NO841283L - LUBRICANT FOR USE IN CONNECTION WITH ALCOHOL FUELS - Google Patents

LUBRICANT FOR USE IN CONNECTION WITH ALCOHOL FUELS

Info

Publication number
NO841283L
NO841283L NO841283A NO841283A NO841283L NO 841283 L NO841283 L NO 841283L NO 841283 A NO841283 A NO 841283A NO 841283 A NO841283 A NO 841283A NO 841283 L NO841283 L NO 841283L
Authority
NO
Norway
Prior art keywords
approx
weight
lubricant additive
lubricant
methanol
Prior art date
Application number
NO841283A
Other languages
Norwegian (no)
Inventor
Leroy Schieler
Original Assignee
Bank Of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bank Of America filed Critical Bank Of America
Publication of NO841283L publication Critical patent/NO841283L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • C10M145/26Polyoxyalkylenes
    • C10M145/34Polyoxyalkylenes of two or more specified different types
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/067Polyaryl amine alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/068Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings having amino groups bound to polycyclic aromatic ring systems, i.e. systems with three or more condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

Foreliggende oppfinnelse vedrører en additiv formu-lering for bruk med vanlige selvbevegende smøremidler ■ for-å gi et smøremiddel som er egnet for innvendige forbrenningsmaskiner som forbrenner alkoholbrennstoffer så som metanol eller etanol. The present invention relates to an additive formulation for use with common self-propagating lubricants ■ to provide a lubricant suitable for internal combustion engines that burn alcohol fuels such as methanol or ethanol.

Vanlig brukte selvbevegende smøremidler er ikke virk-somme i alkohol forbrenningsmaskiner, hvilket viser seg ved sterk maskinslitasje og tiltagende økende smøre-middelforbruk. En grunn til dette er den store forskjell i kjemisk reaktivitet for forbrenningsproduktene fra. bensin og alkohol selvbevegende brennstoffsystemer. I et alkoholbrennstoffsystem opptrer flere smøremiddel-nedbrytningsreaksjoner som ikke finnes i bensinbrenn-stoffsystemet. Disse kjemiske reaksjoner forårsaker Commonly used self-moving lubricants are not effective in alcohol combustion machines, which is shown by severe machine wear and increasing lubricant consumption. One reason for this is the large difference in chemical reactivity for the combustion products from. gasoline and alcohol self-propelled fuel systems. In an alcohol fuel system, several lubricant degradation reactions occur that are not found in the gasoline fuel system. These chemical reactions cause

øket korrosjon hos alkoholbrennstoffer. F.eks. oksy-deres metanol lett ved dannelse av formalderhyd og maursyre. Denne reaksjonen er angitt i reaksjon skjema 1. increased corrosion of alcohol fuels. E.g. methanol is easily oxidized by the formation of formaldehyde and formic acid. This reaction is shown in reaction scheme 1.

De fleste kjøretøyer som bruker metanolbrensel lider av sterk øvre sylinderkorrosjon og har slitasje som følge av maursyre dannet ved metanolforbrenning. Maursyre reagerer med vanlige selvbevegende smøremidlers organiske aminadditiver, som virker som antioksydanter, korrosjons-inhibitorer; og antislitasjemidler. Aminadditivene nøytrali-serer maursyren. imidlertid synes vanlige additiver ute Most vehicles using methanol fuel suffer from severe upper cylinder corrosion and wear due to formic acid formed during methanol combustion. Formic acid reacts with common self-propagating lubricants' organic amine additives, which act as antioxidants, corrosion inhibitors; and anti-wear agents. The amine additives neutralize the formic acid. however, common additives seem out

av stand til å skikkelig nøytralisere den mengde maur- capable of properly neutralizing the amount of ant-

syre som dannes under metanolforbrenning. Disse reaksjoner er angitt i reaksjonsskjemaene 2 og 3. acid formed during methanol combustion. These reactions are indicated in reaction schemes 2 and 3.

Formaldehyd. er meget reaktivt med fenoliske og glykoliske additiver. Formaldehyd reagerer med fenolene som brukes som antioksidanter og med de polymerholdige hydroksyl-grupper som brukes som askefrie dispergeringsmidler. Disse reaksjoner finner sted under sure betingelser og økes ettersom de organiske aminadditiver fjernes ved omsetning med maursyre. Disse formaldehydreaksjoner, som er angitt i reaksjonsskjema (4) bidrar vesentlig til oljenedbrytning i et. metanolbrennstoffsystem. Formaldehyde. is highly reactive with phenolic and glycolic additives. Formaldehyde reacts with the phenols used as antioxidants and with the polymer-containing hydroxyl groups used as ashless dispersants. These reactions take place under acidic conditions and are increased as the organic amine additives are removed by reaction with formic acid. These formaldehyde reactions, which are indicated in reaction scheme (4), contribute significantly to oil breakdown in a. methanol fuel system.

Det er behov for et smøremiddeladditiv som minimaliserer oksydasjonen av metanol til formaldehyd og maursyre og minimaliserer sterke formaldehyd og maursyrereaksjoner for å forlenge smøremiddeladditivenes levetid, idet disse ellers raskt forsvinner ved omsetning med formaldehyd og maursyre. There is a need for a lubricant additive that minimizes the oxidation of methanol to formaldehyde and formic acid and minimizes strong formaldehyde and formic acid reactions in order to extend the lifetime of the lubricant additives, as these otherwise quickly disappear when reacted with formaldehyde and formic acid.

På lignende måte foreligger et behov for et smøremiddeladditiv som minimaliserer oksydasjonen av etanol til acetaldehyd Similarly, there is a need for a lubricant additive that minimizes the oxidation of ethanol to acetaldehyde

og eddiksyre og minimaliserer sterke reaksjoner hos disse bestanddeler. and acetic acid and minimizes strong reactions with these components.

Et annet betydelig problem i et alkohol brennstoffsystem er Another significant problem in an alcohol fuel system is

at sink dialkylditiofosfat, et vesentlig •multifunksjonelt additiv i de fleste vanlige smøremidler, .lett omesteres og derved taper mange av sine anti-slitasjeegenskaper. Omestrings-reaksjonen innbefatter skifte av en alkoholalkylgruppe, så that zinc dialkyldithiophosphate, an essential multifunctional additive in most common lubricants, is easily transesterified and thereby loses many of its anti-wear properties. The transesterification reaction involves the exchange of an alcohol alkyl group, so

som metanol eller etanol, med en eksisterende ester, så som sinkdialkylditiofosfat, for å danne en ny ester. En omesteringsreaksjon er vist i reaksjonsskjemaet 5. such as methanol or ethanol, with an existing ester, such as zinc dialkyldithiophosphate, to form a new ester. A transesterification reaction is shown in reaction scheme 5.

i i in i

Omesteringsreaksjonen er syrekatalysert.og opptrer derfor etter at aminbasadditivene i smøremiddelet er forsvunnet ved reaksjon av formaldehyder og syrer dannet under for-brenningsprosessen. Omestering er ikke en hovedmekanisme ved oljenedbrytning i hydrokarbonbrennstoff systemer, men er en primær mekanisme for oljenedbrytning i metanol og andre.alkoholbrennstoffsystemer. Når f.eks. metanol og etanol blandes med bensin, er graden av omesteringsreaksjonen proporsjonal med mengden av alkohol i blandingen. The transesterification reaction is acid-catalysed and therefore occurs after the amine base additives in the lubricant have disappeared by reaction of formaldehydes and acids formed during the combustion process. Transesterification is not a primary mechanism for oil degradation in hydrocarbon fuel systems, but is a primary mechanism for oil degradation in methanol and other alcohol fuel systems. When e.g. methanol and ethanol are mixed with petrol, the degree of the transesterification reaction is proportional to the amount of alcohol in the mixture.

