EP1439217B1 - Lubricating oil composition for internal combustion engine - Google Patents
Lubricating oil composition for internal combustion engine Download PDFInfo
- Publication number
- EP1439217B1 EP1439217B1 EP02770233A EP02770233A EP1439217B1 EP 1439217 B1 EP1439217 B1 EP 1439217B1 EP 02770233 A EP02770233 A EP 02770233A EP 02770233 A EP02770233 A EP 02770233A EP 1439217 B1 EP1439217 B1 EP 1439217B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mass
- metal
- alkaline earth
- percent
- earth metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 123
- 239000010687 lubricating oil Substances 0.000 title claims abstract description 71
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 25
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 88
- 229910052751 metal Inorganic materials 0.000 claims abstract description 60
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 42
- 239000003599 detergent Substances 0.000 claims abstract description 42
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 41
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 40
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims abstract description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000002199 base oil Substances 0.000 claims abstract description 20
- 239000003963 antioxidant agent Substances 0.000 claims abstract description 17
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 17
- 239000011574 phosphorus Substances 0.000 claims abstract description 17
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229960002317 succinimide Drugs 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 150000001412 amines Chemical class 0.000 claims abstract description 9
- -1 alkaline earth metal salicylate Chemical class 0.000 claims description 113
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 75
- 229910052717 sulfur Inorganic materials 0.000 claims description 75
- 239000011593 sulfur Substances 0.000 claims description 75
- 239000002184 metal Substances 0.000 claims description 59
- 125000004432 carbon atom Chemical group C* 0.000 claims description 36
- 125000000217 alkyl group Chemical group 0.000 claims description 29
- 239000003795 chemical substances by application Substances 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 19
- 229960001860 salicylate Drugs 0.000 claims description 18
- 235000006708 antioxidants Nutrition 0.000 claims description 16
- 125000003118 aryl group Chemical group 0.000 claims description 16
- 230000001050 lubricating effect Effects 0.000 claims description 15
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 13
- 239000000446 fuel Substances 0.000 claims description 7
- 239000000344 soap Substances 0.000 claims description 7
- 239000001226 triphosphate Substances 0.000 claims description 4
- 235000011178 triphosphate Nutrition 0.000 claims description 4
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 claims description 4
- 239000002585 base Substances 0.000 abstract description 47
- 230000003078 antioxidant effect Effects 0.000 abstract description 10
- 125000001183 hydrocarbyl group Chemical group 0.000 abstract 1
- 230000014759 maintenance of location Effects 0.000 abstract 1
- 239000002530 phenolic antioxidant Substances 0.000 abstract 1
- 150000005691 triesters Chemical class 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 20
- 239000000654 additive Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 10
- 239000011575 calcium Substances 0.000 description 10
- 229910052791 calcium Inorganic materials 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 10
- 230000007935 neutral effect Effects 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 8
- 125000003342 alkenyl group Chemical group 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 150000004678 hydrides Chemical class 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 235000010338 boric acid Nutrition 0.000 description 6
- 229960002645 boric acid Drugs 0.000 description 6
- AVVIDTZRJBSXML-UHFFFAOYSA-L calcium;2-carboxyphenolate;dihydrate Chemical compound O.O.[Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O AVVIDTZRJBSXML-UHFFFAOYSA-L 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 239000006078 metal deactivator Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229920000768 polyamine Polymers 0.000 description 6
- 229920001083 polybutene Polymers 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 5
- 239000004327 boric acid Substances 0.000 description 5
- 238000007865 diluting Methods 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 150000002430 hydrocarbons Chemical group 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 239000002480 mineral oil Substances 0.000 description 5
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 5
- 229940093635 tributyl phosphate Drugs 0.000 description 5
- 239000004711 α-olefin Substances 0.000 description 5
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- 229920002367 Polyisobutene Polymers 0.000 description 4
- 150000004996 alkyl benzenes Chemical class 0.000 description 4
- 230000003064 anti-oxidating effect Effects 0.000 description 4
- 159000000007 calcium salts Chemical class 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 235000010446 mineral oil Nutrition 0.000 description 4
- 239000010705 motor oil Substances 0.000 description 4
- 239000010689 synthetic lubricating oil Substances 0.000 description 4
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 4
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 3
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Chemical group CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- 101100208720 Homo sapiens USP5 gene Proteins 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 238000006683 Mannich reaction Methods 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- YGSDEFSMJLZEOE-UHFFFAOYSA-N Salicylic acid Natural products OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 3
- 102100021017 Ubiquitin carboxyl-terminal hydrolase 5 Human genes 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 125000002877 alkyl aryl group Chemical group 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 150000001639 boron compounds Chemical class 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000010688 mineral lubricating oil Substances 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 229960004889 salicylic acid Drugs 0.000 description 3
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 150000003460 sulfonic acids Chemical class 0.000 description 3
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- SZAQZZKNQILGPU-UHFFFAOYSA-N 2-[1-(2-hydroxy-3,5-dimethylphenyl)-2-methylpropyl]-4,6-dimethylphenol Chemical compound C=1C(C)=CC(C)=C(O)C=1C(C(C)C)C1=CC(C)=CC(C)=C1O SZAQZZKNQILGPU-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 101100352919 Caenorhabditis elegans ppm-2 gene Proteins 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- QCOGKXLOEWLIDC-UHFFFAOYSA-N N-methylbutylamine Chemical compound CCCCNC QCOGKXLOEWLIDC-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- CFXCGWWYIDZIMU-UHFFFAOYSA-N Octyl-3,5-di-tert-butyl-4-hydroxy-hydrocinnamate Chemical compound CCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 CFXCGWWYIDZIMU-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 2
- GTVWRXDRKAHEAD-UHFFFAOYSA-N Tris(2-ethylhexyl) phosphate Chemical compound CCCCC(CC)COP(=O)(OCC(CC)CCCC)OCC(CC)CCCC GTVWRXDRKAHEAD-UHFFFAOYSA-N 0.000 description 2
- TWCLORIKEADWQM-UHFFFAOYSA-M [Zn+].CC(C)CC(C)OP([O-])(=S)SC(C)CC(C)C Chemical compound [Zn+].CC(C)CC(C)OP([O-])(=S)SC(C)CC(C)C TWCLORIKEADWQM-UHFFFAOYSA-M 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 238000004517 catalytic hydrocracking Methods 0.000 description 2
- 125000003901 ceryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- AUTNMGCKBXKHNV-UHFFFAOYSA-P diazanium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [NH4+].[NH4+].O1B([O-])OB2OB([O-])OB1O2 AUTNMGCKBXKHNV-UHFFFAOYSA-P 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- CXVAUNIKYTWEFC-UHFFFAOYSA-N dimethoxyborinic acid Chemical compound COB(O)OC CXVAUNIKYTWEFC-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 125000000755 henicosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002818 heptacosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- KEMQGTRYUADPNZ-UHFFFAOYSA-N heptadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)=O KEMQGTRYUADPNZ-UHFFFAOYSA-N 0.000 description 2
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 125000002463 lignoceryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 125000002819 montanyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001802 myricyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- GVWISOJSERXQBM-UHFFFAOYSA-N n-methylpropan-1-amine Chemical compound CCCNC GVWISOJSERXQBM-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 125000002465 nonacosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- ISYWECDDZWTKFF-UHFFFAOYSA-N nonadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCCC(O)=O ISYWECDDZWTKFF-UHFFFAOYSA-N 0.000 description 2
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 125000002460 pentacosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- DPBLXKKOBLCELK-UHFFFAOYSA-N pentan-1-amine Chemical compound CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 2
- 125000002469 tricosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- SZHOJFHSIKHZHA-UHFFFAOYSA-N tridecanoic acid Chemical compound CCCCCCCCCCCCC(O)=O SZHOJFHSIKHZHA-UHFFFAOYSA-N 0.000 description 2
- 229960001124 trientine Drugs 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- SZOLUXDHHKCYKT-ONEGZZNKSA-N (e)-but-1-en-1-amine Chemical compound CC\C=C\N SZOLUXDHHKCYKT-ONEGZZNKSA-N 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical compound C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 1
- RAADJDWNEAXLBL-UHFFFAOYSA-N 1,2-di(nonyl)naphthalene Chemical compound C1=CC=CC2=C(CCCCCCCCC)C(CCCCCCCCC)=CC=C21 RAADJDWNEAXLBL-UHFFFAOYSA-N 0.000 description 1
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical class C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- JPZYXGPCHFZBHO-UHFFFAOYSA-N 1-aminopentadecane Chemical compound CCCCCCCCCCCCCCCN JPZYXGPCHFZBHO-UHFFFAOYSA-N 0.000 description 1
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- UHZXWIBGBKXAML-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol;ethyl hexanoate Chemical compound OCC(CO)(CO)CO.CCCCCC(=O)OCC UHZXWIBGBKXAML-UHFFFAOYSA-N 0.000 description 1
- OPLCSTZDXXUYDU-UHFFFAOYSA-N 2,4-dimethyl-6-tert-butylphenol Chemical compound CC1=CC(C)=C(O)C(C(C)(C)C)=C1 OPLCSTZDXXUYDU-UHFFFAOYSA-N 0.000 description 1
- GSOYMOAPJZYXTB-UHFFFAOYSA-N 2,6-ditert-butyl-4-(3,5-ditert-butyl-4-hydroxyphenyl)phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 GSOYMOAPJZYXTB-UHFFFAOYSA-N 0.000 description 1
- UDFARPRXWMDFQU-UHFFFAOYSA-N 2,6-ditert-butyl-4-[(3,5-ditert-butyl-4-hydroxyphenyl)methylsulfanylmethyl]phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CSCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 UDFARPRXWMDFQU-UHFFFAOYSA-N 0.000 description 1
- QHPKIUDQDCWRKO-UHFFFAOYSA-N 2,6-ditert-butyl-4-[2-(3,5-ditert-butyl-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C(C)(C)C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 QHPKIUDQDCWRKO-UHFFFAOYSA-N 0.000 description 1
- VRMHHVOBVLFRFB-UHFFFAOYSA-N 2-(2-cyanoethylsulfanylmethyl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1CSCCC#N VRMHHVOBVLFRFB-UHFFFAOYSA-N 0.000 description 1
- NWPCFCBFUXXJIE-UHFFFAOYSA-N 2-(hydroxymethylamino)ethanol Chemical compound OCCNCO NWPCFCBFUXXJIE-UHFFFAOYSA-N 0.000 description 1
- XQESJWNDTICJHW-UHFFFAOYSA-N 2-[(2-hydroxy-5-methyl-3-nonylphenyl)methyl]-4-methyl-6-nonylphenol Chemical compound CCCCCCCCCC1=CC(C)=CC(CC=2C(=C(CCCCCCCCC)C=C(C)C=2)O)=C1O XQESJWNDTICJHW-UHFFFAOYSA-N 0.000 description 1
- VFBJXXJYHWLXRM-UHFFFAOYSA-N 2-[2-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]ethylsulfanyl]ethyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCCSCCOC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 VFBJXXJYHWLXRM-UHFFFAOYSA-N 0.000 description 1
- IJPXXOVHDMEUSR-UHFFFAOYSA-N 2-[2-hydroxyethyl(undecyl)amino]ethanol Chemical compound CCCCCCCCCCCN(CCO)CCO IJPXXOVHDMEUSR-UHFFFAOYSA-N 0.000 description 1
- BITAPBDLHJQAID-KTKRTIGZSA-N 2-[2-hydroxyethyl-[(z)-octadec-9-enyl]amino]ethanol Chemical compound CCCCCCCC\C=C/CCCCCCCCN(CCO)CCO BITAPBDLHJQAID-KTKRTIGZSA-N 0.000 description 1
- AKNMPWVTPUHKCG-UHFFFAOYSA-N 2-cyclohexyl-6-[(3-cyclohexyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound OC=1C(C2CCCCC2)=CC(C)=CC=1CC(C=1O)=CC(C)=CC=1C1CCCCC1 AKNMPWVTPUHKCG-UHFFFAOYSA-N 0.000 description 1
- LLEFDCACDRGBKD-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;nonanoic acid Chemical compound CCC(CO)(CO)CO.CCCCCCCCC(O)=O LLEFDCACDRGBKD-UHFFFAOYSA-N 0.000 description 1
- CWTQBXKJKDAOSQ-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;octanoic acid Chemical compound CCC(CO)(CO)CO.CCCCCCCC(O)=O CWTQBXKJKDAOSQ-UHFFFAOYSA-N 0.000 description 1
- YFHKLSPMRRWLKI-UHFFFAOYSA-N 2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenyl)sulfanyl-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(SC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 YFHKLSPMRRWLKI-UHFFFAOYSA-N 0.000 description 1
- HXIQYSLFEXIOAV-UHFFFAOYSA-N 2-tert-butyl-4-(5-tert-butyl-4-hydroxy-2-methylphenyl)sulfanyl-5-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1SC1=CC(C(C)(C)C)=C(O)C=C1C HXIQYSLFEXIOAV-UHFFFAOYSA-N 0.000 description 1
- BGWNOSDEHSHFFI-UHFFFAOYSA-N 2-tert-butyl-4-[(3-tert-butyl-4-hydroxy-5-methylphenyl)methylsulfanylmethyl]-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CSCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 BGWNOSDEHSHFFI-UHFFFAOYSA-N 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- LZHCVNIARUXHAL-UHFFFAOYSA-N 2-tert-butyl-4-ethylphenol Chemical compound CCC1=CC=C(O)C(C(C)(C)C)=C1 LZHCVNIARUXHAL-UHFFFAOYSA-N 0.000 description 1
- MQWCQFCZUNBTCM-UHFFFAOYSA-N 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylphenyl)sulfanyl-4-methylphenol Chemical compound CC(C)(C)C1=CC(C)=CC(SC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O MQWCQFCZUNBTCM-UHFFFAOYSA-N 0.000 description 1
- YKUUUTAPMKKPTK-UHFFFAOYSA-N 2-tert-butyl-6-[2-(3-tert-butyl-2-hydroxy-5-methylphenyl)ethyl]-4-methylphenol Chemical compound CC(C)(C)C1=CC(C)=CC(CCC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O YKUUUTAPMKKPTK-UHFFFAOYSA-N 0.000 description 1
- BKZXZGWHTRCFPX-UHFFFAOYSA-N 2-tert-butyl-6-methylphenol Chemical compound CC1=CC=CC(C(C)(C)C)=C1O BKZXZGWHTRCFPX-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- XDVOLDOITVSJGL-UHFFFAOYSA-N 3,7-dihydroxy-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound O1B(O)OB2OB(O)OB1O2 XDVOLDOITVSJGL-UHFFFAOYSA-N 0.000 description 1
