14
SE8600432D0 (en) 1986-01-31

Similar Documents

Publication Publication Date Title
EP0837122B1 (en) Two-cycle lubricant containing solvent and high molecular weight polymer
CN100513539C (en) Low ash lubricating oil composition for gas engine
CN101705144A (en) Lubricating oil for methanol fuel engine and preparation method thereof
CN107987920B (en) Lubricating oil composition and method for improving detergency of lubricating oil
CN108026474A (en) Cylinder lubricant oil composition for crosshead-type diesel engine
NO860348L (en) FUEL ADDITIVE.
US4016093A (en) Metal alkylphenate sulfides of reduced corrosiveness and method of preparing same
AU617666B2 (en) Fuel composition containing an additive for reducing valve seat recession
NO841283L (en) LUBRICANT FOR USE IN CONNECTION WITH ALCOHOL FUELS
US2888913A (en) Method of operating an internal combustion engine
CN106544108A (en) A kind of energy-saving mellow lime diesel/natural gas dual-fuel engine oil
US4402841A (en) Extended service 5W-40 motor oil
CN104745279A (en) Specific engine oil for natural gas and gasoline dual-fuel engine and preparation method thereof
NO851045L (en) LUBRICANT ADDITION FOR ALCOHOL FUELS.
CN111019740A (en) Marine lubricating oil
RU2461609C1 (en) Engine oil additive batch and oil containing said batch
Watson et al. Additives—The Right Stuff for Automotive Engine Oils
CN111662768B (en) Synthetic long-life natural gas engine oil and preparation method thereof
EP0192323B1 (en) Gasoline compositions for automotive vehicles
CN1594519A (en) Lubricating oil for gaseous propellant engine
CN104845706A (en) Lubricating oil composition for speed changers
CN114774184B (en) Gas engine oil complexing agent containing high-base-number borate and preparation method thereof
CN101914397A (en) Reduce the method for combustion chamber deposit flaking
CN106906032B (en) Engine oil intensifier
Srivastava 2nd International Symposium on Fuels and Lubricants (Vol II)