En annen grunn til øket korrosjon i en alkoholforbrennings-maskin er den økede oppløselighet av karbondioksyd i alkoholen. F.eks. er karbondioksyd meget mer løselig i metanol enn i vann. Både vann og metanol er normalt til stede i de kaldere deler av veivakselhuset som forbrenningsproduk-■tet. Vann reagerer med brennstoffforbrenningsproduktene Another reason for increased corrosion in an alcohol combustion machine is the increased solubility of carbon dioxide in the alcohol. E.g. Carbon dioxide is much more soluble in methanol than in water. Both water and methanol are normally present in the colder parts of the crankshaft housing as the combustion product. Water reacts with the fuel combustion products

så som SO3, NO2og CO2under dannelse av de tilsvarende syrer, svovelsyre, salpetersyre og kullsyre som vist i reaksjonsligningene 6, 7 og 8. such as SO3, NO2 and CO2, forming the corresponding acids, sulfuric acid, nitric acid and carbonic acid as shown in reaction equations 6, 7 and 8.

Disse syrer som reagerer med metaller i maskinen er en av hovedgrunnene . til korrosjon i en innvendig forbrenningsmaskin. De smøremidler som normalt brukes i et hydrokarbon-brennstof f system nøytraliserer virkningsfullt disse syrer med basiske additiver så somorganiske aminer og alkaliske metallforbindelser. Imidlertid er kullsyremengden betydelig i I These acids which react with metals in the machine are one of the main reasons. to corrosion in an internal combustion engine. The lubricants normally used in a hydrocarbon fuel system effectively neutralize these acids with basic additives such as organic amines and alkali metal compounds. However, the amount of carbon dioxide is significant in I

høyere i et metanol eller annet alkohol brennstoff system enn i et bensinbrennstoffsystem på grunn av den økede opp-løselighét av C02 i alkoholer.. Det samme kan gjelde for salpetersyre dannet fra N0.2forbrenningsproduktet. Absorbsjon av karbondioksyd viser seg å være en viktig grunn til den uventede høye korrosjon hos alkoholiske brennstoffer. higher in a methanol or other alcohol fuel system than in a petrol fuel system due to the increased solubility of C02 in alcohols. The same can apply to nitric acid formed from the N0.2 combustion product. Absorption of carbon dioxide turns out to be an important reason for the unexpectedly high corrosion of alcoholic fuels.

Smøremiddelanalyse. tyder på at korrosjons inhibitorer sammensatt av sulfonater, naftenater eller andre alkaliske metaller for raskt forsvinner ved reaksjon med kullsyre og føre til utfelling av uløselige karbonater av alkali metallene. Utfellingsréaksjonen er vist i reaksjonsligningnene 9 og 10. Lubricant analysis. indicate that corrosion inhibitors composed of sulphonates, naphthenates or other alkali metals too quickly disappear by reaction with carbonic acid and lead to the precipitation of insoluble carbonates of the alkali metals. The precipitation reaction is shown in reaction equations 9 and 10.

Denneutfellingsréaksjonen konkurrerer med nøytralisering av kullsyre.av organiske aminer. Selv om nøytralisasjonen er raskere og opptrer med større sannsynlighet, øker reaksjonen med alkaliske metallsalter ettersom de organiske aminer forsvinner. Således foreligger et behov for et smøremiddeladditiv hvor forsvinning av de organiske amin-ådditiver som skyldes nøytralisering av maursyre og eddiksyre og kullsyre opptrer mindre raskt og derved reduseres sannsynligheten for at alkali metallsalter vil forsvinne ved utfellingsréaksjoner som vist i reaksjonssk^emaene 9 og 10. This precipitation reaction competes with the neutralization of carbonic acid by organic amines. Although neutralization is faster and more likely to occur, the reaction with alkali metal salts increases as the organic amines disappear. Thus, there is a need for a lubricant additive where the disappearance of the organic amine additives due to the neutralization of formic acid and acetic acid and carbonic acid occurs less quickly and thereby reduces the probability that alkali metal salts will disappear during precipitation reactions as shown in reaction schemes 9 and 10.

Det er et generelt formål med foreliggende oppfinnelse å tilveiebringe et smøremiddeladditiv for bruk i en alkohol-forbrennende innvendig forbrenningsmaskin som.gir beskyt-telse mot korrosjon og maskinslitasjeeffekter forårsaket av alkohol. It is a general object of the present invention to provide a lubricant additive for use in an alcohol-burning internal combustion engine which provides protection against corrosion and machine wear effects caused by alcohol.

Et annet formål for foreliggende oppfinnelse er å .tilveiebringe et smøremiddeladditiv med øket kapasitet for å'nøytralisere syrer. Another object of the present invention is to provide a lubricant additive with increased capacity to neutralize acids.

Det er et ytterligere formål for foreliggende oppfinnelse It is a further object of the present invention

å tilveiebringe et smøremiddeladditiv omfattende et anti-slitasjemiddel som ikke nedbrytes av metanol eller etanol. to provide a lubricant additive comprising an anti-wear agent which is not degraded by methanol or ethanol.

Foreliggende oppfinnelse tilveiebringer et smøremiddel-additiv som kan tilsettes vanlige selvbevegende smøremid-ler og gi et smøremiddel som er egnet for bruk i en metanol eller etanol forbrenningsmaskin omfattende en- hovedmengde av polyalkylenglykol av et alken med 2 til 3 car-boner og mindre mengder av et aromatisk primært amin, et' aromatisk sekundært amin og en fosfor syreester. Fore-trukne mengder forbindelser i smøremiddeladditiver i følge foreliggende oppfinnelse er ca. 93-98.5 vekt-% polyalkylenglykol, ca. 0.5-2.0 vekt-% av et aromatisk primært amin, ca..0.5-2.0 vekt-% av et aromatisk sekundært amin og ca. 0.5-2.0 vekt-% av en fosfor syreester. The present invention provides a lubricant additive which can be added to conventional self-propellant lubricants and provide a lubricant suitable for use in a methanol or ethanol combustion engine comprising a major amount of polyalkylene glycol of an alkene having 2 to 3 carbons and minor amounts of an aromatic primary amine, an aromatic secondary amine and a phosphoric acid ester. Preferred amounts of compounds in lubricant additives according to the present invention are approx. 93-98.5% by weight polyalkylene glycol, approx. 0.5-2.0% by weight of an aromatic primary amine, approx. 0.5-2.0% by weight of an aromatic secondary amine and approx. 0.5-2.0% by weight of a phosphoric acid ester.

Smøremiddeladditivet i foreliggende oppfinnelse omfatter.. en polyalkylenglycol av et alken med 1 til 2 karboner så som polypropylenglycol, poiyisopropylen glycol eller poly-etylenglycolJ et aromatisk primært amin såsom orto-, meta-, eller parafenylehdiamin orto-, meta- eller para-toluidin, '.anilin, naftylamin>benzylamin, toluendiamin . eller naftalendiaminl et aromatisk sekundært amin så som N-fenyl- 2-naf tylamine,f enyl-a-naf tylamin, f enyl-P - , nafty-lamine, tolylnaftylamin, difenylamin, ditolylamin, fenyl-tolylamin, 4<1>4-diaminodifenylamin eller N-metylanilini og en fosforsyreester som orto-, meta-, eller para- tri-cresylfosfat, dibutylfenylfosfat, tributylfosfat,' tri-2-etylhexylfoofat, trioktylfosfat, difenyl orto fosfonate, dicresyl orto fosfonat, trilauryl orto fosfonat, tristea-ryl orto fosfonate. The lubricant additive in the present invention comprises.. a polyalkylene glycol of an alkene with 1 to 2 carbons such as polypropylene glycol, polyisopropylene glycol or polyethylene glycol, and an aromatic primary amine such as ortho-, meta-, or paraphenylenediamine ortho-, meta-, or para-toluidine, '.aniline, naphthylamine>benzylamine, toluenediamine . or naphthalenediamine and an aromatic secondary amine such as N-phenyl-2-naphthylamine, phenyl-α-naphthylamine, phenyl-P - , naphthylamine, tolylnaphthylamine, diphenylamine, ditolylamine, phenyl-tolylamine, 4<1>4 -diaminodiphenylamine or N-methylaniline and a phosphoric acid ester such as ortho-, meta-, or para-tri-cresyl phosphate, dibutylphenyl phosphate, tributyl phosphate,' tri-2-ethylhexyl phosphate, trioctyl phosphate, diphenyl ortho phosphonate, dicresyl ortho phosphonate, trilauryl ortho phosphonate, tristea- ryl ortho phosphonate.