- ALKCLFLTXBBMMP-UHFFFAOYSA-N 3,7-dimethylocta-1,6-dien-3-yl hexanoate Chemical compound CCCCCC(=O)OC(C)(C=C)CCC=C(C)C ALKCLFLTXBBMMP-UHFFFAOYSA-N 0.000 description 1
- WPMYUUITDBHVQZ-UHFFFAOYSA-M 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=CC(CCC([O-])=O)=CC(C(C)(C)C)=C1O WPMYUUITDBHVQZ-UHFFFAOYSA-M 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- BLFRQYKZFKYQLO-UHFFFAOYSA-N 4-aminobutan-1-ol Chemical compound NCCCCO BLFRQYKZFKYQLO-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- BXGHQGSNGLGEEI-UHFFFAOYSA-N B([O-])([O-])[O-].B([O-])(O)O.B([O-])([O-])[O-].B([O-])([O-])[O-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2] Chemical compound B([O-])([O-])[O-].B([O-])(O)O.B([O-])([O-])[O-].B([O-])([O-])[O-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2] BXGHQGSNGLGEEI-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WJYIASZWHGOTOU-UHFFFAOYSA-N Heptylamine Chemical compound CCCCCCCN WJYIASZWHGOTOU-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241000158728 Meliaceae Species 0.000 description 1
- NKGSHSILLGXYDW-UHFFFAOYSA-N N-undecylundecan-1-amine Chemical compound CCCCCCCCCCCNCCCCCCCCCCC NKGSHSILLGXYDW-UHFFFAOYSA-N 0.000 description 1
- OTRAYOBSWCVTIN-UHFFFAOYSA-N OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N Chemical compound OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N OTRAYOBSWCVTIN-UHFFFAOYSA-N 0.000 description 1
- BKIFLZBXPJKAJF-UHFFFAOYSA-N OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N Chemical compound OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N BKIFLZBXPJKAJF-UHFFFAOYSA-N 0.000 description 1
- XQMXIXLDOCMQSL-UHFFFAOYSA-N OCCCCCCCCCCC=C/CCCCCCCCN1C=NCC1 Chemical compound OCCCCCCCCCCC=C/CCCCCCCCN1C=NCC1 XQMXIXLDOCMQSL-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000005643 Pelargonic acid Substances 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- URGQBRTWLCYCMR-UHFFFAOYSA-N [3-hydroxy-2,2-bis(hydroxymethyl)propyl] nonanoate Chemical compound CCCCCCCCC(=O)OCC(CO)(CO)CO URGQBRTWLCYCMR-UHFFFAOYSA-N 0.000 description 1
- YLSLKNMMMXLUNK-UHFFFAOYSA-N [Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] Chemical compound [Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] YLSLKNMMMXLUNK-UHFFFAOYSA-N 0.000 description 1
- FZQSLXQPHPOTHG-UHFFFAOYSA-N [K+].[K+].O1B([O-])OB2OB([O-])OB1O2 Chemical compound [K+].[K+].O1B([O-])OB2OB([O-])OB1O2 FZQSLXQPHPOTHG-UHFFFAOYSA-N 0.000 description 1
- MXWVLJGUIUZJSQ-UHFFFAOYSA-N [K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] Chemical compound [K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] MXWVLJGUIUZJSQ-UHFFFAOYSA-N 0.000 description 1
- XVDCMYGYCHKSOH-UHFFFAOYSA-N [K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] Chemical compound [K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] XVDCMYGYCHKSOH-UHFFFAOYSA-N 0.000 description 1
- MZMIWABCFXURCX-UHFFFAOYSA-N [Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].OB(O)[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] Chemical compound [Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].OB(O)[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] MZMIWABCFXURCX-UHFFFAOYSA-N 0.000 description 1
- XLLZUKPXODPNPP-UHFFFAOYSA-N [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] XLLZUKPXODPNPP-UHFFFAOYSA-N 0.000 description 1
- BUWURQPWRDROFU-UHFFFAOYSA-N [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] BUWURQPWRDROFU-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005119 alkyl cycloalkyl group Chemical group 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 125000005263 alkylenediamine group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229940111121 antirheumatic drug quinolines Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 150000003939 benzylamines Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- SAOKZLXYCUGLFA-UHFFFAOYSA-N bis(2-ethylhexyl) adipate Chemical compound CCCCC(CC)COC(=O)CCCCC(=O)OCC(CC)CCCC SAOKZLXYCUGLFA-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- NOXNXVPLDITALF-UHFFFAOYSA-N butoxyboronic acid Chemical compound CCCCOB(O)O NOXNXVPLDITALF-UHFFFAOYSA-N 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- GTYLWUZKRJYAJZ-UHFFFAOYSA-N dibutoxyborinic acid Chemical compound CCCCOB(O)OCCCC GTYLWUZKRJYAJZ-UHFFFAOYSA-N 0.000 description 1
- MEKUERBZVYOCSL-UHFFFAOYSA-N dicalcium dioxidoboranyloxy(dioxido)borane Chemical compound [Ca+2].[Ca+2].[O-]B([O-])OB([O-])[O-] MEKUERBZVYOCSL-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- PSHMSSXLYVAENJ-UHFFFAOYSA-N dilithium;[oxido(oxoboranyloxy)boranyl]oxy-oxoboranyloxyborinate Chemical compound [Li+].[Li+].O=BOB([O-])OB([O-])OB=O PSHMSSXLYVAENJ-UHFFFAOYSA-N 0.000 description 1
- HQYGGVLSRVLMEE-UHFFFAOYSA-N dimagnesium dioxidoboranyloxy(dioxido)borane Chemical compound [Mg+2].[Mg+2].[O-]B([O-])OB([O-])[O-] HQYGGVLSRVLMEE-UHFFFAOYSA-N 0.000 description 1
- WDNQRCVBPNOTNV-UHFFFAOYSA-N dinonylnaphthylsulfonic acid Chemical class C1=CC=C2C(S(O)(=O)=O)=C(CCCCCCCCC)C(CCCCCCCCC)=CC2=C1 WDNQRCVBPNOTNV-UHFFFAOYSA-N 0.000 description 1
- LAWOZCWGWDVVSG-UHFFFAOYSA-N dioctylamine Chemical compound CCCCCCCCNCCCCCCCC LAWOZCWGWDVVSG-UHFFFAOYSA-N 0.000 description 1
- VBMSSIXNKVFLAJ-UHFFFAOYSA-N dipropoxyborinic acid Chemical compound CCCOB(O)OCCC VBMSSIXNKVFLAJ-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- VFNGKCDDZUSWLR-UHFFFAOYSA-N disulfuric acid Chemical compound OS(=O)(=O)OS(O)(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-N 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- LZJUZSYHFSVIGJ-UHFFFAOYSA-N ditridecyl hexanedioate Chemical compound CCCCCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCCCCC LZJUZSYHFSVIGJ-UHFFFAOYSA-N 0.000 description 1
- FVBSDVQDRFRKRF-UHFFFAOYSA-N ditridecyl pentanedioate Chemical compound CCCCCCCCCCCCCOC(=O)CCCC(=O)OCCCCCCCCCCCCC FVBSDVQDRFRKRF-UHFFFAOYSA-N 0.000 description 1
- 125000005066 dodecenyl group Chemical group C(=CCCCCCCCCCC)* 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical compound NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- KUGSJJNCCNSRMM-UHFFFAOYSA-N ethoxyboronic acid Chemical compound CCOB(O)O KUGSJJNCCNSRMM-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000012208 gear oil Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- KAJZYANLDWUIES-UHFFFAOYSA-N heptadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCN KAJZYANLDWUIES-UHFFFAOYSA-N 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- YAQXGBBDJYBXKL-UHFFFAOYSA-N iron(2+);1,10-phenanthroline;dicyanide Chemical compound [Fe+2].N#[C-].N#[C-].C1=CN=C2C3=NC=CC=C3C=CC2=C1.C1=CN=C2C3=NC=CC=C3C=CC2=C1 YAQXGBBDJYBXKL-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- YZUWTDQUEUJLAR-UHFFFAOYSA-N magnesium;boron;oxygen(2-) Chemical compound [B].[O-2].[Mg+2] YZUWTDQUEUJLAR-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- RTWNYYOXLSILQN-UHFFFAOYSA-N methanediamine Chemical compound NCN RTWNYYOXLSILQN-UHFFFAOYSA-N 0.000 description 1
- XMYQHJDBLRZMLW-UHFFFAOYSA-N methanolamine Chemical compound NCO XMYQHJDBLRZMLW-UHFFFAOYSA-N 0.000 description 1
- 229940087646 methanolamine Drugs 0.000 description 1
- UYVXZUTYZGILQG-UHFFFAOYSA-N methoxyboronic acid Chemical compound COB(O)O UYVXZUTYZGILQG-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000004712 monophosphates Chemical class 0.000 description 1
- XBULAVLNIHHOPU-UHFFFAOYSA-N n'-[2-[2-[2-(octadecylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound CCCCCCCCCCCCCCCCCCNCCNCCNCCNCCN XBULAVLNIHHOPU-UHFFFAOYSA-N 0.000 description 1
- DXFFQWDOIJVGNR-UHFFFAOYSA-N n,n-diethylundecan-1-amine Chemical compound CCCCCCCCCCCN(CC)CC DXFFQWDOIJVGNR-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- GMTCPFCMAHMEMT-UHFFFAOYSA-N n-decyldecan-1-amine Chemical compound CCCCCCCCCCNCCCCCCCCCC GMTCPFCMAHMEMT-UHFFFAOYSA-N 0.000 description 1
- MJCJUDJQDGGKOX-UHFFFAOYSA-N n-dodecyldodecan-1-amine Chemical compound CCCCCCCCCCCCNCCCCCCCCCCCC MJCJUDJQDGGKOX-UHFFFAOYSA-N 0.000 description 1
- QHCCDDQKNUYGNC-UHFFFAOYSA-N n-ethylbutan-1-amine Chemical compound CCCCNCC QHCCDDQKNUYGNC-UHFFFAOYSA-N 0.000 description 1
- XCVNDBIXFPGMIW-UHFFFAOYSA-N n-ethylpropan-1-amine Chemical compound CCCNCC XCVNDBIXFPGMIW-UHFFFAOYSA-N 0.000 description 1
- RLARTHIKSMHWBL-UHFFFAOYSA-N n-heptadecylheptadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCNCCCCCCCCCCCCCCCCC RLARTHIKSMHWBL-UHFFFAOYSA-N 0.000 description 1
- NJWMENBYMFZACG-UHFFFAOYSA-N n-heptylheptan-1-amine Chemical compound CCCCCCCNCCCCCCC NJWMENBYMFZACG-UHFFFAOYSA-N 0.000 description 1
- NQYKSVOHDVVDOR-UHFFFAOYSA-N n-hexadecylhexadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCNCCCCCCCCCCCCCCCC NQYKSVOHDVVDOR-UHFFFAOYSA-N 0.000 description 1
- PXSXRABJBXYMFT-UHFFFAOYSA-N n-hexylhexan-1-amine Chemical compound CCCCCCNCCCCCC PXSXRABJBXYMFT-UHFFFAOYSA-N 0.000 description 1
- MFHKEJIIHDNPQE-UHFFFAOYSA-N n-nonylnonan-1-amine Chemical compound CCCCCCCCCNCCCCCCCCC MFHKEJIIHDNPQE-UHFFFAOYSA-N 0.000 description 1
- HKUFIYBZNQSHQS-UHFFFAOYSA-N n-octadecyloctadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCNCCCCCCCCCCCCCCCCCC HKUFIYBZNQSHQS-UHFFFAOYSA-N 0.000 description 1
- YDFFPEXFCAUTSL-UHFFFAOYSA-N n-pentadecylpentadecan-1-amine Chemical compound CCCCCCCCCCCCCCCNCCCCCCCCCCCCCCC YDFFPEXFCAUTSL-UHFFFAOYSA-N 0.000 description 1
- JACMPVXHEARCBO-UHFFFAOYSA-N n-pentylpentan-1-amine Chemical compound CCCCCNCCCCC JACMPVXHEARCBO-UHFFFAOYSA-N 0.000 description 1
- CWYZDPHNAGSFQB-UHFFFAOYSA-N n-propylbutan-1-amine Chemical compound CCCCNCCC CWYZDPHNAGSFQB-UHFFFAOYSA-N 0.000 description 1
- HSUGDXPUFCVGES-UHFFFAOYSA-N n-tetradecyltetradecan-1-amine Chemical compound CCCCCCCCCCCCCCNCCCCCCCCCCCCCC HSUGDXPUFCVGES-UHFFFAOYSA-N 0.000 description 1
- PZFYOFFTIYJCEW-UHFFFAOYSA-N n-tridecyltridecan-1-amine Chemical compound CCCCCCCCCCCCCNCCCCCCCCCCCCC PZFYOFFTIYJCEW-UHFFFAOYSA-N 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- FJDUDHYHRVPMJZ-UHFFFAOYSA-N nonan-1-amine Chemical compound CCCCCCCCCN FJDUDHYHRVPMJZ-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000005064 octadecenyl group Chemical group C(=CCCCCCCCCCCCCCCCC)* 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- IGLGDSDAIYIUDL-UHFFFAOYSA-N pentadecalithium pentaborate Chemical compound [Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] IGLGDSDAIYIUDL-UHFFFAOYSA-N 0.000 description 1
- PYUBPZNJWXUSID-UHFFFAOYSA-N pentadecapotassium;pentaborate Chemical compound [K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] PYUBPZNJWXUSID-UHFFFAOYSA-N 0.000 description 1
- VPOLVWCUBVJURT-UHFFFAOYSA-N pentadecasodium;pentaborate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] VPOLVWCUBVJURT-UHFFFAOYSA-N 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 229940100684 pentylamine Drugs 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004346 phenylpentyl group Chemical group C1(=CC=CC=C1)CCCCC* 0.000 description 1
- 125000004344 phenylpropyl group Chemical group 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- AMLFJZRZIOZGPW-UHFFFAOYSA-N prop-1-en-1-amine Chemical compound CC=CN AMLFJZRZIOZGPW-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- JMVWCCOXRGFPJZ-UHFFFAOYSA-N propoxyboronic acid Chemical compound CCCOB(O)O JMVWCCOXRGFPJZ-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 125000005063 tetradecenyl group Chemical group C(=CCCCCCCCCCCCC)* 0.000 description 1
- DPUZPWAFXJXHBN-UHFFFAOYSA-N tetrasodium dioxidoboranyloxy(dioxido)borane Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]B([O-])OB([O-])[O-] DPUZPWAFXJXHBN-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- LGQXXHMEBUOXRP-UHFFFAOYSA-N tributyl borate Chemical compound CCCCOB(OCCCC)OCCCC LGQXXHMEBUOXRP-UHFFFAOYSA-N 0.000 description 1
- ZCLIWYZDWIIUSS-UHFFFAOYSA-N tricalcium boric acid diborate Chemical compound B([O-])([O-])[O-].B(O)(O)O.B(O)(O)O.B([O-])([O-])[O-].[Ca+2].[Ca+2].[Ca+2] ZCLIWYZDWIIUSS-UHFFFAOYSA-N 0.000 description 1
- VLCLHFYFMCKBRP-UHFFFAOYSA-N tricalcium;diborate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]B([O-])[O-].[O-]B([O-])[O-] VLCLHFYFMCKBRP-UHFFFAOYSA-N 0.000 description 1
- ABVVEAHYODGCLZ-UHFFFAOYSA-N tridecan-1-amine Chemical compound CCCCCCCCCCCCCN ABVVEAHYODGCLZ-UHFFFAOYSA-N 0.000 description 1
- 125000005040 tridecenyl group Chemical group C(=CCCCCCCCCCCC)* 0.000 description 1
- AJSTXXYNEIHPMD-UHFFFAOYSA-N triethyl borate Chemical compound CCOB(OCC)OCC AJSTXXYNEIHPMD-UHFFFAOYSA-N 0.000 description 1
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 1
- UKUWOJWHPCYQDY-UHFFFAOYSA-N trimagnesium boric acid diborate Chemical compound [Mg+2].[Mg+2].[Mg+2].OB(O)O.OB(O)O.[O-]B([O-])[O-].[O-]B([O-])[O-] UKUWOJWHPCYQDY-UHFFFAOYSA-N 0.000 description 1
- NFMWFGXCDDYTEG-UHFFFAOYSA-N trimagnesium;diborate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]B([O-])[O-].[O-]B([O-])[O-] NFMWFGXCDDYTEG-UHFFFAOYSA-N 0.000 description 1
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 1
- WUUHFRRPHJEEKV-UHFFFAOYSA-N tripotassium borate Chemical compound [K+].[K+].[K+].[O-]B([O-])[O-] WUUHFRRPHJEEKV-UHFFFAOYSA-N 0.000 description 1
- LTEHWCSSIHAVOQ-UHFFFAOYSA-N tripropyl borate Chemical compound CCCOB(OCCC)OCCC LTEHWCSSIHAVOQ-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 239000010723 turbine oil Substances 0.000 description 1
- QFKMMXYLAPZKIB-UHFFFAOYSA-N undecan-1-amine Chemical compound CCCCCCCCCCCN QFKMMXYLAPZKIB-UHFFFAOYSA-N 0.000 description 1
- 125000005065 undecenyl group Chemical group C(=CCCCCCCCCC)* 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
- OECQDNKCDGGPFY-UHFFFAOYSA-L zinc;bis(2-ethylhexoxy)-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].CCCCC(CC)COP([S-])(=S)OCC(CC)CCCC.CCCCC(CC)COP([S-])(=S)OCC(CC)CCCC OECQDNKCDGGPFY-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M163/00—Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/026—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/26—Overbased carboxylic acid salts
- C10M2207/262—Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/086—Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbasedsulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/041—Triaryl phosphates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/09—Complexes with metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/43—Sulfur free or low sulfur content compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/52—Base number [TBN]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
Definitions
- the present invention relates to lubricating oil compositions for internal combustion, engines and particularly to those having excellent anti-wear properties, base number retaining properties, high-temperature detergency, and low friction characteristics.