I IN

Et foretrukket polyalkylen glykol er polypropylen glykol A preferred polyalkylene glycol is polypropylene glycol

og en foretrukket polypropylen glykol er polypropylen glykol 2000. Et foretrukket aromatisk primært amin er orto fenylendiamin! et foretrukket aromatisk sekundært amin er N-fenyl-2-naftylamin, og en foretrukket fosforsyreester er orto trikrecylfosfat. and a preferred polypropylene glycol is polypropylene glycol 2000. A preferred aromatic primary amine is ortho phenylenediamine! a preferred aromatic secondary amine is N-phenyl-2-naphthylamine, and a preferred phosphoric acid ester is ortho tricrecyl phosphate.

Fortrinnsvis inneholder smøremiddeladditivet i følge foreliggende oppfinnelse ca. 93 til 98.5 vekt-% av en polyalkylen glykol av et alken med 1 til 2 karbonatomer, ca. 0.5 til 2.0 vekt-% av et aromatisk primært amin, ca. 0.5 til 2.0 vekt-% av et aromatisk sekundært amin og ca. 0.5 til-2.0 vekt-% av en fosforsyreester. Preferably, the lubricant additive according to the present invention contains approx. 93 to 98.5% by weight of a polyalkylene glycol of an alkene with 1 to 2 carbon atoms, approx. 0.5 to 2.0% by weight of an aromatic primary amine, approx. 0.5 to 2.0% by weight of an aromatic secondary amine and approx. 0.5 to 2.0% by weight of a phosphoric acid ester.

En foretrukket blanding i følge foreliggende oppfinnelse inneholder ca. 93 til 98.5 vekt-% polypropylenglykol 2000, ca. 0.5 til 2.0 vekt-% ortofenylen-diamin, ca. 0.5 til 2.0 vekt-% N-fenyl-2-naftylamin og ca. 0.5 til 2.0 vekt-% orto trikrecylfosfat. A preferred mixture according to the present invention contains approx. 93 to 98.5% by weight polypropylene glycol 2000, approx. 0.5 to 2.0 wt% orthophenylene diamine, approx. 0.5 to 2.0% by weight N-phenyl-2-naphthylamine and approx. 0.5 to 2.0% by weight ortho tricrecyl phosphate.

Alle de ovennevnte forbindelser er å få kjøpt. Smøremid-deladditivet i følge foreliggende oppfinnelse er laget ved å blande sammen alle de ovenfornevnte forbindelser. Smøremiddeladditivet i følge foreliggende oppfinnelse brukes ved å tilsette ca. 1/2 liter av smøremiddeladdi-'tivet til en 4.7 liters oljeskift. Smøremiddeladditivet i følge foreliggende oppfinnelse vil gi effektiv beskyt-telse mot korrosjon av maskinslitasje forårsaket av metanol eller etanol i oljeskift intervaller mer enn 4000 miles og i noen tilfeller opp til 6000 miles. All of the above compounds are available for purchase. The lubricant part additive according to the present invention is made by mixing together all the above-mentioned compounds. The lubricant additive according to the present invention is used by adding approx. 1/2 liter of the lubricant additive for a 4.7 liter oil change. The lubricant additive according to the present invention will provide effective protection against corrosion of machine wear caused by methanol or ethanol at oil change intervals of more than 4000 miles and in some cases up to 6000 miles.

Polyalkylenglykol ,fortrinnsvis polypropylenglykol, Polyalkylene glycol, preferably polypropylene glycol,

fungerer san en metanol eller etanol solubilisator, et ikké-aske dispergeringsmiddel og et fjerningsmiddel for alderhyder. En solubilisator av denne type kreves for å oppløse dé store mengder metanol og etanol som innføres i smøremiddelet I |før forbrenning. Pylyalkylen glykolen solubiliseres. ! i acts as a methanol or ethanol solubilizer, a no-ash dispersant and an alder hide remover. A solubilizer of this type is required to dissolve the large amounts of methanol and ethanol that are introduced into the lubricant I|before combustion. The pylyalkylene glycol is solubilized. ! in

metanol eller etanol for å hindre derved tørre flekker methanol or ethanol to thereby prevent dry spots

på den øvre sylinder og innvendig overflate. Uten glykol er metanol og etanol uløselig i hydrokarbonsmørings-midler og .tørre flekker kan forekomme. Dertil inneholder en polyalylen glykol hydroxylgrupper som reagerer med aldehydene dannet ved oksydasjon av metanol eller etanol. Reaksjonsproduktet av en polyalkylen glykol og formaldehyd eller asetaldehyd er også et godt løsnings-middel for metanol eller etanol og fortsetter å virke som en metanol eller etanol solubilisator. on the upper cylinder and inner surface. Without glycol, methanol and ethanol are insoluble in hydrocarbon lubricants and dry spots may occur. In addition, a polyallylene glycol contains hydroxyl groups that react with the aldehydes formed by oxidation of methanol or ethanol. The reaction product of a polyalkylene glycol and formaldehyde or acetaldehyde is also a good solvent for methanol or ethanol and continues to act as a methanol or ethanol solubilizer.

Det aromatiske primære amin, fortrinnsvis orto'fenylendiamin, virker primært som et base tall additive for å nøytralisere maursyrer,eddiksyrerog kullsyrer dannet ved oksydasjon av metanol eller etanol, .-og ved reaksjon av vann og henholdsvis karbon dioksyd. The aromatic primary amine, preferably ortho-phenylenediamine, acts primarily as a base number additive to neutralize formic acids, acetic acid and carbonic acids formed by oxidation of methanol or ethanol, and by reaction of water and carbon dioxide respectively.

Det aromatiske sekundære amin, fortrinnsvis N-fenyl-2 naftylamin, tjener også til å nøytralisere maursyre eller eddiksyre og kullsyrer, men dets primære funksjon The aromatic secondary amine, preferably N-phenyl-2 naphthylamine, also serves to neutralize formic or acetic acid and carbonic acids, but its primary function

er som en antioksydant. Det minimaliserer oksydasjonen av metanol eller etanoltil deres respektive aldehyder og syrer. is like an antioxidant. It minimizes the oxidation of methanol or ethanol to their respective aldehydes and acids.