- Zinc dialkyldithiophosphates have excellent anti-wear properties and anti-oxidation properties as a peroxide decomposer and thus have been used as an essential additive in lubricating oils for internal combustion engines or in every sort of lubricating oils.
- lubricating oil compositions blended with zinc dialkyldithiocarbamates and sulfur-based additives so as to retain the anti-wear properties are known as ZDTP-free lubricating oils as disclosed in Japanese Patent Laid-Open Publication Nos. 52-704 , 62-253691 , 63-304095 , and 6-41568 and Published Japanese Translation Nos. 62-501572 , 62-501917 , and 1-500912 .
- the lubricating oils disclosed in these publications contain a large quantity of sulfur similarly to those containing ZDTP. Such lubricating oils are poor in oxidation stability and tend to be acceleratingly decreased in base number.
- US 5,726,133 discloses a low ash natural gas engine oil which contains an additive package including a particular combination of detergents and also containing other standard additives such as dispersants, antioxidants, antiwear agents, metal deactivators, antifoamants and pour point depressants and viscosity index improvers.
- additives such as dispersants, antioxidants, antiwear agents, metal deactivators, antifoamants and pour point depressants and viscosity index improvers.
- metal dithiophosphates e.g. zinc diakyl dithiophosphate
- EP 1 104 800 discloses a lubricating oil composition for internal combustion engines, particularly gas engines utilizing gaseous fuels, such as natural gas or liquid propane gas.
- the lubricating oil composition comprises (a) a base oil, (b) a metal-containing detergent, (c) a carbon-containing alkenyl- or alkylsuccinimide, (d) a zinc dialkyldithiophosphate as antiwear agent, (e) an oxidation inhibitor and (f) an ashless dithiocarbamate.
- the object of the present invention is to provide a lubricating oil composition for internal combustion engines, which composition retains or is improved in anti-wear properties and anti-oxidation properties as obtained by conventional ZDTP; is enhanced in long-drain properties by decreasing the sulfur content of the oil so as to suppress the exhaust of the base number caused by deterioration of the oil; and is also excellent in high-temperature detergency and low friction characteristics.
- a lubricating oil which is excellent in anti-wear properties, high-temperature detergency, and low friction characteristics and improved in base number retaining properties leading to long drain properties can be obtained by blending a lubricating base oil with a specific phosphorus compound, a specific ashless dispersant, a specific metal detergent, and a specific anti-oxidant, in a specific amount, respectively.
- A a triphosphate represented by formula (1) below in an amount of 0.01 to 0.2 percent by mass in terms
- the alkali metal or alkaline earth metal detergent preferably contains an alkali metal or alkaline earth metal salicylate detergent.
- the alkali metal or alkaline earth metal detergent is preferably an alkali metal or alkaline earth metal salicylate detergent whose metal ratio represented by "valence of metal element x metal element content (mol) / soap group content (mol)" is 3 or less.
- the alkali metal or alkaline earth metal detergent is preferably a mixture of an alkali metal or alkaline earth metal salicylate detergent whose metal ratio represented by "valence of metal element x metal element content (mol) / soap group content (mol)" is 1.5 or less and an alkali metal or alkaline earth metal salicylate detergent whose metal ratio is more than 1.5.
- the alkali metal or alkaline earth metal detergent is preferably a mixture of an alkali metal or alkaline earth metal salicylate detergent whose metal ratio represented by "valence of metal element x metal element content (mol) / soap group content (mol)" is 1.5 or less and an alkali metal or alkaline earth metal sulfonate detergent.
- the lubricating oil composition of the present invention preferably contains a sulfur-containing anti-wear agent in an amount of 0.1 percent by mass or less in terms of sulfur.
- the lubricating oil composition of the present invention preferably contains a lubricating base oil whose aromatic content is 3 percent by mass or less and sulfur content is 50 ppm by mass or less.
- the lubricating oil composition of the present invention is preferably used in an internal combustion engine using a fuel whose sulfur content is 50 ppm by mass or less.
- the lubricating oil composition of the present invention is preferably used in gas engines.
- the lubricating base oil of the lubricating oil composition of the present invention may be any of conventional mineral oils, synthetic oils, or mixtures of two or more of these oils mixed at an arbitrary ratio.
- the mixture may be those of one or more types of mineral lubricating oils, those of one or more types of synthetic lubricating oils, or those of one or more types of mineral lubricating oils and one or more types of synthetic lubricating oils.
- mineral lubricating oils are paraffinic or naphthenic oils which can be obtained by subjecting a lubricating oil fraction produced by atmospheric- or vacuum-distilling a crude oil, to any one or more refining processes selected from solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, washing with sulfuric acid, and clay treatment; and n-paraffines.
- refining processes selected from solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, washing with sulfuric acid, and clay treatment; and n-paraffines.
- Particularly, preferred are those obtained by a high-degree hydrocracking process or those obtained by isomerizing GTL Wax (Gas To Liquid Wax), both of which methods are capable of further decreasing the aromatic content and sulfur content.
- synthetic lubricating oils include poly- ⁇ -olefins such as 1-octene oligomer, 1-decene oligomer, and ethylene-propylene oligomer, and hydrides thereof; isobutene oligomer and hydrides thereof; isoparaffines; alkylbenzenes; alkylnaphthalenes: diesters such as ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, and di-2-ethylhexyl cebacate; polyol esters such as trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol-2-ethyl hexanoate, and pentaerythritol pelargonate; polyoxyalky
- the sulfur content of the lubricating base oil is preferably 500 ppm by mass or less, more preferably 50 ppm by mass or less, even more preferably 20 ppm by mass or less, and particularly preferably 10 ppm by mass or less.
- a lubricating base oil containing too much sulfur would adversely affect the base number retaining properties of the resulting composition and the above-described exhaust gas purifying systems.
- total aromatic content of the lubricating base oil is preferably 15 percent by mass or less, more preferably 10 percent by mass or less, and even more preferably 3 percent by mass or less, and particularly preferably 2 percent by mass of less.
- total aromatic content used herein denotes an aromatic fraction content determined in accordance with ASTM D2549.
- the aromatic fraction includes alkylbenzenes; alkylnaphthalens; anthracene, phenanthrene, and alkylated products thereof; compounds wherein four or more benzene rings are condensated to each other; and compounds having heteroaromatics such as pyridines, quinolines, phenols, and naphthols.
- the kinematic viscosity at 100 °C of the lubricating base oil is preferably 1 to 20 mm 2 /s and particularly preferably 2 to 10 mm 2 /s in order to improve low-temperature viscosity characteristics and oil film formation capability at lubricated sites and reduce the evaporation loss of the lubricating base oil.
- the viscosity index of the lubricating base oil is preferably 80 or higher, more preferably 100 or higher, and further more preferably 120 or higher.
- R 1 is a hydrocarbon group having 1 to 30 carbon atoms. Three groups of R 1 may be the same or different from each other.
- hydrocarbon group having 1 to 30 carbon atoms examples include alkyl, cycloalkyl, alkenyl, aryl, and arylalkyl groups.
- alkyl group examples include straight-chain or branched alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl groups.
- the cycloalkyl group may have a substituent.
- the cycloalkyl group include those having 5 to 7 carbon atoms, such as cyclopentyl, cyclohexyl, and cycloheptyl groups; and alkylcycloalkyl groups having 6 to 11 carbon groups, such as methylcyclopentyl, dimethylcyclopentyl, methylethylcyclopentyl, diethylcyclopentyl, methylcyclohexyl, dimethylcyclohexyl, methylethylcyclohexyl, diethylcyclohexyl, methylcycloheptyl, dimethylcycloheptyl, methylethylcycloheptyl, and diethylcycloheptyl groups, of which the alkyl groups may bond to any position of the cycloalkyl groups.
- alkenyl group examples include those having 2 to 30 carbon atoms, such as butenyl, pentenyl, hexenyl, heptenyl, octenyl, noneyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, and octadecenyl groups, all of which may be straight-chain or branched and the position of which the double bonds may vary.
- the aryl group may be substituted by an alkyl group.
- the aryl group include those having 6 to 18 carbon atoms, such as phenyl and naphtyl groups; and alkylaryl groups having 7 to 26 carbon atoms, such as tolyl, xylyl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, heptylphenyl, octylphenyl, nonylphenyl, decylphenyl, undecylphenyl, dodecylphenyl, diethylphenyl, dibutylphenyl, and dioctylphenyl groups, wherein the alkyl groups may be straight-chain or branched and the position thereof to the aryl group may vary.
- arylalkyl groups include those having 7 to 12 carbon atoms, such as benzyl, phenylethyl, phenylpropyl, phenylbutyl, phenylpentyl, and phenylhexyl groups, of which the alkyl groups may be straight-chain or branched.
- the hydrocarbon group of R 1 is preferably a straight-chain or branched alkyl group having 3 to 18 carbon atoms, an aryl having 6 to 18 carbon atoms, or a straight-chain or branched alkylaryl group having 7 to 26 carbon atoms, more preferably an alkyl group having 3 to 5 carbon atoms with the objective of excellent base number retaining properties, and is also preferably a straight-chain or branched alkyl group having 6 to 18 carbon atoms, an aryl having 6 to, 10 carbon atoms, or a straight-chain or branched alkylaryl group having 7 to 10 carbon atoms with the objective of high-temperature detergency.
- R 1 is desirously a straight-chain or branched alkyl group having 6 to 18, preferably 6 to 12 carbon groups because the resulting composition would be low in volatility and excellent in high temperature detergency and friction-reducing effect. All the groups of R 1 are preferably the same.
- a triphosphate represented by formula (1) can decrease the metal content of the resulting composition compared with the use of a metal anti-wear agent such as ZDTP and can obtain a lubricating oil composition with more enhanced anti-wear properties, base number retaining properties, and high-temperature detergency, compared with the use of ZDTP, monophosphates, diesters, or phosphites.
- the lower limit content of Component (A) is 0.01 percent by mass, preferably 0.02 percent by mass, and particularly preferably 0.05 percent by mass in terms of phosphorus, based on the total mass of the composition, while the upper limit content of Component (A) is 0.2 percent by mass, preferably 0.15 percent by mass, and particularly preferably 0.1 percent by mass in terms of phosphorus, based on the total mass of the composition.
- Component (A) of less than 0.01 percent by mass would fail to obtain advantageous effects of the present invention sufficiently, while Component (A) of more than 0.2 percent by mass would adversely affect exhaust gas purifying catalysts or the like.
- Component (B) of the lubricating oil composition of the present invention is a succinimide and/or derivative thereof.
- succinimide examples include monosuccinimides represented by formula (2) below and bissuccinimides represented by formula (3) below:
- R 10 , R 11 , and R 12 are each independently a polybutenyl group and n is an integer of from 2 to 7.
- n is an integer of from 2 to 7.
- preferred are bis-type succinimides represented by formula (3) because they can further enhance the advantageous effects achieved by the present invention.
- the polybutenyl group of R 10 , R 11 , and R 12 has a number-average molecular weight of preferably 700 or greater, more preferably 900 or greater and preferably 3,500 or less, more preferably 2,500 or less, and particularly preferably 1,500 or less.
- a polybutenyl group having a number-average molecular weight of 700 or greater makes it possible to produce a lubricating oil composition with excellent detergent and dispersion properties.
- a polybutenyl group having a number-average molecular weight of 3,500 or less makes it possible to produce a lubricating oil composition with more excellent low-temperature flowability.
- the lower limit of n is 2 and preferably 3, while the upper limit of n is 7 and preferably 6.
- the polybutenyl group can be obtained from polybutene (polyisobutene) produced by polymerizing a mixture of 1-buten and isobutene or a highly purified isobutene using a catalyst such as aluminum chloride or boron fluoride.
- the polybutene mixture contains polybutenes having a vinylidene structure at the terminal ends in an amount of generally 5 to 100 percent by mol.
- the polybutene may be those of which a slight amount of the remaining fluorine and chlorine resulting from the catalyst used in the process has been removed with a suitable treatment. Therefore, the content of halogen atoms such as fluorine and chlorine is preferably 50 ppm by mass or less, more preferably 10 ppm by mass or less, further more preferably 5 ppm by mass or less, and particularly preferably 1 ppm or less.
- the succinimide may be produced by reacting a polybutenyl succinimide produced by reacting polybutene obtained by chlorinating the above polybutene, preferably one from which chorine and fluorine has been removed with maleic anhydride at a temperature of 100 to 200 °C, with polyamine such as diethylene triamine, triethylene tetramine, tetraethylene pentamine or pentaethylene hexamine.
- the polybutenyl succinimide in an amount (molar ratio) of twice as much as polyamine may be reacted therewith, while in the case of producing the monosuccinimide, the polybutenyl succinimide in the same amount (molar ratio) may be reacted therewith.
- the succinimide derivative may be a compound obtained by neutralizing or amidizing the whole or part of the remaining amino groups and/or imide groups by allowing a compound of formula (2) or (3) to react with an oxygen-containing organic compound or a boron compound.
- oxygen-containing organic compound examples include monocarboxylic acids having 1 to 30 carbon atoms, such as formic acid, acetic acid, glycolic acid, propionic acid, lactic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, oleic acid, nonadecanoic acid, and eicosanoic acid; polycarboxylic acid having 2 to 30 carbon atoms, such as oxalic acid, phthalic acid, trimellitic acid; and pyromellitic acid, anhydrides thereof, and ester compounds thereof; alkyleneoxides having 2 to 6 carbon atoms, and hydroxy(poly)oxyalkylene carbonates.
- R 13 is hydrogen, an alkyl, alkenyl or alkoxy group having 1 to 24 carbon atoms, or a hydroxy(poly)oxyalkylene group represented by -O-(R 14 O) m H wherein R 14 is an alkylene group having 1 to 4 carbon atoms, and m is an integer of from 1 to 5.
- Examples of the boron compound include boric acid, borates, and boric acid esters.
- Specific examples of boric acid include orthoboric acid, methaboric acid, and tetraboric acid.
- Examples of borates include alkali metal salts, alkaline earth metal salts, or ammonium salts, of boric acid.
- lithium borate such as lithium methaborate, lithium tetraborate, lithium pentaborate, and lithium perborate
- sodium borate such as sodium methaborate, sodium diborate, sodium tetraborate, sodium pentaborate, sodium hexaborate, and sodium octaborate
- potassium borate such as potassium methaborate, potassium tetraborate, potassium pentaborate, potassium hexaborate, and potassium octaborate
- calcium borate such as calcium methaborate, calcium diborate, tricalcium tetraborate, pentacalcium tetraborate, and calcium hexaborate
- magnesium borate such as magnesium methaborate, magnesium diborate, trimagnesium tetraborate, pentamagnesium tetraborate, and magnesium hexaborate
- ammonium borate such as ammonium methaborate, ammonium tetraborate, ammonium pentaborate, and ammonium
- boric acid esters examples include esters of boric acid and an aliphatic alcohol having 1 to 6 carbon atoms and more specifically monomethyl borate, dimethyl borate, trimethyl borate, monoethyl borate, dimethyl borate, triethyl borate, monopropyl borate, dipropyl borate, tripropyl borate, monobutyl borate, dibutyl borate, and tributyl borate.