Nærvær av større mengder (ca. 0.5 til 2.0 vekt-%) organiske aminer i foreliggende oppfinnelse sammenlignet med den mengde som normalt inneholdes i vanlige smøre-middeladditiver (ca. 0.25 vekt-%) minimaliserer forsvinning av alkali metallsalter såsom naftenater og sulfonater. Alkali metallene forsvinner når de reagerer med kullsyre under dannelse av uløselige karbonater som konkurrerer med nøytraliseringen av kullsyre. Nøytra-lisasjons reaksjonen er raskere og opptrer lettere, The presence of larger amounts (about 0.5 to 2.0% by weight) of organic amines in the present invention compared to the amount normally contained in common lubricant additives (about 0.25% by weight) minimizes the disappearance of alkali metal salts such as naphthenates and sulfonates. The alkali metals disappear when they react with carbonic acid to form insoluble carbonates that compete with the neutralization of carbonic acid. The neutralization reaction is faster and occurs more easily,

men utfellingsréaksjonen blir et problem når de organiske aminer er forsvunnet. Med mere organiske aminer but the precipitation reaction becomes a problem when the organic amines have disappeared. With more organic amines

til stede nøytraliseres mere kullsyre og det er mindre kullsyre tilgjengelig for å reagere med alkali metallene.j present, more carbonic acid is neutralized and there is less carbonic acid available to react with the alkali metals.j

Fosforsyreesteren fortrinnsvis orto trikrecylfosfat, virker som et anti slitasjemiddel og når det brukes med metanol eller etanol brennstoff er det bedre enn The phosphoric acid ester, preferably ortho tricrecyl phosphate, acts as an anti-wear agent and when used with methanol or ethanol fuel it is better than

det vanlige anti slitasjemiddel, sink dialkylditiofosfat. Sink dialkylditiofosfat brukes nesten universalt, the usual anti-wear agent, zinc dialkyldithiophosphate. Zinc dialkyldithiophosphate is used almost universally,

i selvbevegende smøremidler for bensin.forbrenningsmaskiner, men taper sin anti slitasje egenskaper raskt i en metanol eller etanol forbrenningsmaskin, fordi det lett omesteres med alkoholer. in self-moving lubricants for petrol.combustion engines, but loses its anti-wear properties quickly in a methanol or ethanol combustion engine, because it is easily transesterified with alcohols.

Et smøremiddeladditiv kan måles basert på mengder av slitasje elementer så. som jern, bly og kobber påvist i en oljeprøve med spektrofotometisk analyse etter at maskinen har gått et bestemt antall miles etter en A lubricant additive can be measured based on amounts of wear elements so. such as iron, lead and copper detected in an oil sample by spectrophotometric analysis after the machine has run a certain number of miles after a

oljeskift. Disse metaller eller slitasjeelementer oil change. These metals or wear elements

-- dukker opp i smøremiddelet som et resultat av sterk korrosjon'eller svikt i bestemte maskinbestanddeler -- appear in the lubricant as a result of severe corrosion or failure of certain machine components

laget av dette metall samt som normal mekanisk slitasje. made of this metal as well as normal mechanical wear.

Tabell 1 angir kriterier for måling av smøremiddél-slitasje element data. Den primære sekundære, kilde i maskinen for hvert slitasjeelement er angitt samt den gjennomsnittlige mengde ppm for hvert slitasjeelement som ville finnes i olje ved "innkjørings-punktet" og ved "post innkjørings" punktet. Maskinslitasje nivåer under innkjøringsperioden har en ten-dens til å være relativt høye. Etter maskinen er inn-kjørt, når slitasjenivåene et platå og forblir stabile i ca. 50.000 miles, avhengig av det enkelte kjøretøy og graden av vedlikeholdet. Innkjøringspunktet for en gjennomsnittlig maskin er generelt i området 0 - 10.000 miles. Målingskriteriene som finnes i tabell 1 vil bli brukt for å måle de data som er angitt i eksemplene 1 til . 5.. Table 1 sets out criteria for measuring lubricant wear element data. The primary secondary source in the machine for each wear element is indicated as well as the average amount of ppm for each wear element that would be found in oil at the "run-in" point and at the "post-run-in" point. Machine wear levels during the break-in period tend to be relatively high. After the machine is run-in, wear levels reach a plateau and remain stable for approx. 50,000 miles, depending on the individual vehicle and the level of maintenance. The break-in point for an average machine is generally in the 0 - 10,000 mile range. The measurement criteria found in table 1 will be used to measure the data specified in examples 1 to . 5..

I eksemplene 1 og 3 er det også data inntatt vedrørende prosent volum av fortynnet brennstoff, prosent volum av totale faste stoffer, prosent volum av vann, viskositet og basetall for den undersøkte oljeprøve. In examples 1 and 3, data are also included regarding the percent volume of diluted fuel, percent volume of total solids, percent volume of water, viscosity and base number for the examined oil sample.

Den gjennomsnittlige mengde oljefortynning forårsaket av."blow-by" er ca. 3% for både alkohol og bensinbrenn-stoffet. Fortynningsgraden er betydelig større i koldt vær på grunn av øket kondensasjon. En fasthengende choke, feilaktiv fortynning, lave operasjonstemperaturer og "blow-by" er faktorer som oftest bidrar til brennstoff fortynning. Fortynning utover 3% reduserer oljens viskositet og forårsakerøket maskinslitasje. The average amount of oil dilution caused by "blow-by" is approx. 3% for both alcohol and petrol fuel. The degree of dilution is significantly greater in cold weather due to increased condensation. A stuck choke, faulty dilution, low operating temperatures and "blow-by" are factors that most often contribute to fuel dilution. Dilution beyond 3% reduces the oil's viscosity and causes increased machine wear.

Faste stoffer i maskinoljen består normalt av sot, metallsalter, veiskitt, slam og oksydert olje forårsaket av uønskede maskindriftsbetingelser såsom dårlig Solid substances in the machine oil normally consist of soot, metal salts, road grime, sludge and oxidized oil caused by undesirable machine operating conditions such as poor

tenning, ineffektiv luftfiltere og "blow-by". Disse faste stoffer kan forårsake feilaktig maskinfunksjon hvis de forhindrer oljen å komme til kritiske maskin- og lageroverflater. Et totalinnhold av faste stoffer større enn 3% tyder på et alvorlig problem. ignition, ineffective air filters and "blow-by". These solids can cause machine malfunction if they prevent the oil from reaching critical machine and bearing surfaces. A total solids content greater than 3% indicates a serious problem.

Vanninnhold større enn 0.1% er i alminnelighet ansett som for høye i kjøretøyet som bruker bensinbrennstoff. På grunn av alkoholers hygroskopiske egenskaper har kjøretøyer som bruker denne oljen ofte vanninnhold som overskrider 0.5%. Høyere vanninnhold påskynder både organisk slamdannelse og korrosjonsreaks joner . Høyere verdier kan komme av at atmosfærisk vann blander seg med alkoholen, lekkasje fra kjølesystemet, lave drifts-temperaturer eller et uvirksomt forurensnings kontroll-ventil system. Water content greater than 0.1% is generally considered too high in the vehicle using gasoline fuel. Due to the hygroscopic properties of alcohols, vehicles using this oil often have water content exceeding 0.5%. Higher water content accelerates both organic sludge formation and corrosion reactions. Higher values can come from atmospheric water mixing with the alcohol, leakage from the cooling system, low operating temperatures or an ineffective pollution control valve system.

Et selvbevegende smøremiddel med normal viskositet har samme nummeriske verdi som Society of Automotive Engi-neers (SAE). grad av den olje som brukes. Høye viskosi-!tetsverdier tyder generelt på oljenedbrytning forår- ' i saket i alminnelighet av brennselsfortynning.Viskosi-tetsverdiene er ikke direkte proporsjonale med maskin-slitasjen, og en forandring på 10 enheter i hver ret- A normal viscosity self-propagating lubricant has the same numerical value as the Society of Automotive Engineers (SAE). grade of the oil used. High viscosity values generally indicate oil degradation caused, in general, by fuel dilution. The viscosity values are not directly proportional to machine wear, and a change of 10 units in each direction

ning kan tyde på betydelig smøremiddel nedbrytning. ning may indicate significant lubricant degradation.