- the mass ratio of boron and nitrogen (B/N ratio) in the succinimide reacted with a boron compound is preferably from 0.1 to 1.2, more preferably from 0.2 to 1.0, and particularly preferably from 0.3 to 0.9 with the objective of enhancing the base number retaining properties and high-temperature detergency.
- one or more selected from the above-described succinimides and derivatives thereof may be used as Component (B).
- the lower limit content of Component (B) is 0.01 percent by mass, preferably 0.05 percent by mass, and particularly preferably 0.08 percent by mass in terms of nitrogen, based on the total mass of the composition.
- the upper limit content of Component (B) is 0.3 percent by mass, preferably 0.2 percent by mass, and particularly preferably 0.15 percent by mass in terms of nitrogen, based on the total mass of the composition.
- Component (B) of less than 0.01 percent by mass would fail to achieve the advantageous effect of the present invention, while Component (B) of more than 0.3 percent by mass would deteriorate the low-temperature viscosity characteristics and anti-emulsion properties of the resulting lubricating oil composition.
- Component (C) of the lubricating oil composition of the present invention is an alkali metal or alkaline earth metal detergent.
- Component (C) include alkali metal or alkaline earth metal sulfonates, alkali metal or alkaline earth metal phenates, and alkali metal or alkaline earth metal salicylates.
- alkali metal or alkaline earth metal detergents selected from the above compounds may be used, and particularly alkaline earth metal detergents are preferably used in the present invention.
- alkaline earth metal sulfonates are alkaline earth metal salts, such as magnesium and/or calcium salts, preferably calcium salts, of alkyl aromatic sulfonic acids obtained by sulfonating alkyl aromatic compounds having a molecular weight of 300 to 1,500 and preferably 400 to 700.
- alkyl aromatic sulfonic acids include petroleum sulfonic acids and synthetic sulfonic acids.
- Petroleum sulfonic acids may be those obtained by sulfonating alkyl aromatic compounds contained in the lubricant fraction of a mineral oil or mahogany acid by-produced upon production of white oil.
- the synthetic sulfonic acid may be those obtained by sulfonating an alkyl benzene having a straight-chain or branched alkyl group, by-produced from a plant for producing an alkyl benzene used as materials of detergents or obtained by alkylating an oligomer of an olefin having 2 to 22 carbon atoms such as ethylene and propylene to benzene or those obtained by sulfonating an alkylnaphthalene such as dinonylnaphthalene.
- sulfonating agents used for sulfonating these alkyl aromatic compounds may be generally fuming sulfuric acids and sulfuric acid anhydride.
- alkaline earth metal phenates examples include alkaline earth metal salts, particularly magnesium salts and calcium salts of alkylphenols, alkylphenolsulfides or Mannich reaction products of alkylphenols. Specific examples are those represented by formulas (5) through (7):
- R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 may be the same or different from each other and are each independently a straight-chain or branched alkyl group having 4 to 30, preferably 6 to 18 carbon atoms, M 1 , M 2 , and M 3 are each independently an alkaline earth metal, preferably calcium and magnesium, and x is an integer of 1 or 2.
- alkyl group of R 2 , R 22 , R 23 , R 24 , R 25 , and R 26 include butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, and triacontyl groups.
- These alkyl groups may be straight-chain or branched and may be of primary, secondary, or tertiary.
- alkaline earth metal salicylates examples include alkaline earth metal salts, preferably magnesium and calcium salts, of an alkyl salicylic acid. Specific examples include compounds represented by formula (8)
- R 27 is a straight-chain or branched alkyl group having 4 to 30, preferably 6 to 18 carbon atoms and M 4 is an alkaline earth metal, preferably calcium or magnesium.
- alkyl group of R 27 examples include butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, and triacontyl groups.
- These alkyl groups may be straight-chain or branched and may be of primary, binary or tertiary.
- the alkaline earth metal sulfonates, alkaline earth metal phenates, and alkaline earth metal salicylates may be (1) neutral (normal salt) alkaline earth metal sulfonates, neutral (normal salt) alkaline earth metal phenates, and neutral (normal salt) alkaline earth metal salicylates obtained by reacting alkyl aromatic sulfonic acids, alkylphenols, alkylphenolsuflides, Mannich reaction products of alkylphenol or alkyl salicylic acid as mentioned above directly with an alkaline earth metal base of the oxide or hydroxide of an alkaline earth metal such as magnesium and/or calcium or obtained by converting alkyl aromatic sulfonic acids, alkylphenols, alkylphenolsuflides, Mannich reaction products of alkylphenol or alkyl salicylic acid to an alkali metal salt such as sodium salt and potassium salt, followed by substitution with an alkaline earth metal salt; (2) basic alkaline earth metal sulfonates, basic al
- the base number of these compounds is generally 500 mgKOH/g or less, preferably from 60 mgKOH/g to 400 mgKOH/g.
- base number used herein denotes a base number measured by the perchloric acid potentiometric titration method in accordance with section 7 of JIS K2501 (1992) "Petroleum products and lubricants-Determination of neutralization number".
- alkaline earth metal detergents are usually commercially available in the form of diluted with a light lubricating base oil, it is preferable to use metal detergents of which metal content is within the range of z1 to 20 percent by mass and preferably 2.0 to 16 percent by mass.
- Component (C) No particular limitation is imposed on the metal ratio of Component (C). However, it is preferable to use Component (C) whose metal ratio is generally 1 to 20, preferably 1 to 15.
- Component (C) preferably contains the alkali metal or alkaline earth metal salicylate detergent as an essential component.
- the metal ratio of the detergent is preferably 3 or less, more preferably 2.6 or less, further more preferably 2 or less, and particularly preferably 1.5 or less.
- the alkali metal or alkaline earth metal salicylate detergent may be used singlely or in the form of a mixture of those of different metal ratios.
- an alkali metal or alkaline earth metal salicylate with a metal ratio of 2 or less, preferably 1.5 or less, and particularly preferably 1.2 or less may be used alone as an essential component.
- an alkali metal or alkaline earth metal salicylate with a metal ratio of 1.5 or less, preferably 1.2 or less may be used in combination with one with a metal ratio in excess of 1.5, particularly 2.6, and the metal ratio of the mixture is adjusted to 1.3 or more and preferably 2.3 or less, more preferably 2 or less, and particularly preferably 1.5 or less.
- Component (C) can enhance base number retaining properties, high-temperature detergency, and low friction characteristics by adjusting the metal ratio to be within the range of 1.3 to 2.3, even though the content of Component (C) is maintained the same.
- Component (C) is preferably a combination of an alkali metal or alkaline earth metal salicylate with a metal ratio of 1.5 or less, preferably 1.2 or less and an alkali metal or alkaline earth metal sulfonate.
- the metal ratio is generally from 1 to 20, preferably from 1 to 15, and particularly preferably from 5 to 12.
- Component (C) thus prepared can further enhance advantageous effect to improve base number retaining properties, high-temperature detergency, and low friction characteristics.
- metal ratio used herein is represented by "valence of metal element x metal element content (mol) / soap group (group such as alkylsalicylic acid group) content (mol)” and denotes the alkali metal or alkaline earth metal content against the content of the alkylsalicylic acid and alkylsulfonic acid groups in an alkali metal or alkaline earth metal detergent.
- the lower limit content of Component (C) is 0.05 percent by mass, preferably 0.1 percent by mass, more preferably 0.15 percent by mass, and particularly preferably 0.2 percent by mass in terms of alkali metal or alkaline earth metal, based on the total mass of the lubricating oil composition of the present invention.
- the upper limit content of Component (C) is 1 percent by mass, preferably 0.5 percent by mass, and more preferably 0.4 percent by mass in terms of alkali metal or alkaline earth metal, based on the total mass of the lubricating oil composition of the present invention.
- Component (C) of less than 0.05 percent by mass would fail to exhibit excellent base number retaining properties and high-temperature detergency, while Component (C) of more than 1 percent by mass would fail to attain effects as expected.
- Component (D) of the lubricating oil composition of the present invention is a phenol- and/or amine-based anti-oxidant.
- phenol-based anti-oxidant examples include
- amine-based anti-oxidant examples include phenyl- ⁇ -naphtylamine, alkylphenyl- ⁇ -naphtylamine, and dialkyldiphenylamine. Two or more of these amine-based anti-oxidants may be used in combination.
- the above alkyl groups are those having 1 to 16 carbon atoms.
- phenol-based and amine-based anti-oxidants may be used singlely but preferably used in combination because the advantageous effects can be further enhanced.
- the lower limit content of Component (D) is 0.01 percent by mass, preferably 0.1 percent by mass, more preferably 0.5 percent by mass, and particularly preferably 1.0 percent by mass, based on the total mass of the lubricating oil composition of the present invention with the objective of further enhancing the base number retaining properties and high-temperature detergency.
- the upper limit content of Component (D) is 3.0 percent by mass and preferably 2.5 percent by mass, based on the total mass of the lubricating oil composition of the present invention. Component (D) of more than 3.0 percent by mass would fail to attain sufficient anti-oxidant properties as balanced with the content.
- the lubricating oil composition of the present invention may contain an anti-wear agent other than Component (A).
- Examples of an anti-wear agent other than Component (A) include phosphorus-and/or sulfur-containing anti-wear agents such as thiophosphates and metal salts of phosphates, represented by formula (9) and thiophosphates, phosphates, and metal salts and amine salts thereof, represented by formula (10) and further include those such as phosphates, thiophosphites, and metal salts and amine salts thereof, thiotriphosphtes, zinc dialkyldithiophosphates, zinc dialkyldithiocarbamates, molybdenum dialkyldithiophosphates, molybdenum dialkyldithiocarbamates, disulfides, olefinsulfides, and sulfurized fats and oils:
- phosphorus-and/or sulfur-containing anti-wear agents such as thiophosphates and metal salts of phosphates, represented by formula (9) and thiophosphates, phosphates, and metal salts and
- R 30 , R 31 , R 32 , R 33 , R 34 , and R 35 are each independently hydrogen or a hydrocarbon group having 1 to 30 carbon atoms.
- Examples and preferred examples of the hydrocarbon group having 1 to 30 carbon atoms include the same as those exemplified with respect to R 2 in formula (1) representing Compound (A) described above.
- X 1 , X 2 , X 3 , X 4 , X 5 , and X 6 are each independently oxygen or sulfur, at least one of them is oxygen, and preferably two or more of them are oxygen, and particularly preferably all 1 of them are oxygen. Due to the presence of at least one oxygen, the resulting composition can be decreased in sulfur content and in the amount of sulfuric acid produced when being oxidized or thermally decomposed and thus can be significantly suppressed in the exhaust of the base number.
- Y is a metal atom and specifically zinc, copper, iron, lead, nickel, silver, and manganese. With the objective of enhanced anti-wear properties, Y is preferably zinc.
- U is hydrogen (proton), a monovalent metal ion, or an ammonium ion.
- k indicates the number of ion of U and is an integer of from 1 to 20, preferably from 1 to 10, and more preferably from 1 to 8.
- the monovalent metal ion of U is a metal atom which can form a salt and thus may be an alkali metal, such as lithium, sodium, potassium and cesium.
- the ammonium ion may be those providing ammonium ion such as nitrogen-containing compounds which can form an amine salt.
- nitrogen-containing compounds include ammonia, monoamines, diamines, and polyamines. More specific examples include alkylamines having a straight-chain or branched alkyl group having 1 to 30 carbon atoms, such as methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, diundecyl
- an anti-wear agent containing sulfur selected from the above anti-wear agents other than Component (A) no particular limitation is imposed on the content of the anti-wear agents.
- the content is preferably 0.1 percent by mass or less and more preferably 0.09 percent by mass or less in terms of sulfur, based on the total mass of the lubricating oil composition of the present invention.
- a lubricating oil composition with significantly excellent base number retaining properties and high-temperature detergency can be obtained by decreasing the amount of the sulfur-containing anti-wear agent to 0.1 percent by mass or less.
- the content is from 0.01 to 0.2 percent by mass in terms of phosphorus, based on the total mass of the lubricating oil composition of the present invention. Even in such a case, the total content of the anti-wear agent and Component (A) does not exceed preferably 0.2 percent by mass and particularly preferably 0.15 percent by mass in terms of phosphorus, based on the total mass of the composition because there is a risk that exhaust gas purifying catalysts are adversely affected.
- the lubricating oil composition for internal combustion engines of the present invention is excellent in anti-wear properties, base number retaining properties, and high-temperature detergency
- various additives may be optionally added in order to further improve these properties.
- additives include viscosity index improvers, ashless dispersants other than Component (B), metal detergents other than Component (C), anti-oxidants other than Component (D), friction modifiers, corrosion inhibitors, rust preventives, anti-emulsifiers, metal deactivators, anti-foamers, and dyes.
- viscosity index improvers examples include non-dispersion type viscosity index improvers such as copolymers of one or more monomers selected from various methacrylates or hydrides thereof; dispersion type viscosity index improvers such as copolymers of various methacrylates further containing nitrogen compounds; non-dispersion- or dispersion-type ethylene- ⁇ -olefin copolymers of which the ⁇ -olefin may be propylene, 1-butene, or 1-pentene, or the hydrides thereof; polyisobutylenes or the hydrides thereof; styrene-diene hydrogenated copolymers; styrene-maleic anhydride ester copolymers; and polyalkylstyrenes.
- non-dispersion type viscosity index improvers such as copolymers of one or more monomers selected from various methacrylates or hydrides thereof
- dispersion type viscosity index improvers such as
- the number-average molecular weight of non-dispersion or dispersion type polymethacrylates is from 5,000 to 1,000,000 and preferably from 10,000 to 350,000.
- the number-average molecular weight of polyisobutylenes or hydrides thereof is from 800 to 5, 000 and preferably from 1,000 to 4,000.
- the number-average molecular weight of ethylene- ⁇ -olefin copolymers and hydrides thereof is from 800 to 500,000 and preferably from 3,000 to 200,000.
- viscosity index improvers the use of ethylene- ⁇ -olefin copolymers or hydrides thereof is contributive to production of a lubricating oil composition which is excellent particularly in shear stability.
- One or more compounds selected from the above-described viscosity index improvers may be blended in an arbitrary amount.
- the content of the viscosity index improvers is generally within the range of 0.1 to 20.0 percent by mass, based on the total mass of the lubricating oil composition.
- Examples of ashless dispersants other than Component (B) include benzylamines having in the molecules at least one alkyl or alkenyl group having 40 to 400 carbon atoms and derivatives thereof; and polyamines having in the molecules at least one alkyl or alkenyl group having 40 to 400 carbon atoms and derivatives thereof.
- friction modifiers include aliphatic amines, fatty acids, fatty acid esters, and aliphatic alcohols, having an alkyl or alkenyl group having 6 to 30 carbon atoms.
- corrosion inhibitors examples include benzotriazole-, tolyltriazole-, thiazole-, thiadiazole-, and imidazole-based compounds.
- rust-preventives include petroleum sulfonates, alkylbenzene sulfonates, dinonylnaphthalenesulfonates, alkenyl succinic acid esters, and polyhydric alcohol esters.
- anti-emulsifiers include polyalkylene glycol-based non-ionic surfactants such as polyoxyethylenealkyl ether, polyoxyethylenealkylphenyl ether, and polyoxyethylenealkylnaphthyl ether.