Basetallet er et mål på olje detergent virkningen og The base number is a measure of the oil detergent effect and

dens evne til å forhindre korrosjon. Nye selvbevegende its ability to prevent corrosion. New self-propelled

oljer har normalt et basetall på 4 til 5. For enhver olje tyder en avlesning på 1 eller mindre tyder på. en farlig forsvinning av additiv reserver. Et basetall. på oils normally have a base number of 4 to 5. For any oil, a reading of 1 or less is indicative. a dangerous disappearance of additive reserves. A base number. on

2 betraktes generelt å gi en tilstrekkelig beskyttel-sesmargin i en bensinforbrenningsmaskin. 2 is generally considered to provide a sufficient margin of protection in a petrol combustion engine.

i in

Eksempel I Example I

En oljeprøve omfattende et vanlig selvbevegende smøre-middel og 10 vekt-% av smøremiddeladditivet i følge foreliggende oppfinnelse inneholdende ca. 97 til 98.5 vekt-% polypropylen glykol 20'00, ca. 0.5 til 1.0 vekt-% orto-fenylendiamin, ca. 0.5 til 1.0 wekt-% N-fenyl-2-naftylamine og ca. 0.5 til 1.0 vekt-% orto-trikrecylfosfat ble tatt fra veivakselhuset i metanol forbrenningsmaskin A som var kjørt tilsvarende 12.459 miles med et oljeskift ca. 2.000 før dette. Prøven inneholdt mindre enn 0.5 volum-% fortynnet brennstoff, 1.5 volum-% totale faste stoff er,. mindre é'nn 0.05 volum-% vann og hadde et totalt basetall på 3.70. An oil sample comprising a normal self-moving lubricant and 10% by weight of the lubricant additive according to the present invention containing approx. 97 to 98.5% by weight polypropylene glycol 20'00, approx. 0.5 to 1.0 wt% ortho-phenylenediamine, approx. 0.5 to 1.0 wt% N-phenyl-2-naphthylamine and approx. 0.5 to 1.0 wt% ortho-tricrecyl phosphate was taken from the crankcase in methanol combustion engine A which had been driven the equivalent of 12,459 miles with an oil change approx. 2,000 before this. The sample contained less than 0.5 volume-% diluted fuel, 1.5 volume-% total solids are,. less than 0.05% water by volume and had a total base number of 3.70.

Oljen hadde en begynnelsesviskositet på SAE 30 og viskositeten ble uforandret under prøvingen. The oil had an initial viscosity of SAE 30 and the viscosity remained unchanged during the test.

Basetallet på 3.70 var godt over det nødvendige basetall 2 hvilket tyder på at aromatiske primære og sekundære aminer ikke var forsvunnet og fortsatt var tilgjengelige for å nøytralisere maursyre og kullsyre og forhindre oksydasjon av metanol til formaldehyd og maursyre. The base number of 3.70 was well above the required base number of 2 indicating that aromatic primary and secondary amines had not disappeared and were still available to neutralize formic acid and carbonic acid and prevent oxidation of methanol to formaldehyde and formic acid.

Volumprosent fortynnet brennstoff og volumprosent totale faste stoffer lå godt under den gjennomsnittlige 3% verdi som tydet på at det ikke var noen økning i Volume percentage of diluted fuel and volume percentage of total solids were well below the average 3% value which indicated that there was no increase in

maskinslitasje. Volumprosent vann vax godt under den 0.1% verdi som ansees å være for stor og tyder således ikke på noen korrosjonsproblemer som skyldes vanninnhold. Viskositeten til oljeprøven var normal. machine wear. Volume percentage of water wax is well below the 0.1% value which is considered to be too large and thus does not indicate any corrosion problems due to water content. The viscosity of the oil sample was normal.

Spektrokjemiske analyser viste at de følgende mengder, av-slitasjeelementet av oljeprøven: 36 ppm jern, 66 ppm bly, 107 Spectrochemical analyzes showed that the following amounts of the wear element of the oil sample: 36 ppm iron, 66 ppm lead, 107

ppm kobber, 2 ppm krom, 4 ppm aluminium, 2 ppm nikkel og 12 ppm tinn. Maskinen var blitt kjørt tilsvarende 12.4 59 miles som er litt over innkjøringsdistansen på ca'. 10.000 miles. Prøven vil således målesbåde ppm copper, 2 ppm chromium, 4 ppm aluminium, 2 ppm nickel and 12 ppm tin. The machine had been driven the equivalent of 12.4 59 miles, which is slightly over the break-in distance of approx. 10,000 miles. The test will thus measure both

ved bruk av innkjørings- og etterinnkjørings kriterier. Det bør imidlertid bemerkes at avstanden er nærmere inn-kjøringsavstanden og således er innkjørings kriteriet et nøyaktigere mål på graden av maskinslitasje. using entry and post-entry criteria. However, it should be noted that the distance is closer to the run-in distance and thus the run-in criterion is a more accurate measure of the degree of machine wear.

I tabell 1 var innholdet av jern, bly, tinn, nikkel og aluminium i prøven mindre enn g'jennomsnittsinnholdet av disse slitasjeelementer ved innkjøringsavstanden. Kob-berinngholdet lå innenfor gjennomsnittsområdet ved inn-kjøringsavstanden. Krominnholdet var i den nedre enden av det gjennomsnittlige området ved innkjøringsavstanden. In table 1, the content of iron, lead, tin, nickel and aluminum in the sample was less than the average content of these wear elements at the drive-in distance. The Cob content was within the average range at the drive-in distance. Chromium content was at the lower end of the average range at run-in distance.

Ved innkjøringsavstanden lå bly, krom, nikkel og alumi-niums innholdene innenfor gjennomsnittsområdet. Jerninn-holdet lå på den nedre ende av gjennomsnittsområdet. At the drive-in distance, the lead, chrome, nickel and aluminum contents were within the average range. The iron content was at the lower end of the average range.

~Dataene for eksempel 1 illusterer'at smøremiddeladditivet ~The data for Example 1 illustrate'that the lubricant additive

følger foreliggende oppfinnelse og er virksomt i en metanol f orbrenningsmaskin ved. eller nær innkjøringsav-standen. follows the present invention and is effective in a methanol combustion engine at. or close to the drive-in distance.

Eksempel 2 . Example 2.

En ol.jéprøve omfattende det vanlige selvbevegende smøre-middel og 10 vekt-% smøremiddeladditiv brukt i Eksempel 1 ble tatt fra. veivakselhuset til den metanoldrevhé ma-. skin A som var blitt kjørt tilsvarende 14.034 miles An oil sample comprising the usual self-propagating lubricant and 10% by weight lubricant additive used in Example 1 was taken. the crankshaft housing of the methanol driven ma-. skin A which had been driven the equivalent of 14,034 miles

med et oljeskift ca. 3.575 miles før dette. Den hadde with an oil change approx. 3,575 miles before this. It had

en total basetall på 3.08. Basetallet på 3.08 var godt over det nødvendige basetall på 2 hvilket tydet på at de aromatiske primære og sekundære aminer ikke var forsvunnet og fortsatt var tilstede for å nøytralisere syrene og forhindre oksydasjon av metanol. a total base figure of 3.08. The base number of 3.08 was well above the required base number of 2 which indicated that the aromatic primary and secondary amines had not disappeared and were still present to neutralize the acids and prevent oxidation of methanol.

Spektrokjemisk analyse viste at de følgende mengder slitasjeelementer var tilstede i oljeprøven: 52 ppm jern, 64 ppm bly, 102 ppm kobber, 1 ppm krom, 5 ppm alumi- Spectrochemical analysis showed that the following amounts of wear elements were present in the oil sample: 52 ppm iron, 64 ppm lead, 102 ppm copper, 1 ppm chromium, 5 ppm aluminum

nium, 1 ppm nikkel og 10 ppm tinn. Da maskinen var kjørt nium, 1 ppm nickel and 10 ppm tin. When the machine was run

. I- . IN-

tilsvarende 14.034 miles, ble etterinnkjøringsbedømmel-ses kriteriene vist i tabel 1 anvendt. corresponding to 14,034 miles, the criteria shown in table 1 were used for the post-run-in assessment.

I tabell 1 lå jern, bly, krom, aluminium, nikkel og tinninnholdet i prøven godt innenfor gjennomsnitts området ved etterinnkjøringsavstanden. In table 1, the iron, lead, chrome, aluminium, nickel and tin content in the sample was well within the average range at the post-run-in distance.

Dataene i eksempel 1 og 2 innbefattet basetallene tyder på at smøremiddeladditivet i følge foreliggende oppfinnelse vil være effektive ved 4.000 miles oljeskiftinter-valler, og burde være effektive ved lengre oljeskiftin— tervaller opp til 6.000 miles. De lave slitasjelement-nivåer i eksempel 1 og 2 tyder, også på at maskin A var i god forfatning. The data in examples 1 and 2 including the base numbers indicate that the lubricant additive according to the present invention will be effective at 4,000 mile oil change intervals, and should be effective at longer oil change intervals up to 6,000 miles. The low wear element levels in examples 1 and 2 also indicate that machine A was in good condition.

- Eksempel 3. - Example 3.

En oljeprøve omfattende et vanlig selvbevegende smøre-■ middel og 10 vekt-% av smøremiddeladditivet som brukes An oil sample comprising a conventional self-propellant ■ lubricant and 10% by weight of the lubricant additive used

i eksempel 1 ble tatt fra veivakselhuset i metanoldrevet maskin B som var kjørt tilsvarende 31.724 miles in example 1 was taken from the crankshaft housing in methanol-powered machine B which had been driven the equivalent of 31,724 miles

med et oljeskift ca. 2.000 miles før dette. Oljeprøven inneholdt mindre enn 0.5 volum-% fortynnet brennstoff, with an oil change approx. 2,000 miles before this. The oil sample contained less than 0.5 volume-% diluted fuel,

ca. 5.0 volum-% totale faste stoffer,- mindre enn 0.05 volum-% vann og hadde totalt basetall på 2.38. Oljen hadde en begynnelsesviskositet på SAE 30 som forble u-endret under prøvingen. about. 5.0 volume-% total solids, less than 0.05 volume-% water and had a total base number of 2.38. The oil had an initial viscosity of SAE 30 which remained unchanged during the test.

Basetaller var større enn det nødvendige basetall på 2 som.tyder på at det var betydelige mengder primære og sekundære aromatiske aminer tilgjengelige for å nøy-tralisere syrer og forhindre oksydasjon av metanol. Base numbers were greater than the required base number of 2 indicating that significant amounts of primary and secondary aromatic amines were available to neutralize acids and prevent oxidation of methanol.

Volum prosent fortynnet brendsel og volum prosent totale faste stoffer var langt under den gjennomsnittlige 3% Volume percent of diluted fuel and volume percent of total solids were far below the average of 3%

verdi og tydet således ikke på noen økning i maskinslitasje. Volum prosent vann var også langt under. 0.1% yerdien som betraktes for for høy, og tyder således . value and thus did not indicate any increase in machine wear. Volume percent water was also far below. The 0.1% yerdi is considered too high, and thus indicates .

heller ikke på noen alvorlige korrosjonsproblemer på nor on any serious corrosion problems on

grunn av nærvær av vann. Faststoffmengden var større enn den gjennomsnittlige verdi på 3% som tyder på at mere enn gjennomsnittlig mengde faste stoffer er tilstede. Viskositeten i oljeprøven var normal. due to the presence of water. The amount of solids was greater than the average value of 3%, which indicates that more than the average amount of solids is present. The viscosity of the oil sample was normal.

De spektrokjemiske data viser at de følgende slitasjeelementer var tilstede i disse mengder: 47 ppm jern, 44 ppm bly, 83 ppm kobber, 17 ppm krom, 4 ppm aluminium, 2 ppm nikkel og 14 ppm tinn. Slitasjeelement-innholdet av jern, bly, aluminium og nikkel lå innenfor gjennomsnittsområdet i tabell 1 for etterinnkjørings-avstand. Således illustrerer eksempel 3 også at smøremiddeladditivet i følge foreliggende oppfinnelse er virkningsfullt i en metanol forbrenningsmaskin ved "etterinnkjørings" avstand. The spectrochemical data show that the following wear elements were present in these amounts: 47 ppm iron, 44 ppm lead, 83 ppm copper, 17 ppm chromium, 4 ppm aluminium, 2 ppm nickel and 14 ppm tin. The wear element content of iron, lead, aluminum and nickel was within the average range in table 1 for post-run-in distance. Thus, example 3 also illustrates that the lubricant additive according to the present invention is effective in a methanol combustion engine at "after break-in" distance.

. Eksempel 4. . Example 4.

En oljeprøve- omfattende et vanlig selvbevegende1 smøre-middel og 10 vekt-% smøremiddeladditiv brukt i eksempel An oil sample comprising a conventional self-propagating1 lubricant and 10% by weight lubricant additive used in Example

1 ble tatt fra veivakselhuset til metanoldrevet maskin B som var kjørt tilsvarende 33.307 miles med et olje skift ca. 3.583 miles før dette. Oljeprøven hadde et totalt basetall på 2.46. Basetallet er større enn det nødvendige basetall på 2 og tyder derfor på at det er betydelige mengder primære og sekundære aromatiske aminer tilgjengelige for nøytralisering av syrer og forhindring av oksydasjon og metanol. Spektrokjemiske data viser at de følgende slitasjeelementer er tilstede i disse mengder: 85 pp, jern, 63 ppm bly, 7 6 ppm kobber, 16 ppm krom, 3 ppm aluminium, 1 ppm nikkel og 11 ppm tinn. Slitasjeelement-innholdene av jern, bly, aluminium og nikkel lå innenfor gjennomsnitts området som er vist i tabell 1 for etterinnkjør-ings avstand. Kobberinnholdet var . 1 ppm høyere enn gjennomsnitts mengden, men ikke meget mindre enn 100 ppm 1 was taken from the crankshaft housing of methanol-powered machine B which had been driven the equivalent of 33,307 miles with an oil shift approx. 3,583 miles before this. The oil sample had a total base number of 2.46. The base number is greater than the required base number of 2 and therefore indicates that there are significant amounts of primary and secondary aromatic amines available to neutralize acids and prevent oxidation and methanol. Spectrochemical data show that the following wear elements are present in these amounts: 85 pp, iron, 63 ppm lead, 7 6 ppm copper, 16 ppm chromium, 3 ppm aluminum, 1 ppm nickel and 11 ppm tin. The wear element contents of iron, lead, aluminum and nickel were within the average range shown in table 1 for the run-in distance. The copper content was . 1 ppm higher than the average amount, but not much less than 100 ppm

som betraktes som for høyt. Således illustrerer eksem-; which is considered too high. Thus exem- illustrates;

pel 4 at smøremiddeladditivet i følge foreliggende opp- pel 4 that the lubricant additive according to the present op-

f.innelse er virkningsfullt i en metanolforbrennings-maskin ved etterinnkjøringsavstand, og at det ville være effektiv ved 4000 miles oljeskift intervaller. f.filling is effective in a methanol combustion engine at break-in distance, and that it would be effective at 4000 mile oil change intervals.

Eksempel 5. Example 5.