- metal deactivators include imidazolines, pyrimidine derivatives, alkylthiadiazoles, mercaptobenzothiazoles, benzotriazoles and derivatives thereof, 1,3,4-thiadiazolepolysulfide, 1,3,4-thiadiazolyl-2,5-bisdialkyldithiocarbamte, 2-(alkyldithio)benzoimidazole, and ⁇ -(o-carboxybenzylthio)propionitrile.
- anti-foamers examples include silicone, fluorosilicone, and fluoroalkyl ether.
- the content of each of the ashless dispersant other than Component (B), metal detergent other than Component (C), anti-oxidant other than Component (D), friction modifier, corrosion inhibitor, rust inhibitor, and anti-emulsifier is 0.01 to 5 percent by mass based on the total mass of the composition.
- the content of the metal deactivator is 0.005 to 1 percent by mass, while the content of the anti-foamer is 0.0005 to 1 percent by mass.
- the lubricating oil composition of the present invention is preferably limited in the content of additive containing sulfur as well as the content of the above-described sulfur-containing anti-wear agent.
- the content of the sulfur-containing additive including the sulfur-containing anti-wear agent is preferably 0.1 percent by mass or less and more preferably 0.09 percent by mass or less based on the total mass of the composition.
- the lubricating oil composition contains no sulfur-containing additives including the sulfur-containing anti-wear agent.
- sulfur-containing additives used herein does not refer to sulfur compounds derived from such a solvent or diluting oil.
- the composition of the present invention contains sulfur originating from the solvent or diluting oil
- the total sulfur content of the composition is 0.2 percent by mass or less, preferably 0.15 percent by mass or less, and particularly preferably 0.1 percent by mass or less.
- a composition containing sulfur in an amount of 10 ppm by mass or less or containing substantially no sulfur can be obtained using a high-degree hydrocracked base oil whose content of sulfur originating from a solvent or diluting oil is 10 ppm by mass or less or a base oil produced by isomerizig GTL Wax (Gas To Liquid Wax) or a synthetic oil, containing substantially no sulfur.
- the lubricating oil composition for internal combustion engines, of the present invention is decreased in the amount of a sulfur-containing agent such as ZDTP having both anti.-wear and anti-oxidation properties or contains no such an agent at all, the composition is extremely improved in anti-oxidation properties and in base number retaining properties, i.e., long-drain properties, and also excellent in high-temperature detergency and low friction characteristics, but free from the decrease of anti-wear properties.
- a sulfur-containing agent such as ZDTP having both anti.-wear and anti-oxidation properties or contains no such an agent at all
- the total sulfur content of the lubricating oil composition of the present invention can be held down and prevented from raising more than 0.2 percent by mass, the composition can suppress exhaust gas purifying catalysts from poisoning by sulfur and be used suitably for engines equipped with an exhaust-gas after-treatment device such as an exhaust gas purifying catalyst.
- the lubricating oil composition of the present invention can also be used suitably as lubricating oils required to have anti-wear properties, base number retaining properties, and high-temperature detergency, such as lubricating oils for driving means such as automatic or manual transmissions; those for wet brakes; hydraulic oils; turbine oils; gear oils; and bearing oils.
- Lubricating oil compositions for internal combustion engines each having the formulation and properties shown in Table 1 were prepared.
- the compositions containing C.05 percent by mass of sulfur are those containing sulfur originating from the diluting oils contained in the additives.
- compositions of Examples 1 to 4 and Comparative Examples 1 and 2 were evaluated by the following performance characteristics evaluating tests.
- the compositions of the present invention were significantly higher in base number retaining properties than the compositions (Comparative Examples 1 and 2) containing ZDTP (sulfur-containing anti-wear agent) in such a general amount that they are used as lubricating oils for internal combustion engines, i.e., 0.16 percent by mass in terms of sulfur and 0.08 percent by mass in terms of phosphorus.
- the triphenylphosphate-containing compositions (Example 4) and particularly the tributylphosphate-containing composition (Example 3) were significantly higher in base number retaining properties that the trioctylphosphate-containing composition (Example 1).
- compositions of the present invention (Examples 1 to 4) were found to exhibit excellent base number retaining properties and long drain properties under such an atmosphere that lubricating oils for internal combustion engines are exposed to NOx, similarly to the results in the above-described ISOT.
- the seizuring load of each of sample pieces was measured by FALEX test in accordance with ASTM D3233 (A method, 290 rpm, room temperature). The results are shown in Table 1. The larger the securing load, the composition exhibits more excellent anti-wear properties.
- the anti-wear properties of the compositions of the present invention were equal to or higher than those of Comparative Examples 1 and 2.
- a hot tube test was conducted in accordance with JPI-5S-5599. The evaluation was made by grading the compositions as 1C points when they were colorless and transparent (no fouling) and those as 0 point when they were black and opaque. Between 10 and 0 point, evaluation was done using reference tubes which were made per grade beforehand. At 290 °C, 6 points or higher indicate that the oil composition has an excellent detergency for an ordinary gasoline or diesel engine. However, a lubricating oil composition for a gas engine preferably exhibits excellent detergency also at 300 °C or higher in this test.
- compositions of the present invention exhibited extremely excellent high-temperature detergency even at a temperature of 300 °C or higher.
- composition containing trioctylphosphate which is conceivably lower in evaporation than tributylphosphate exhibited extremely excellent high-temperature detergency.
- Lubricating oil compositions (Examples 5 to 9 and Comparative Example 3) with the formulations and properties shown in Table 2 were prepared and evaluated by the following test. The results are shown in Table 2.
- the composition of Example 9 is the same as the one of Example 1 in Table 1,
- composition of Example 9 is also excellent in low friction characteristics, compared with the compositions of Comparative Example 3.
- the compositions containing a low metal ratio alkaline earth metal salicylate essentially as Component (C) were found to exhibit extremely superior low friction characteristics. These compositions exhibited base number retaining properties, anti-wear properties, and high temperature detergency equally to or better than the composition of Example 9.
- Component (C) of the composition of Example 6 was a mixture of calcium salicylate whose metal ratio is 1.0 and calcium salicylate whose metal ratio is 2.7, and the total metal ratio of Component (C) is 1.46.
- Example 6 contained less amount of Component (C) of Example 5 but was recognized to be decreased in friction coefficient particularly in the high velocity region synergistically, compared with the average between Examples 5 and 9.
- the composition containing tributylphosphate or triphenylphosphate was superior in low friction characteristics to Comparative Example 3 but the composition containing trioctylphosphate exhibited the most excellent low friction characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
- The present invention relates to lubricating oil compositions for internal combustion, engines and particularly to those having excellent anti-wear properties, base number retaining properties, high-temperature detergency, and low friction characteristics.
- Zinc dialkyldithiophosphates (ZDTP) have excellent anti-wear properties and anti-oxidation properties as a peroxide decomposer and thus have been used as an essential additive in lubricating oils for internal combustion engines or in every sort of lubricating oils.
- On the other hand, lubricating oil compositions blended with zinc dialkyldithiocarbamates and sulfur-based additives so as to retain the anti-wear properties are known as ZDTP-free lubricating oils as disclosed in Japanese Patent Laid-Open Publication Nos.
52-704 62-253691 63-304095 6-41568 62-501572 62-501917 1-500912 US 5,726,133 discloses a low ash natural gas engine oil which contains an additive package including a particular combination of detergents and also containing other standard additives such as dispersants, antioxidants, antiwear agents, metal deactivators, antifoamants and pour point depressants and viscosity index improvers. As antiwear agents metal dithiophosphates (e.g. zinc diakyl dithiophosphate) are used.EP 1 104 800 discloses a lubricating oil composition for internal combustion engines, particularly gas engines utilizing gaseous fuels, such as natural gas or liquid propane gas. The lubricating oil composition comprises (a) a base oil, (b) a metal-containing detergent, (c) a carbon-containing alkenyl- or alkylsuccinimide, (d) a zinc dialkyldithiophosphate as antiwear agent, (e) an oxidation inhibitor and (f) an ashless dithiocarbamate. - After an extensive research and study, focusing on the ability to retain the base number of lubricating oils for internal combustion engine containing a large amount of sulfur, it was found that a compound containing sulfur such as ZDTP itself generates sulfuric acid in the lubricating oil when oxidized or thermally decomposed, and thus the lubricating oil containing such a compound is exhausted in base number, leading to a shortened working life, significantly deteriorated in detergency particularly at high temperature, and poor in low friction characteristics.
- It was also found that when a deeply-desulfurized gas oil decreased in sulfur content to 50 ppm by mass or less, for a diesel engine equipped with DPF (diesel particulate filter); kerosene, gasoline, LPG, or natural gas, containing 50 ppm by mass or less of sulfur; or hydrogen, dimethylether, or alcohol, containing no sulfur is used as fuel, a lubricating engine oil is decreased in sulfuric acid contamination caused by sulfur in the fuel and thus prolonged in working life, compared with the case using a high sulfur content fuel. However, the use of such a low sulfur content fuel is too insufficient to provide an engine oil with a longer drain-interval and further enhance high-temperature detergency. Therefore, it is now necessary to study on an additive taking the place of various sulfur-containing anti-wear agents and anti-oxidants. Particularly, since gas engines are generally high in combustion temperature, the lubricating oil used therefor is exposed to high temperature or NOx and thus required to be improved in oxidation stability or high-temperature detergency. Furthermore, in order to maintain the performances of exhaust gas purifying systems such as DPF, ternary catalysts, oxidation catalysts, NOx adsorber catalysts, and EGR (exhaust gas recirculation) device, an engine oil is desired to be less in sulfur content.
- Therefore, the object of the present invention is to provide a lubricating oil composition for internal combustion engines, which composition retains or is improved in anti-wear properties and anti-oxidation properties as obtained by conventional ZDTP; is enhanced in long-drain properties by decreasing the sulfur content of the oil so as to suppress the exhaust of the base number caused by deterioration of the oil; and is also excellent in high-temperature detergency and low friction characteristics.
- As a result of an extensive research and study, the present invention was completed based on the finding that a lubricating oil which is excellent in anti-wear properties, high-temperature detergency, and low friction characteristics and improved in base number retaining properties leading to long drain properties can be obtained by blending a lubricating base oil with a specific phosphorus compound, a specific ashless dispersant, a specific metal detergent, and a specific anti-oxidant, in a specific amount, respectively.
- That is, according to the present invention, there is provided a lubricating oil composition for internal combustion engine, comprising a lubricating base oil; (A) a triphosphate represented by formula (1) below in an amount of 0.01 to 0.2 percent by mass in terms of phosphorus; (B) succinimide and/or derivative thereof in an amount of 0.01 to 0.3 percent by mass in terms of nitrogen; (C) an alkali metal or alkaline earth metal detergent which contains an alkali metal or alkaline earth metal salicylate in an amount of 0.05 to 1 percent by mass in terms of metal; and (D) a phenol-based and/or amine-based anti-oxidants in an amount of 0.01 to 3 percent by mass:
O = P(OR1)3 (1)
wherein the groups R1 are each independently a alkyl group having 1 to 30 carbon atoms and may be the same or different from each other, wherein a total sulfur content of the composition is 0,2 percent by mass or less. - In the lubricating oil composition of the present invention, the alkali metal or alkaline earth metal detergent preferably contains an alkali metal or alkaline earth metal salicylate detergent.
- In the lubricating oil composition of the present invention, the alkali metal or alkaline earth metal detergent is preferably an alkali metal or alkaline earth metal salicylate detergent whose metal ratio represented by "valence of metal element x metal element content (mol) / soap group content (mol)" is 3 or less.
- In the lubricating oil composition of the present invention, the alkali metal or alkaline earth metal detergent is preferably a mixture of an alkali metal or alkaline earth metal salicylate detergent whose metal ratio represented by "valence of metal element x metal element content (mol) / soap group content (mol)" is 1.5 or less and an alkali metal or alkaline earth metal salicylate detergent whose metal ratio is more than 1.5.
- In the lubricating oil composition of the present invention, the alkali metal or alkaline earth metal detergent is preferably a mixture of an alkali metal or alkaline earth metal salicylate detergent whose metal ratio represented by "valence of metal element x metal element content (mol) / soap group content (mol)" is 1.5 or less and an alkali metal or alkaline earth metal sulfonate detergent.
- The lubricating oil composition of the present invention preferably contains a sulfur-containing anti-wear agent in an amount of 0.1 percent by mass or less in terms of sulfur.
- The lubricating oil composition of the present invention preferably contains a lubricating base oil whose aromatic content is 3 percent by mass or less and sulfur content is 50 ppm by mass or less.
- The lubricating oil composition of the present invention is preferably used in an internal combustion engine using a fuel whose sulfur content is 50 ppm by mass or less.
- The lubricating oil composition of the present invention is preferably used in gas engines.
- The lubricating base oil of the lubricating oil composition of the present invention may be any of conventional mineral oils, synthetic oils, or mixtures of two or more of these oils mixed at an arbitrary ratio. For example, the mixture may be those of one or more types of mineral lubricating oils, those of one or more types of synthetic lubricating oils, or those of one or more types of mineral lubricating oils and one or more types of synthetic lubricating oils.
- Specific examples of mineral lubricating oils are paraffinic or naphthenic oils which can be obtained by subjecting a lubricating oil fraction produced by atmospheric- or vacuum-distilling a crude oil, to any one or more refining processes selected from solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, washing with sulfuric acid, and clay treatment; and n-paraffines. Particularly, preferred are those obtained by a high-degree hydrocracking process or those obtained by isomerizing GTL Wax (Gas To Liquid Wax), both of which methods are capable of further decreasing the aromatic content and sulfur content.
- No particular limitation is imposed on synthetic lubricating oils. Examples of synthetic lubricating oils include poly-α-olefins such as 1-octene oligomer, 1-decene oligomer, and ethylene-propylene oligomer, and hydrides thereof; isobutene oligomer and hydrides thereof; isoparaffines; alkylbenzenes; alkylnaphthalenes: diesters such as ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, and di-2-ethylhexyl cebacate; polyol esters such as trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol-2-ethyl hexanoate, and pentaerythritol pelargonate; polyoxyalkylene glycols; dialkyldiphenyl ethers; and polyphenyl ethers.
- No particular limitation is imposed on the sulfur content of the lubricating base oil. However, the sulfur content of the base lubricating oil is preferably 500 ppm by mass or less, more preferably 50 ppm by mass or less, even more preferably 20 ppm by mass or less, and particularly preferably 10 ppm by mass or less. A lubricating base oil containing too much sulfur would adversely affect the base number retaining properties of the resulting composition and the above-described exhaust gas purifying systems.
- Although no particular limitation is imposed on the total aromatic content of the lubricating base oil, it is preferably 15 percent by mass or less, more preferably 10 percent by mass or less, and even more preferably 3 percent by mass or less, and particularly preferably 2 percent by mass of less. A lubricating base oil whose total aromatic content is more than 15 percent by mass would be poor in base number retaining properties and high-temperature detergency. The term "total aromatic content" used herein denotes an aromatic fraction content determined in accordance with ASTM D2549. The aromatic fraction includes alkylbenzenes; alkylnaphthalens; anthracene, phenanthrene, and alkylated products thereof; compounds wherein four or more benzene rings are condensated to each other; and compounds having heteroaromatics such as pyridines, quinolines, phenols, and naphthols.
- No particular limitation is imposed on the kinematic viscosity at 100 °C of the lubricating base oil. However, the kinematic viscosity at 100 °C is preferably 1 to 20 mm2/s and particularly preferably 2 to 10 mm2/s in order to improve low-temperature viscosity characteristics and oil film formation capability at lubricated sites and reduce the evaporation loss of the lubricating base oil.
- No particular limitation is imposed on the viscosity index of the lubricating base oil. However, the viscosity index is preferably 80 or higher, more preferably 100 or higher, and further more preferably 120 or higher.
- Component (A) of the lubricating oil composition of the present invention is a triphosphate represented by the formula
O = P(OR1)3 (1)
- In formula (1), R1 is a hydrocarbon group having 1 to 30 carbon atoms. Three groups of R1 may be the same or different from each other.