En oljeprøve omfattende et vanlig selvbevegende smøre-middel og 10 vekt-% smøremiddeladditiv brukt i eksempel An oil sample comprising a common self-propellant lubricant and 10% by weight lubricant additive used in Example

1 ble tatt fra veivakselhuset til metanol drevet maskin 1 was taken from the crankshaft housing of the methanol fueled machine

Bsom var kjørt tilsvarende 34.815 miles med et oljeskift ca. 5.091 miles forut for dette. Oljeprøven hadde et totalt basetall på 1-68. Selv om basetallet er litt mindre enn basetallet 2, angir det fortsatt at det foreligger tilstrekkelige mengder primære og' sekundære'aromatiske aminer for nøytralisering av syrer og forhindring av oksydasjon av metanol. B which had been driven the equivalent of 34,815 miles with an oil change approx. 5,091 miles prior to this. The oil sample had a total base number of 1-68. Although the base number is slightly less than base number 2, it still indicates that there are sufficient amounts of primary and 'secondary' aromatic amines to neutralize acids and prevent oxidation of methanol.

Spektrokjemiske data viser at de følgende slitasjeelementer forelå i disse mengder: 77 ppm jern, 160 ppm bly, 67 ppm kobber, 10 ppm krom, 0 ppm aluminium, Spectrochemical data show that the following wear elements were present in these amounts: 77 ppm iron, 160 ppm lead, 67 ppm copper, 10 ppm chromium, 0 ppm aluminum,

1 ppm nikkel og 0 ppm tinn. Slitasjeelementinhholdet 1 ppm nickel and 0 ppm tin. The wear element content

av jern, kobber og nikkel lå innenfor gjennomsnittsområdet for etterinnkjøringsavstand som vist i tabell 1. Mindre enn gjennomsnittsmengder av aluminium og tinn ble funnet i prøven. Således illustrerer eksempel 5 at smøremiddeladditivet i følge foreliggende oppfinnelse er virkningsfullt i en metanoldrevet maskin ved etter-innkjøringsavstand ved 5.000 mile oljeskift intervaller. of iron, copper and nickel were within the average range for post-run-in distance as shown in table 1. Less than average amounts of aluminum and tin were found in the sample. Thus, example 5 illustrates that the lubricant additive according to the present invention is effective in a methanol-powered machine at post-run-in distance at 5,000 mile oil change intervals.

Maskin B fra eksemplene 3, 4 og 5 var i dårlig tilstand på begynnelsen av utprøvingen som det fremgikk av de høye kromnivåer 2.000 miles etter oljeskiftet. Slitasje-eleme.nt innholdsnivåene og basetallene i eksemplene 3, 4 og 5 forandret seg ikke særlig under forsøksperioden, Machine B of Examples 3, 4 and 5 was in poor condition at the start of the trial as evidenced by the high chromium levels 2,000 miles after the oil change. The wear-eleme.nt content levels and base numbers in examples 3, 4 and 5 did not change significantly during the trial period,

hvilket tydet på at smøremiddeladditivet i følge forelig- : gende oppfinnelse er virkningsfullt også i maskiner i j dårlig forfatning. which indicated that the lubricant additive according to the present invention is also effective in machines in poor condition.

Eksempel 6. Example 6.

Oljeprøver ble tatt fra en metanoldrevet selvbevegende maskin før maskinen ble kjørt og 20 timer etter kontinuerlig kjøring av maskinen i tre prøveforsøk. I det Oil samples were taken from a methanol-powered self-propelled machine before running the machine and 20 hours after continuous running of the machine in three test trials. In that

første prøveforsøket inneholdt oljen i maskinen ikke noe smøremiddeladditiv. I det andre og tredje prøve-forsøkene inneholdt oljen i maskinen 10 vékt-% smøre-middeladditiv i følge foreliggende oppfinnelse. De følgende slitasjeelemeht-data erholdtes ved spéktro-kjemisk analyse. in the first trial, the oil in the machine did not contain any lubricant additive. In the second and third trials, the oil in the machine contained 10% by weight of lubricant additive according to the present invention. The following wear element data were obtained by spectrochemical analysis.

Når prøveforsøk 1 ble sammenlignet med prøveforsøkene When trial 1 was compared to the trial trials

2 og 3, tydet slitasjeelement-innholdet på at uten smø-remiddeladditiv i følge foreliggende-oppfinnelse får en metanol forbrenningsmaskin en betydelig økning 2 and 3, the wear element content indicated that without a lubricant additive according to the present invention, a methanol combustion engine gets a significant increase

av maskinslitasje. Økningen er spesielt tydelig utifrå jerninnholdet.I prøveforsøk 1 forelå etter 20 timers kontinuerlig.kjøring 125 ppm jern mens i prøveforsøkene 2 og 3 forelå etter 20 timers kontinuerlig kjøring jbare 14 og 21 ppm jern henholdsvis. of machine wear. The increase is particularly evident from the iron content. In test trial 1, after 20 hours of continuous driving, 125 ppm of iron were present, while in test trials 2 and 3, after 20 hours of continuous driving, only 14 and 21 ppm of iron were present, respectively.

I prøveforsøk 1 økte generelt mengden av alle slitasjeelementer etter 20 timers maskinkjøring, mens i prøve-forsøk 2 forble innholdet av bly, krom, aluminium og nikkel det samme, mens kobberinnholdet avtok og tinninnholdet økte med bare 2 ppm. I prøveforsøk 3 forble bly, aluminium, nikkel og tinninnholdet det samme, mens kobberinnholdet avtok og krominnholdet øket med 1 ppm. Således kan man konkludere med at en.metanol-forbrennings maskin som bruker smøremiddeladdi-tiv i følge foreliggende oppfinnelse vil ha mindre maskinslitasje enn en uten smøremiddeladditiv i følge foreliggende oppfinnelse. In test run 1, the amount of all wear elements generally increased after 20 hours of machine operation, while in test run 2 the content of lead, chromium, aluminum and nickel remained the same, while the copper content decreased and the tin content increased by only 2 ppm. In test run 3, the lead, aluminium, nickel and tin content remained the same, while the copper content decreased and the chromium content increased by 1 ppm. Thus, one can conclude that a methanol combustion engine that uses a lubricant additive according to the present invention will have less machine wear than one without a lubricant additive according to the present invention.

Claims (9)