- Examples of the hydrocarbon group having 1 to 30 carbon atoms are alkyl, cycloalkyl, alkenyl, aryl, and arylalkyl groups.
- Examples of the alkyl group include straight-chain or branched alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl groups.
- The cycloalkyl group may have a substituent. Examples of the cycloalkyl group include those having 5 to 7 carbon atoms, such as cyclopentyl, cyclohexyl, and cycloheptyl groups; and alkylcycloalkyl groups having 6 to 11 carbon groups, such as methylcyclopentyl, dimethylcyclopentyl, methylethylcyclopentyl, diethylcyclopentyl, methylcyclohexyl, dimethylcyclohexyl, methylethylcyclohexyl, diethylcyclohexyl, methylcycloheptyl, dimethylcycloheptyl, methylethylcycloheptyl, and diethylcycloheptyl groups, of which the alkyl groups may bond to any position of the cycloalkyl groups.
- Examples of the alkenyl group include those having 2 to 30 carbon atoms, such as butenyl, pentenyl, hexenyl, heptenyl, octenyl, noneyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, and octadecenyl groups, all of which may be straight-chain or branched and the position of which the double bonds may vary.
- The aryl group may be substituted by an alkyl group. Examples of the aryl group include those having 6 to 18 carbon atoms, such as phenyl and naphtyl groups; and alkylaryl groups having 7 to 26 carbon atoms, such as tolyl, xylyl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, heptylphenyl, octylphenyl, nonylphenyl, decylphenyl, undecylphenyl, dodecylphenyl, diethylphenyl, dibutylphenyl, and dioctylphenyl groups, wherein the alkyl groups may be straight-chain or branched and the position thereof to the aryl group may vary.
- Examples of the arylalkyl groups include those having 7 to 12 carbon atoms, such as benzyl, phenylethyl, phenylpropyl, phenylbutyl, phenylpentyl, and phenylhexyl groups, of which the alkyl groups may be straight-chain or branched.
- The hydrocarbon group of R1 is preferably a straight-chain or branched alkyl group having 3 to 18 carbon atoms, an aryl having 6 to 18 carbon atoms, or a straight-chain or branched alkylaryl group having 7 to 26 carbon atoms, more preferably an alkyl group having 3 to 5 carbon atoms with the objective of excellent base number retaining properties, and is also preferably a straight-chain or branched alkyl group having 6 to 18 carbon atoms, an aryl having 6 to, 10 carbon atoms, or a straight-chain or branched alkylaryl group having 7 to 10 carbon atoms with the objective of high-temperature detergency. In the present invention, R1 is desirously a straight-chain or branched alkyl group having 6 to 18, preferably 6 to 12 carbon groups because the resulting composition would be low in volatility and excellent in high temperature detergency and friction-reducing effect. All the groups of R1 are preferably the same.
- The use of a triphosphate represented by formula (1) can decrease the metal content of the resulting composition compared with the use of a metal anti-wear agent such as ZDTP and can obtain a lubricating oil composition with more enhanced anti-wear properties, base number retaining properties, and high-temperature detergency, compared with the use of ZDTP, monophosphates, diesters, or phosphites.
- The lower limit content of Component (A) is 0.01 percent by mass, preferably 0.02 percent by mass, and particularly preferably 0.05 percent by mass in terms of phosphorus, based on the total mass of the composition, while the upper limit content of Component (A) is 0.2 percent by mass, preferably 0.15 percent by mass, and particularly preferably 0.1 percent by mass in terms of phosphorus, based on the total mass of the composition. Component (A) of less than 0.01 percent by mass would fail to obtain advantageous effects of the present invention sufficiently, while Component (A) of more than 0.2 percent by mass would adversely affect exhaust gas purifying catalysts or the like.
- Component (B) of the lubricating oil composition of the present invention is a succinimide and/or derivative thereof.
-
- In formulas (2) and (3), R10, R11, and R12 are each independently a polybutenyl group and n is an integer of from 2 to 7. In the present invention, preferred are bis-type succinimides represented by formula (3) because they can further enhance the advantageous effects achieved by the present invention.
- The polybutenyl group of R10, R11, and R12 has a number-average molecular weight of preferably 700 or greater, more preferably 900 or greater and preferably 3,500 or less, more preferably 2,500 or less, and particularly preferably 1,500 or less. A polybutenyl group having a number-average molecular weight of 700 or greater makes it possible to produce a lubricating oil composition with excellent detergent and dispersion properties. Whereas, a polybutenyl group having a number-average molecular weight of 3,500 or less makes it possible to produce a lubricating oil composition with more excellent low-temperature flowability. With the objective of excellent advantageous effects of suppressing sludge formation, the lower limit of n is 2 and preferably 3, while the upper limit of n is 7 and preferably 6. The polybutenyl group can be obtained from polybutene (polyisobutene) produced by polymerizing a mixture of 1-buten and isobutene or a highly purified isobutene using a catalyst such as aluminum chloride or boron fluoride. The polybutene mixture contains polybutenes having a vinylidene structure at the terminal ends in an amount of generally 5 to 100 percent by mol. The polybutene (polyisobutene) may be those of which a slight amount of the remaining fluorine and chlorine resulting from the catalyst used in the process has been removed with a suitable treatment. Therefore, the content of halogen atoms such as fluorine and chlorine is preferably 50 ppm by mass or less, more preferably 10 ppm by mass or less, further more preferably 5 ppm by mass or less, and particularly preferably 1 ppm or less.
- No particular limitation is imposed on the method of producing the succinimide represented by formula (2) or (3). For example, the succinimide may be produced by reacting a polybutenyl succinimide produced by reacting polybutene obtained by chlorinating the above polybutene, preferably one from which chorine and fluorine has been removed with maleic anhydride at a temperature of 100 to 200 °C, with polyamine such as diethylene triamine, triethylene tetramine, tetraethylene pentamine or pentaethylene hexamine. In the case of producing the bissuccinimide, the polybutenyl succinimide in an amount (molar ratio) of twice as much as polyamine may be reacted therewith, while in the case of producing the monosuccinimide, the polybutenyl succinimide in the same amount (molar ratio) may be reacted therewith.
- The succinimide derivative may be a compound obtained by neutralizing or amidizing the whole or part of the remaining amino groups and/or imide groups by allowing a compound of formula (2) or (3) to react with an oxygen-containing organic compound or a boron compound.
- Specific examples of the oxygen-containing organic compound include monocarboxylic acids having 1 to 30 carbon atoms, such as formic acid, acetic acid, glycolic acid, propionic acid, lactic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, oleic acid, nonadecanoic acid, and eicosanoic acid; polycarboxylic acid having 2 to 30 carbon atoms, such as oxalic acid, phthalic acid, trimellitic acid; and pyromellitic acid, anhydrides thereof, and ester compounds thereof; alkyleneoxides having 2 to 6 carbon atoms, and hydroxy(poly)oxyalkylene carbonates. By allowing such oxygen-containing organic compounds to react as described above, the whole or part of the amino or imino group in the compound of formula (2) or (3) assumedly has a structure as represented by formula (4):
- In formula (4), R13 is hydrogen, an alkyl, alkenyl or alkoxy group having 1 to 24 carbon atoms, or a hydroxy(poly)oxyalkylene group represented by -O-(R14O)mH wherein R14 is an alkylene group having 1 to 4 carbon atoms, and m is an integer of from 1 to 5.
- Examples of the boron compound include boric acid, borates, and boric acid esters. Specific examples of boric acid include orthoboric acid, methaboric acid, and tetraboric acid. Examples of borates include alkali metal salts, alkaline earth metal salts, or ammonium salts, of boric acid. More specific examples include lithium borate such as lithium methaborate, lithium tetraborate, lithium pentaborate, and lithium perborate; sodium borate such as sodium methaborate, sodium diborate, sodium tetraborate, sodium pentaborate, sodium hexaborate, and sodium octaborate; potassium borate such as potassium methaborate, potassium tetraborate, potassium pentaborate, potassium hexaborate, and potassium octaborate; calcium borate such as calcium methaborate, calcium diborate, tricalcium tetraborate, pentacalcium tetraborate, and calcium hexaborate; magnesium borate such as magnesium methaborate, magnesium diborate, trimagnesium tetraborate, pentamagnesium tetraborate, and magnesium hexaborate; and ammonium borate such as ammonium methaborate, ammonium tetraborate, ammonium pentaborate, and ammonium octaborate. Examples of the boric acid esters include esters of boric acid and an aliphatic alcohol having 1 to 6 carbon atoms and more specifically monomethyl borate, dimethyl borate, trimethyl borate, monoethyl borate, dimethyl borate, triethyl borate, monopropyl borate, dipropyl borate, tripropyl borate, monobutyl borate, dibutyl borate, and tributyl borate.
- No particular limitation is imposed on the mass ratio of boron and nitrogen (B/N ratio) in the succinimide reacted with a boron compound. However, the mass ratio is preferably from 0.1 to 1.2, more preferably from 0.2 to 1.0, and particularly preferably from 0.3 to 0.9 with the objective of enhancing the base number retaining properties and high-temperature detergency.
- In the present invention, one or more selected from the above-described succinimides and derivatives thereof may be used as Component (B).
- In the present invention, the lower limit content of Component (B) is 0.01 percent by mass, preferably 0.05 percent by mass, and particularly preferably 0.08 percent by mass in terms of nitrogen, based on the total mass of the composition. The upper limit content of Component (B) is 0.3 percent by mass, preferably 0.2 percent by mass, and particularly preferably 0.15 percent by mass in terms of nitrogen, based on the total mass of the composition. Component (B) of less than 0.01 percent by mass would fail to achieve the advantageous effect of the present invention, while Component (B) of more than 0.3 percent by mass would deteriorate the low-temperature viscosity characteristics and anti-emulsion properties of the resulting lubricating oil composition.
- Component (C) of the lubricating oil composition of the present invention is an alkali metal or alkaline earth metal detergent. Component (C) include alkali metal or alkaline earth metal sulfonates, alkali metal or alkaline earth metal phenates, and alkali metal or alkaline earth metal salicylates. One or more alkali metal or alkaline earth metal detergents selected from the above compounds may be used, and particularly alkaline earth metal detergents are preferably used in the present invention.
- Preferred alkaline earth metal sulfonates are alkaline earth metal salts, such as magnesium and/or calcium salts, preferably calcium salts, of alkyl aromatic sulfonic acids obtained by sulfonating alkyl aromatic compounds having a molecular weight of 300 to 1,500 and preferably 400 to 700.
- Specific examples of the alkyl aromatic sulfonic acids include petroleum sulfonic acids and synthetic sulfonic acids.
- Petroleum sulfonic acids may be those obtained by sulfonating alkyl aromatic compounds contained in the lubricant fraction of a mineral oil or mahogany acid by-produced upon production of white oil. The synthetic sulfonic acid may be those obtained by sulfonating an alkyl benzene having a straight-chain or branched alkyl group, by-produced from a plant for producing an alkyl benzene used as materials of detergents or obtained by alkylating an oligomer of an olefin having 2 to 22 carbon atoms such as ethylene and propylene to benzene or those obtained by sulfonating an alkylnaphthalene such as dinonylnaphthalene. Although not restricted, sulfonating agents used for sulfonating these alkyl aromatic compounds may be generally fuming sulfuric acids and sulfuric acid anhydride.
-
- In formulas (5), (6), and (7), R21, R22, R23, R24 , R25, and R26 may be the same or different from each other and are each independently a straight-chain or branched alkyl group having 4 to 30, preferably 6 to 18 carbon atoms, M1, M2, and M3 are each independently an alkaline earth metal, preferably calcium and magnesium, and x is an integer of 1 or 2.
- Specific examples of the alkyl group of R2, R22, R23, R24, R25, and R26 include butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, and triacontyl groups. These alkyl groups may be straight-chain or branched and may be of primary, secondary, or tertiary.
-
- In formula (8), R27 is a straight-chain or branched alkyl group having 4 to 30, preferably 6 to 18 carbon atoms and M4 is an alkaline earth metal, preferably calcium or magnesium.
- Specific examples of the alkyl group of R27 include butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, and triacontyl groups. These alkyl groups may be straight-chain or branched and may be of primary, binary or tertiary.
- The alkaline earth metal sulfonates, alkaline earth metal phenates, and alkaline earth metal salicylates may be (1) neutral (normal salt) alkaline earth metal sulfonates, neutral (normal salt) alkaline earth metal phenates, and neutral (normal salt) alkaline earth metal salicylates obtained by reacting alkyl aromatic sulfonic acids, alkylphenols, alkylphenolsuflides, Mannich reaction products of alkylphenol or alkyl salicylic acid as mentioned above directly with an alkaline earth metal base of the oxide or hydroxide of an alkaline earth metal such as magnesium and/or calcium or obtained by converting alkyl aromatic sulfonic acids, alkylphenols, alkylphenolsuflides, Mannich reaction products of alkylphenol or alkyl salicylic acid to an alkali metal salt such as sodium salt and potassium salt, followed by substitution with an alkaline earth metal salt; (2) basic alkaline earth metal sulfonates, basic alkaline earth metal phenates, and basic alkaline earth metal salicylates obtained by heating the neutral alkaline earth metal sulfonates, neutral alkaline earth metal phenates or neutral alkaline earth metal salicylates with an excess amount of an alkaline earth metal salt or alkaline earth metal base in the presence of water; and (3) overbased alkaline earth metal sulfonates, overbased alkaline earth metal phenates and overbased alkaline earth metal salicylates obtained by reacting the hydroxide of an alkaline earth metal with carbonic acid gas or boric acid in the presence of the neutral alkaline earth metal sulfonates, neutral alkaline earth metal phenates or neutral alkaline earth metal salicylates.
- The above-described neutral alkaline earth metal salts, basic alkaline earth metal salts, overbased alkaline earth metal salts, and mixtures thereof may be used in the present invention. Although not restricted, the base number of these compounds is generally 500 mgKOH/g or less, preferably from 60 mgKOH/g to 400 mgKOH/g. The term "base number" used herein denotes a base number measured by the perchloric acid potentiometric titration method in accordance with section 7 of JIS K2501 (1992) "Petroleum products and lubricants-Determination of neutralization number".
- Although alkaline earth metal detergents are usually commercially available in the form of diluted with a light lubricating base oil, it is preferable to use metal detergents of which metal content is within the range of z1 to 20 percent by mass and preferably 2.0 to 16 percent by mass.
- No particular limitation is imposed on the metal ratio of Component (C). However, it is preferable to use Component (C) whose metal ratio is generally 1 to 20, preferably 1 to 15.
- In the present invention, Component (C) preferably contains the alkali metal or alkaline earth metal salicylate detergent as an essential component. The metal ratio of the detergent is preferably 3 or less, more preferably 2.6 or less, further more preferably 2 or less, and particularly preferably 1.5 or less. The alkali metal or alkaline earth metal salicylate detergent may be used singlely or in the form of a mixture of those of different metal ratios. For example, an alkali metal or alkaline earth metal salicylate with a metal ratio of 2 or less, preferably 1.5 or less, and particularly preferably 1.2 or less may be used alone as an essential component. Alternatively, an alkali metal or alkaline earth metal salicylate with a metal ratio of 1.5 or less, preferably 1.2 or less may be used in combination with one with a metal ratio in excess of 1.5, particularly 2.6, and the metal ratio of the mixture is adjusted to 1.3 or more and preferably 2.3 or less, more preferably 2 or less, and particularly preferably 1.5 or less. Component (C) can enhance base number retaining properties, high-temperature detergency, and low friction characteristics by adjusting the metal ratio to be within the range of 1.3 to 2.3, even though the content of Component (C) is maintained the same.