1. Smøremiddeladditiv for bruk med alkoholbrenn-stof f erkarakterisert vedat det omfatter en hoveddel av et polyalkylenglykol av en alken med 2 til 3 carbonatomer og mindre mengder av et aromatisk primært amin, et aromatisk sekundært amin.og en fosforsyreester.1. Lubricant additive for use with alcohol fuel is characterized in that it comprises a major part of a polyalkylene glycol of an alkene with 2 to 3 carbon atoms and smaller amounts of an aromatic primary amine, an aromatic secondary amine and a phosphoric acid ester. 2. Smøremiddeladditiv for bruk med alkohol brennstoff ferkarakterisert vedat det omfatter ca. 93.0 til 98.5 vekt-% av en polypropylenglykol, ca.2. Lubricant additive for use with alcohol fuel, characterized in that it includes approx. 93.0 to 98.5% by weight of a polypropylene glycol, approx. 0.5 til 2.0 vekf-% av et aromatisk primært amin, ca.0.5 to 2.0% by weight of an aromatic primary amine, approx. 0.5 til 2.0 vekt-% av et aromatisk sekundært amin, ca.0.5 to 2.0% by weight of an aromatic secondary amine, approx. 0.5 til 2.0 vekt-% av en fosforsyreester.0.5 to 2.0% by weight of a phosphoric acid ester. 3. Smøremiddeladditiv i følge krav 1.karakterisert vedat polyalkylenglykolen av et alken med 2 til 3 karbonatomer er polypropylenglykol 2000.3. Lubricant additive according to claim 1. characterized in that the polyalkylene glycol of an alkene with 2 to 3 carbon atoms is polypropylene glycol 2000. 4. Smøremiddeladditiv.i følge krav 2karakteri-sertvedat polypropylenglykolen er polypropylenglykol 2000.4. Lubricant additive according to claim 2, characterized in that the polypropylene glycol is polypropylene glycol 2000. 5. Smøremiddeladditivet i følge krav 1 eller 2karakterisert vedat det aromatiske primære amin er orto-fenylendiamin.5. The lubricant additive according to claim 1 or 2, characterized in that the aromatic primary amine is ortho-phenylenediamine. 6. Smøremiddeladditiv i følge krav 1 eller 2karakterisert vedat det sekundære amin er N-fenyl-2-naftylamin.6. Lubricant additive according to claim 1 or 2, characterized in that the secondary amine is N-phenyl-2-naphthylamine. 7. Smøremiddeladditiv i følge krav 1 eller 2karakterisert vedat fosforsyreesteren er orto-trikrecylfosfat.7. Lubricant additive according to claim 1 or 2, characterized in that the phosphoric acid ester is ortho-tricrecyl phosphate. 8. Smøremiddeladditiv i følge krav 2karakterisert vedat polypropylenglykol innholdet er ca.8. Lubricant additive according to claim 2, characterized in that the polypropylene glycol content is approx. 97.0 til 98.5 vekt-%, det aromatiske primære amininn- . holdet er ca. 0.5 til 1.0 vekt-%, det aromatiske sekun dære amininnholdet er ca. 0.5 til 1.0 vekt-% og fosforsyreester innholdet er ca. 0,5.til 1.0 vekt-%.97.0 to 98.5% by weight, the aromatic primary amine in- . the team is approx. 0.5 to 1.0% by weight, the aromatic sec the amine content is approx. 0.5 to 1.0% by weight and the phosphoric acid ester content is approx. 0.5 to 1.0% by weight. 9. Smøremiddeladditiv for bruk med alkoholbrennstofferkarakterisert vedat det omfatter ca.9. Lubricant additive for use with alcohol fuels, characterized in that it comprises approx. 97-98.5 vekt-% polypropylenglykol 2000, ca. 0.5 til 1.0 vekt-% orto-fenylendiamin, ca. 0.5 til 1.0 vekt-% N-fenyl-2-naftylamin og ca. 0.5 til 1.0 vekt-% Orto-trikrecylfosfat.97-98.5% by weight polypropylene glycol 2000, approx. 0.5 to 1.0 wt% ortho-phenylenediamine, approx. 0.5 to 1.0% by weight N-phenyl-2-naphthylamine and approx. 0.5 to 1.0% by weight Ortho-tricrecyl phosphate.
NO841283A 1983-09-16 1984-03-30 LUBRICANT FOR USE IN CONNECTION WITH ALCOHOL FUELS NO841283L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US53325683A 1983-09-16 1983-09-16

Publications (1)

Publication Number Publication Date
NO841283L true NO841283L (en) 1985-03-18

Family

ID=24125169

Family Applications (1)

Application Number Title Priority Date Filing Date
NO841283A NO841283L (en) 1983-09-16 1984-03-30 LUBRICANT FOR USE IN CONNECTION WITH ALCOHOL FUELS

Country Status (10)

Country Link
JP (1) JPS6067596A (en)
AU (1) AU2584884A (en)
BR (1) BR8401482A (en)
CA (1) CA1202613A (en)
DE (1) DE3417869C2 (en)
FR (1) FR2557589B1 (en)
GB (1) GB2146657B (en)
IL (1) IL71311A0 (en)
NO (1) NO841283L (en)
SE (1) SE8401524L (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3343816C2 (en) * 1983-12-03 1986-12-04 UK Mineralölwerke Wenzel & Weidmann GmbH, 5180 Eschweiler lubricant
IN163879B (en) * 1984-09-17 1988-12-03 Bank Of America
AU5224386A (en) * 1985-02-01 1986-08-07 Bankamerica Corp. Lubricant for alcohol fuel engines
DK0567212T3 (en) * 1992-04-21 2003-04-28 Baker Hughes Inc Reaction product of nitrogen bases and phosphate esters as corrosion inhibitors
US5393464A (en) * 1993-11-02 1995-02-28 Martin; Richard L. Biodegradable corrosion inhibitors of low toxicity
EP1439217B1 (en) * 2001-10-12 2012-06-20 Nippon Oil Corporation Lubricating oil composition for internal combustion engine
US7704931B2 (en) 2004-12-10 2010-04-27 Chemtura Corporation Lubricant compositions stabilized with multiple antioxidants
JP2007009123A (en) * 2005-07-01 2007-01-18 Nippon Oil Corp Lubricating oil composition for oxygen-containing fuel engine
US8703682B2 (en) * 2009-10-29 2014-04-22 Infineum International Limited Lubrication and lubricating oil compositions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652411A (en) * 1969-12-04 1972-03-28 Mobil Oil Corp Polyglycol base lubricant
GB1393366A (en) * 1971-10-06 1975-05-07 Exxon Research Engineering Co Antioxidants
US3888776A (en) * 1973-02-12 1975-06-10 Ore Lube Corp Two-cycle engine oil

Also Published As

Publication number Publication date
SE8401524L (en) 1985-03-17
GB2146657A (en) 1985-04-24
DE3417869A1 (en) 1985-05-23
JPH0244880B2 (en) 1990-10-05
BR8401482A (en) 1985-06-11
SE8401524D0 (en) 1984-03-20
CA1202613A (en) 1986-04-01
GB2146657B (en) 1986-10-22
GB8408701D0 (en) 1984-05-16
AU2584884A (en) 1985-03-21
FR2557589A1 (en) 1985-07-05
IL71311A0 (en) 1984-06-29
DE3417869C2 (en) 1987-04-02
FR2557589B1 (en) 1987-11-20
JPS6067596A (en) 1985-04-17

Similar Documents

Publication Publication Date Title
CN101115824B (en) Lubricant composition for a four-stroke marine engine
US5505867A (en) Fuel and Lubrication oil additive
CN104342266B (en) Bus gas engine special lube
US4493776A (en) Lubricating oil composition with supplemental rust inhibitor
US4025316A (en) Mannich base reaction products useful as liquid hydrocarbon additives
NO841283L (en) LUBRICANT FOR USE IN CONNECTION WITH ALCOHOL FUELS
US3955938A (en) Gasoline composition containing a sodium additive
Van Dam et al. TBN Retention-Are We Missing the Point?
NO860348L (en) FUEL ADDITIVE.
Gallopoulos Engine oil thickening in high-speed passenger car service
Hutchings et al. Heavy duty diesel deposit control.... prevention as a cure
NO851045L (en) LUBRICANT ADDITION FOR ALCOHOL FUELS.
Richman et al. An engine oil formulated for optimized engine performance
Watson et al. Additives—The Right Stuff for Automotive Engine Oils
EP0192323B1 (en) Gasoline compositions for automotive vehicles
Edmisten et al. Three Aspects of Motor Oil Thickening
Pless The Effects of Some Engine, Fuel, and Oil Additive Factors on Engine Rusting in Short-Trip Service
Kaleli et al. Used oil analysis and study of oil drain period in gasoline engine
West et al. Wear mechanisms in moderate temperature gasoline engine service
CN101914397A (en) Reduce the method for combustion chamber deposit flaking
Buck et al. Lubrication studies in a methanol-fueled spark ignition engine
US20150376540A1 (en) Multi purpose additive for car engine
US4487658A (en) Aqueous neutralizing and lubricating composition for diesel engines
CN117586816A (en) Lubricating oil additive and composition for flexible fuel engine
Wills Lubricating oils