- Component (C) is preferably a combination of an alkali metal or alkaline earth metal salicylate with a metal ratio of 1.5 or less, preferably 1.2 or less and an alkali metal or alkaline earth metal sulfonate. No particular limitation is imposed on the metal ratio of the alkali metal or alkaline earth metal sulfonate. However, the metal ratio is generally from 1 to 20, preferably from 1 to 15, and particularly preferably from 5 to 12. Component (C) thus prepared can further enhance advantageous effect to improve base number retaining properties, high-temperature detergency, and low friction characteristics.
- The term "metal ratio" used herein is represented by "valence of metal element x metal element content (mol) / soap group (group such as alkylsalicylic acid group) content (mol)" and denotes the alkali metal or alkaline earth metal content against the content of the alkylsalicylic acid and alkylsulfonic acid groups in an alkali metal or alkaline earth metal detergent.
- The lower limit content of Component (C) is 0.05 percent by mass, preferably 0.1 percent by mass, more preferably 0.15 percent by mass, and particularly preferably 0.2 percent by mass in terms of alkali metal or alkaline earth metal, based on the total mass of the lubricating oil composition of the present invention. The upper limit content of Component (C) is 1 percent by mass, preferably 0.5 percent by mass, and more preferably 0.4 percent by mass in terms of alkali metal or alkaline earth metal, based on the total mass of the lubricating oil composition of the present invention. Component (C) of less than 0.05 percent by mass would fail to exhibit excellent base number retaining properties and high-temperature detergency, while Component (C) of more than 1 percent by mass would fail to attain effects as expected.
- Component (D) of the lubricating oil composition of the present invention is a phenol- and/or amine-based anti-oxidant.
- Examples of the phenol-based anti-oxidant include
- 4,4'-methylenebis(2,6-di-tert-butylphenol),
- 4,4'-bis(2,6-di-tert-butylphenol),
- 4,4'-bis(2-methyl-6-tert-butylphenol),
- 2,2'-nethylenebis (4-ethyl-6-tert-butylphenol),
- 2,2'-ethylenebis(4-methyl-6-tert-butylphenol),
- 4,4'-butylidenebis (3-methyl-6-tert-butylphenol),
- 4,4'-isopropylidenebis(2,6-di-tert-butylphenol),
- 2,2'-methylenebis(4-methyl-6-nonylphenol),
- 2,2'-isobutylidenebis(4,6-dimethylphenol),
- 2,2'methylenebis(4-methyl-6-cyclohexylphenol),
- 2,6-di-tert-butyl-4-methylphenol,
- 2,6-di-tert-butyl-4-ethylphenol,
- 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-α -dimethylamino-p-cresol,
- 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol),
- 4,4'-thiobis(2-methyl-6-tert--butylphenol),
- 4,4'-thiobis(3-methyl-6-tert-butylphenol),
- 2,2'-thiobis(4-methyl-6-tert-butylphenol),
- bis(3-methyl-4-hydroxy-5-tert-butylbenzyl)sulfide,
- bis(3,5-di-tert-butyl-4-hydroxybenzyl)sulfide,
- 2,2'-thio-diethylenebis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate],
- tridecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate,
- pentaerythrityl-tetraquis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate],
- octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate,
- occyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, and
- octyl-3-(3-methyl-5-tert-butyl-4-hydroxyphenyl)
- propionate. Two or more of these phenol-based
- anti-oxidants may be used in combination.
- Specific examples of the amine-based anti-oxidant include phenyl-α-naphtylamine, alkylphenyl-α -naphtylamine, and dialkyldiphenylamine. Two or more of these amine-based anti-oxidants may be used in combination. The above alkyl groups are those having 1 to 16 carbon atoms.
- The above-described phenol-based and amine-based anti-oxidants may be used singlely but preferably used in combination because the advantageous effects can be further enhanced.
- The lower limit content of Component (D) is 0.01 percent by mass, preferably 0.1 percent by mass, more preferably 0.5 percent by mass, and particularly preferably 1.0 percent by mass, based on the total mass of the lubricating oil composition of the present invention with the objective of further enhancing the base number retaining properties and high-temperature detergency. The upper limit content of Component (D) is 3.0 percent by mass and preferably 2.5 percent by mass, based on the total mass of the lubricating oil composition of the present invention. Component (D) of more than 3.0 percent by mass would fail to attain sufficient anti-oxidant properties as balanced with the content.
- The lubricating oil composition of the present invention may contain an anti-wear agent other than Component (A).
- Examples of an anti-wear agent other than Component (A) include phosphorus-and/or sulfur-containing anti-wear agents such as thiophosphates and metal salts of phosphates, represented by formula (9) and thiophosphates, phosphates, and metal salts and amine salts thereof, represented by formula (10) and further include those such as phosphates, thiophosphites, and metal salts and amine salts thereof, thiotriphosphtes, zinc dialkyldithiophosphates, zinc dialkyldithiocarbamates, molybdenum dialkyldithiophosphates, molybdenum dialkyldithiocarbamates, disulfides, olefinsulfides, and sulfurized fats and oils:
- In formulas (9) and (10), R30, R31, R32, R33, R34, and R35 are each independently hydrogen or a hydrocarbon group having 1 to 30 carbon atoms. Examples and preferred examples of the hydrocarbon group having 1 to 30 carbon atoms include the same as those exemplified with respect to R2 in formula (1) representing Compound (A) described above.
- X1, X2, X3, X4, X5, and X6 are each independently oxygen or sulfur, at least one of them is oxygen, and preferably two or more of them are oxygen, and particularly preferably all 1 of them are oxygen. Due to the presence of at least one oxygen, the resulting composition can be decreased in sulfur content and in the amount of sulfuric acid produced when being oxidized or thermally decomposed and thus can be significantly suppressed in the exhaust of the base number.
- Y is a metal atom and specifically zinc, copper, iron, lead, nickel, silver, and manganese. With the objective of enhanced anti-wear properties, Y is preferably zinc.
- U is hydrogen (proton), a monovalent metal ion, or an ammonium ion. k indicates the number of ion of U and is an integer of from 1 to 20, preferably from 1 to 10, and more preferably from 1 to 8.
- The monovalent metal ion of U is a metal atom which can form a salt and thus may be an alkali metal, such as lithium, sodium, potassium and cesium. The ammonium ion may be those providing ammonium ion such as nitrogen-containing compounds which can form an amine salt.
- Examples of nitrogen-containing compounds include ammonia, monoamines, diamines, and polyamines. More specific examples include alkylamines having a straight-chain or branched alkyl group having 1 to 30 carbon atoms, such as methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine,
dioctylamine, dinonylamine, didecylamine, diundecylamine, didodecylamine, ditridecylamine, ditetradecylamine, dipentadecylamine, dihexadecylamine, diheptadecylamine, dioctadecylamine, methylethylamine, methylpropylamine, methylbutylamine, ethylpropylamine, ethylbutylamine, and propylbutylamine; alkenylamines having a straight-chain or branched alkenyl group having 2 to 30 carbon atoms, such as ethenylamine, propenylamine, butenylamine, octenylamine and oleylamine; alkanolamines having a straight-chain or branched alkanol group having 1 to 30 carbon atoms, such as methanolamine, ethanolamine, propanolamine, butanolamine, pentanolamine, hexanolamine, heptanolamine, octanolamine, nonanolamine, methanolethanolamine, methanolpropanolamine, methanolbutanolamine, ethanolpropanolamine, ethanolbutanolamine, and propanolbutanolamine; alkylenediamines having an alkylene group having 1 to 30 carbon atoms, such as methylenediamine; ethylenediamine, propylenediamine, and butylenediamine; polyamines such as diethylenetrimaine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine; heterocyclic compounds such as undecyldiethylamine, undecyldiethanolamine, dodecyldipropanolamine, oleyldiethanolamine, oleylpropylenediamine, and stearyltetraethylenepentamine, having an alkyl or alkenyl group having 8 to 20 carbon atoms bonded to the above-exemplified monoamines, diamines and polyamines and N-hydroxyethyloleylimidazoline; alkylene oxide adducts thereof; and mixtures thereof. - In the case of using an anti-wear agent containing sulfur selected from the above anti-wear agents other than Component (A), no particular limitation is imposed on the content of the anti-wear agents. However, the content is preferably 0.1 percent by mass or less and more preferably 0.09 percent by mass or less in terms of sulfur, based on the total mass of the lubricating oil composition of the present invention. However, it is particularly preferable not to use the sulfur-containing anti-wear agent. A lubricating oil composition with significantly excellent base number retaining properties and high-temperature detergency can be obtained by decreasing the amount of the sulfur-containing anti-wear agent to 0.1 percent by mass or less.
- In the case of blending a sulfur-free phosphorus-containing anti-wear agent selected from the above-described anti-wear agents other than Component (A), the content is from 0.01 to 0.2 percent by mass in terms of phosphorus, based on the total mass of the lubricating oil composition of the present invention. Even in such a case, the total content of the anti-wear agent and Component (A) does not exceed preferably 0.2 percent by mass and particularly preferably 0.15 percent by mass in terms of phosphorus, based on the total mass of the composition because there is a risk that exhaust gas purifying catalysts are adversely affected.
- Although the lubricating oil composition for internal combustion engines of the present invention is excellent in anti-wear properties, base number retaining properties, and high-temperature detergency, various additives may be optionally added in order to further improve these properties. Examples of such additives include viscosity index improvers, ashless dispersants other than Component (B), metal detergents other than Component (C), anti-oxidants other than Component (D), friction modifiers, corrosion inhibitors, rust preventives, anti-emulsifiers, metal deactivators, anti-foamers, and dyes.
- Examples of viscosity index improvers include non-dispersion type viscosity index improvers such as copolymers of one or more monomers selected from various methacrylates or hydrides thereof; dispersion type viscosity index improvers such as copolymers of various methacrylates further containing nitrogen compounds; non-dispersion- or dispersion-type ethylene-α-olefin copolymers of which the α-olefin may be propylene, 1-butene, or 1-pentene, or the hydrides thereof; polyisobutylenes or the hydrides thereof; styrene-diene hydrogenated copolymers; styrene-maleic anhydride ester copolymers; and polyalkylstyrenes.
- It is necessary to select the molecular weight of these viscosity index improvers considering the shear stability thereof. Specifically, the number-average molecular weight of non-dispersion or dispersion type polymethacrylates is from 5,000 to 1,000,000 and preferably from 10,000 to 350,000. The number-average molecular weight of polyisobutylenes or hydrides thereof is from 800 to 5, 000 and preferably from 1,000 to 4,000. The number-average molecular weight of ethylene-α-olefin copolymers and hydrides thereof is from 800 to 500,000 and preferably from 3,000 to 200,000.
- Among these viscosity index improvers, the use of ethylene-α-olefin copolymers or hydrides thereof is contributive to production of a lubricating oil composition which is excellent particularly in shear stability. One or more compounds selected from the above-described viscosity index improvers may be blended in an arbitrary amount. The content of the viscosity index improvers is generally within the range of 0.1 to 20.0 percent by mass, based on the total mass of the lubricating oil composition.
- Examples of ashless dispersants other than Component (B) include benzylamines having in the molecules at least one alkyl or alkenyl group having 40 to 400 carbon atoms and derivatives thereof; and polyamines having in the molecules at least one alkyl or alkenyl group having 40 to 400 carbon atoms and derivatives thereof.
- Examples of friction modifiers include aliphatic amines, fatty acids, fatty acid esters, and aliphatic alcohols, having an alkyl or alkenyl group having 6 to 30 carbon atoms.
- Examples of corrosion inhibitors include benzotriazole-, tolyltriazole-, thiazole-, thiadiazole-, and imidazole-based compounds.
- Examples of rust-preventives include petroleum sulfonates, alkylbenzene sulfonates, dinonylnaphthalenesulfonates, alkenyl succinic acid esters, and polyhydric alcohol esters.
- Examples of anti-emulsifiers include polyalkylene glycol-based non-ionic surfactants such as polyoxyethylenealkyl ether, polyoxyethylenealkylphenyl ether, and polyoxyethylenealkylnaphthyl ether.
- Examples of metal deactivators include imidazolines, pyrimidine derivatives, alkylthiadiazoles, mercaptobenzothiazoles, benzotriazoles and derivatives thereof, 1,3,4-thiadiazolepolysulfide, 1,3,4-thiadiazolyl-2,5-bisdialkyldithiocarbamte, 2-(alkyldithio)benzoimidazole, and β -(o-carboxybenzylthio)propionitrile.
- Examples of anti-foamers include silicone, fluorosilicone, and fluoroalkyl ether.
- When these additives are added to the lubricating oil composition of the present invention, the content of each of the ashless dispersant other than Component (B), metal detergent other than Component (C), anti-oxidant other than Component (D), friction modifier, corrosion inhibitor, rust inhibitor, and anti-emulsifier is 0.01 to 5 percent by mass based on the total mass of the composition. The content of the metal deactivator is 0.005 to 1 percent by mass, while the content of the anti-foamer is 0.0005 to 1 percent by mass.
- The lubricating oil composition of the present invention is preferably limited in the content of additive containing sulfur as well as the content of the above-described sulfur-containing anti-wear agent. The content of the sulfur-containing additive including the sulfur-containing anti-wear agent is preferably 0.1 percent by mass or less and more preferably 0.09 percent by mass or less based on the total mass of the composition. Particularly preferably the lubricating oil composition contains no sulfur-containing additives including the sulfur-containing anti-wear agent. Although commercially available additives generally contain a solvent used when they are synthesized or a diluting oil such as a solvent-refined mineral oil used to improving the handleability of the additives, the term "sulfur-containing additives" used herein does not refer to sulfur compounds derived from such a solvent or diluting oil.
- Even though the composition of the present invention contains sulfur originating from the solvent or diluting oil, the total sulfur content of the composition is 0.2 percent by mass or less, preferably 0.15 percent by mass or less, and particularly preferably 0.1 percent by mass or less. As a result, a composition which is excellent in anti-wear properties, base number retaining properties, and high-temperature detergency and capable of maintaining the performance of exhaust gas purifying catalysts can be obtained. In the present invention, a composition containing sulfur in an amount of 10 ppm by mass or less or containing substantially no sulfur can be obtained using a high-degree hydrocracked base oil whose content of sulfur originating from a solvent or diluting oil is 10 ppm by mass or less or a base oil produced by isomerizig GTL Wax (Gas To Liquid Wax) or a synthetic oil, containing substantially no sulfur.
- Even though the lubricating oil composition for internal combustion engines, of the present invention is decreased in the amount of a sulfur-containing agent such as ZDTP having both anti.-wear and anti-oxidation properties or contains no such an agent at all, the composition is extremely improved in anti-oxidation properties and in base number retaining properties, i.e., long-drain properties, and also excellent in high-temperature detergency and low friction characteristics, but free from the decrease of anti-wear properties.
- Furthermore, since the total sulfur content of the lubricating oil composition of the present invention can be held down and prevented from raising more than 0.2 percent by mass, the composition can suppress exhaust gas purifying catalysts from poisoning by sulfur and be used suitably for engines equipped with an exhaust-gas after-treatment device such as an exhaust gas purifying catalyst.
- Moreover, the lubricating oil composition of the present invention can also be used suitably as lubricating oils required to have anti-wear properties, base number retaining properties, and high-temperature detergency, such as lubricating oils for driving means such as automatic or manual transmissions; those for wet brakes; hydraulic oils; turbine oils; gear oils; and bearing oils.
- Hereinafter, the present invention will be described in more details by way of the following examples and comparative examples, which should not be construed as limiting the scope of the invention.
- Lubricating oil compositions for internal combustion engines, each having the formulation and properties shown in Table 1 were prepared. The compositions containing C.05 percent by mass of sulfur are those containing sulfur originating from the diluting oils contained in the additives.
- The compositions of Examples 1 to 4 and Comparative Examples 1 and 2 were evaluated by the following performance characteristics evaluating tests.
- Each of the compositions was forced to deteriorate at a temperature of 165.5 °C in accordance with "Lubricating Oils for Internal Combustion
- (Indiana Stirring Oxidation Test (ISOT), JIS K 2514) and measured for change in base number (hydrochloric acid method) with time. The results are shown in Table 1. A higher base number remaining rate indicates that the composition was enhanced in base number retaining properties, and thus found to be a long drain oil which was able to be used for a long period of time.
- As shown in Table 1, the compositions of the present invention (Examples 1 to 4) were significantly higher in base number retaining properties than the compositions (Comparative Examples 1 and 2) containing ZDTP (sulfur-containing anti-wear agent) in such a general amount that they are used as lubricating oils for internal combustion engines, i.e., 0.16 percent by mass in terms of sulfur and 0.08 percent by mass in terms of phosphorus. The triphenylphosphate-containing compositions (Example 4) and particularly the tributylphosphate-containing composition (Example 3) were significantly higher in base number retaining properties that the trioctylphosphate-containing composition (Example 1).
- Each of the sample oils was forced to deteriorate by blowing thereto a NOx gas under the conditions (150 °C, NOx : 1185 ppm) in compliance with those described in "Japanese Society of Tribologists Conference Preliminary Reports 1992, 10, 465" and measured for change in base number (hydrochloric acid method) with time. The results are shown in Table 1. A smaller reduction in base number indicates that the composition is enhanced in base number retaining properties even in the presence of NOx as used in an internal combustion engine and is a long drain oil which can be used for a long period time.
- As shown in Table 1, the compositions of the present invention (Examples 1 to 4) were found to exhibit excellent base number retaining properties and long drain properties under such an atmosphere that lubricating oils for internal combustion engines are exposed to NOx, similarly to the results in the above-described ISOT.
- The seizuring load of each of sample pieces was measured by FALEX test in accordance with ASTM D3233 (A method, 290 rpm, room temperature). The results are shown in Table 1. The larger the securing load, the composition exhibits more excellent anti-wear properties.
- As shown in Table 1, the anti-wear properties of the compositions of the present invention were equal to or higher than those of Comparative Examples 1 and 2.
- A hot tube test was conducted in accordance with JPI-5S-5599. The evaluation was made by grading the compositions as 1C points when they were colorless and transparent (no fouling) and those as 0 point when they were black and opaque. Between 10 and 0 point, evaluation was done using reference tubes which were made per grade beforehand. At 290 °C, 6 points or higher indicate that the oil composition has an excellent detergency for an ordinary gasoline or diesel engine. However, a lubricating oil composition for a gas engine preferably exhibits excellent detergency also at 300 °C or higher in this test.
- It is confirmed from Table 1 that the compositions of the present invention exhibited extremely excellent high-temperature detergency even at a temperature of 300 °C or higher. Particularly, the composition containing trioctylphosphate which is conceivably lower in evaporation than tributylphosphate exhibited extremely excellent high-temperature detergency.
- Lubricating oil compositions (Examples 5 to 9 and Comparative Example 3) with the formulations and properties shown in Table 2 were prepared and evaluated by the following test. The results are shown in Table 2. The composition of Example 9 is the same as the one of Example 1 in Table 1,
- An LFW-1 boundary friction test was conducted at a load of 100 lbs, a temperature of 100°C, and various speeds using an LFW-1 boundary friction tester.
- As apparent from the results shown in Table 2, the composition of Example 9 (composition of Example 1 in Table 1) is also excellent in low friction characteristics, compared with the compositions of Comparative Example 3. The compositions containing a low metal ratio alkaline earth metal salicylate essentially as Component (C) (Examples 5 to 8) were found to exhibit extremely superior low friction characteristics. These compositions exhibited base number retaining properties, anti-wear properties, and high temperature detergency equally to or better than the composition of Example 9. Component (C) of the composition of Example 6 was a mixture of calcium salicylate whose metal ratio is 1.0 and calcium salicylate whose metal ratio is 2.7, and the total metal ratio of Component (C) is 1.46. However, the composition of Example 6 contained less amount of Component (C) of Example 5 but was recognized to be decreased in friction coefficient particularly in the high velocity region synergistically, compared with the average between Examples 5 and 9. In the case of using tributylphosphate or triphenylphosphate instead of trioctylphosphate as Component (A), the composition containing tributylphosphate or triphenylphosphate was superior in low friction characteristics to Comparative Example 3 but the composition containing trioctylphosphate exhibited the most excellent low friction characteristics.
- The "mass %" in the tables is based on the total mass of the composition.
Table 1 Example 1 Example 2 Example 3 Reference Example 4 Comparative Example 1 Comparative Example 2 Base oil1) mass% balance balance balance balance balance balance (A) Tri(2-ethylhexyl)phosphate in terms of phosphorus mass% 0.08 0.05 (A) Tributylphosphate in terms of phosphorus mass% 0.08 (A) Triphenylphosphate in terms of phosphorus mass% 0.08 (B) Polybutenylsuccinimide 2) in terms of nitrogen mass% 0.10 0.10 0.10 0.10 0.10 0.10 (C) Alkaline earth metal detergent 3) in terms of alkaline earth metal mass% 0.26 0.26 0.26 0.26 0.26 0.26 (D) Phenol-based anti-oxidant 4) mass% 1.0 1.0 1.0 1.0 1.0 1.0 (D) Amine-based anti-oxidant 5) mass% 1.0 1.0 1.0 1.0 1.0 1.0 Sulfur-containing anti-wear agent A 6) in terms of sulfur mass% 0.08 0.16 Sulfur-containing anti-wear agent B 7) in terms of sulfur mass% 0.16 Viscosity index improver 8) mass% 5.0 5.0 5.0 5.0 5.0 5.0 Metal deactivator mass% 0.05 0.05 0.05 0.05 0.05 0.05 Total content of sulfur-containing additive in terms of sulfur mass% 0.00 0.08 0.00 0.00 0.16 0.16 Total sulfur content in composition mass% 0.05 0.13 0.05 0.05 0.21 0.21 (1) Base number remaining rate (HCl method) after ISO test after 48 hours % 70 50 64 47 49 46 after 125 hours % 38 27 41 29 15 23 after 192 hours % 17 - 28 22 10 11 (2) Base number remaining rate (HCl method) after 10 hours % 61 56 60 56 51 52 after Nox absorbing test after 31 hours % 18 12 20 18 0 4 (3) Falex test seizuring load lbs 940 940 980 1030 900 940 (4) Hot tube test 290°C grade 10 10 10 10 10 10 300°C grade 10 8 10 10 7 7 310°C grade 8 2 2 5 1 1 320°C grade 1 1 1 1 0 0 1) high-degree hydrogenated mineral oil, kinematic viscosity: 5.6 mm2/s, aromatic content: 1.2 mass%, sulfur content: 10 mass ppm
2) bis type, number avarage molecular weight of polybutenyl group:1,300, nitrogen content:1.8 mass%
3) calcium salicylate, base number: 170 mgKOH/g, calcium content: 6.2 mass%
4) octyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, sulfur content: 0.0 mass%
5) alkyldiphenylamine (alkyl group: mixture of C4 and C8 alkyl groups)
6) zinc di(1,3-dimetylbutyl)dithiophosphate, sulfur content:18.8 mass%, phosphorus content: 9.4 mass%
7) zinc di(2-ethylhexyl)dithiophosphate, sulfur content: 16.0 mass%, phosphorus content: 8.0 mass%
8) ethylene-a-olefin copolymer-basedTable 2 Example 5 Example 6 Example 7 Example 8 Example 9 Comparative Example 3 Base oil1) mass% balance balance balance balance balance balance (A) Tri(2-ethylhexyl)phosphate in terms of phosphorus mass% 0.08 0.08 0.08 0.08 0.08 0.08 (B) Polybutenyl succinimide 2) in terms of nitrogen mass% 0.10 0.10 0.10 0.10 0.10 0.10 (C) Alkaline earth metal detergent 3) in terms of alkaline earth metal mass% 0.26 0.13 0.13 (C) Alkaline earth metal detergents 4) in terms of alkaline earth metal mass% 0.26 (C) Alkaline earth metal detergent 5) in terms of alkaline earth metal mass% 0.13 0.26 0.26 (C) Alkaline earth metal detergent 6) in terms of alkaline earth metal mass% 0.13 (D) Phenol-based anti-oxidant 7) mass% 1.0 1.0 1.0 1.0 1.0 1.0 (D) Amine-based anti-oxidant 8) mass% 1.0 1.0 1.0 1.0 1.0 1.0 Viscosity index improver 9) mass% 5.0 5.0 5.0 5.0 5.0 5.0 Metal deactivator mass% 0.05 0.05 0.05 0.05 0.05 0.05 Sulfur-containing anti-wear agent A 10) in terms of sulfur mass% 0.00 0.00 0.00 0.00 0.00 0.16 Total content of sulfur-containing additive in terms of sulfur mass% 0.00 0.00 0.02 0.00 0.00 0.16 Total sulfur content in composition mass% 0.05 0.05 0.07 0.05 0.05 0.21 LFW-1 boundary friction coefficient Load: 100 lbs Temperature: 100°C slipping velocity 1,000mm/s 0.104 0.106 0.113 0.115 0.119 0.138 slipping velocity 750mm/s 0.106 0.110 0.115 0.118 0.120 0.141 slipping velocity 500mm/s 0.107 0.113 0.117 0.120 0.123 0.144 slipping velocity 200mm/s 0.107 0.115 0.117 0.120 0.127 0.150 slipping velocity 100mm/s 0.105 0.116 0.116 0.119 0.128 0.151 slipping velocity 50mm/s 0.101 0.115 0.114 0.114 0.128 0.151 1) high-degree hydrogenated mineral oil, kinematic viscosity: 5.6 mm2/s, aromatic content: 1.2 mass%, sulfur content 10 mass ppm
2) bis type, number avarage molecular weight of polybutenyl group: 1,300, nitrogen content 1.8 mass%
3) calcium salicylate, base number: 70 mgKOH/g, calcium content 2.3 mass%, metal ratio: 1.0
4) calcium salicylate, base number: 120 mgKOH/g, calcium content 4.15 mass%, metal ratio:1.8
5) calcium salicylate, base number: 170 mgKOH/g, calcium content 6.2 mass%, metal ratio: 2.7
6) calcium sulfonate, base number: 300 mgKOH/g, calcium content: 12 mass%, sulfur content: 3.3 mass%, metal ratio:10.0
7) octyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, sulfur content 0.0 mass%
8) alkyldiphenylamine (alkyl group: mixture of C4 and C8 alkyl groups)
9) ethylene-α-olefin copolymer-based
10) zinc di(1,3-dimetylbutyl)dithiophosphate, sulfur content 18.8 mass%, phosphorus content 9.4 mass%
Claims (9)
- A lubricating oil composition for internal combustion engine, comprising a lubricating base oil; (A) a triphosphate represented by formula (1) below in an amount of 0.01 to 0.2 percent by mass in terms of phosphorus; (B) succinimide and/or derivative thereof in an amount of 0.01 to 0.3 percent by mass in terms of nitrogen; (C) an alkali metal or alkaline earth metal detergent which contains an alkalimetal or alkaline earth metal salicylate in an amount of 0.05 to 1 percent by mass in terms of metal; and (D) a phenol-based and/or amine-based anti-oxidants in an amount of 0.01 to 3 percent by mass:
O = P (OR1)3 (1)
wherein the groups of R1 are each independently an alkyl group having 1 to 30 carbon atoms and are the same or different from each other, wherein a total sulfur content of the composition is 0,2 percent by mass or less. - The lubricating oil composition for internal combustion engine according to claim 1 wherein the total sulfur content of the composition is 0,1 percent by mass or less.
- The lubricating oil composition for internal combustion engine according to claim 1 wherein said alkali metal or alkaline earth metal salicylate detergent is an alkali metal or alkaline earth metal salicylate detergent whose metal ratio represented by "valence of metal element x metal element content (mol) / soap group content, (mol)" is 3 or less.
- The lubricating oil composition for internal combustion engine according to claim 1 wherein said alkali metal or alkaline earth metal detergent is a mixture of an alkali metal or alkaline earth metal salicylate detergent whose metal ratio represented by "valence of metal element x metal element content (mol) / soap group content (mol)" is 1.5 or less and an alkali metal or alkaline earth metal salicylate detergent those metal ratio is more than 1.5.
- The lubricating oil composition for internal combustion engine according to claim 1 wherein said alkali metal or alkaline earth metal detergent is a mixture of an alkali metal or alkaline earth metal salicylate detergent whose metal ratio represented by "valence of metal element x metal element content (mol) / soap group content (mol)" is 1.5 or less and an alkali metal or alkaline earth metal sulfonate detergent.
- The lubricating oil composition for internal combustion engine according to claim 1 which contains a sulfur-containing anti-wear agent in an amount of 0.1 percent: by mass or less in terms of sulfur.
- The lubricating oil composition fo internal combustion engine according to claim 1 which contains a lubricating base oil whose aromatic content is 3 percent by mass or less and sulfur content is 50 ppm by mass or less.
- Use of the lubricating oil composition according to claim 1 in an internal combustion engine using a fuel whose sulfur content is 50 ppm by mass or less.
- Use of the lubricating oil composition according to any one of claims 1 to 7 in gas engines.
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001315941 | 2001-10-12 | ||
JP2001315941 | 2001-10-12 | ||
JP2002086146A JP3662228B2 (en) | 2002-03-26 | 2002-03-26 | Lubricating oil composition |
JP2002086145 | 2002-03-26 | ||
JP2002086147 | 2002-03-26 | ||
JP2002086146 | 2002-03-26 | ||
JP2002086147A JP3738228B2 (en) | 2002-03-26 | 2002-03-26 | Lubricating oil composition |
JP2002086145A JP3709379B2 (en) | 2002-03-26 | 2002-03-26 | Lubricating oil composition |
PCT/JP2002/010679 WO2003033629A1 (en) | 2001-10-12 | 2002-10-15 | Lubricating oil composition for internal combustion engine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1439217A1 EP1439217A1 (en) | 2004-07-21 |
EP1439217A4 EP1439217A4 (en) | 2009-09-02 |
EP1439217B1 true EP1439217B1 (en) | 2012-06-20 |
Family
ID=27482619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02770233A Expired - Lifetime EP1439217B1 (en) | 2001-10-12 | 2002-10-15 | Lubricating oil composition for internal combustion engine |
Country Status (3)
Country | Link |
---|---|
US (1) | US20040242434A1 (en) |
EP (1) | EP1439217B1 (en) |
WO (1) | WO2003033629A1 (en) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004083746A (en) * | 2002-08-27 | 2004-03-18 | Nippon Oil Corp | Lubricant oil composition for internal combustion engine |
US20040176256A1 (en) * | 2002-11-07 | 2004-09-09 | Nippon Oil Corporation | Lubricating oil composition for transmissions |
WO2005014760A1 (en) | 2003-08-06 | 2005-02-17 | Nippon Oil Corporation | System having dlc contacting faces, method for lubricating the system and lubricating oil for the system |
EP1661971A4 (en) * | 2003-08-06 | 2008-12-03 | Nippon Oil Corp | System having dlc contacting faces, method for lubricating the system and lubricating oil for the system |
US20050070447A1 (en) * | 2003-09-25 | 2005-03-31 | The Lubrizol Corporation | Ashless stationary gas engine lubricant |
JP4486338B2 (en) * | 2003-10-16 | 2010-06-23 | 新日本石油株式会社 | Lubricating oil composition |
JP4541681B2 (en) * | 2003-10-16 | 2010-09-08 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
WO2005037967A1 (en) * | 2003-10-16 | 2005-04-28 | Nippon Oil Corporation | Lubricating oil additive and lubricating oil composition |
JP4541680B2 (en) * | 2003-10-16 | 2010-09-08 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
JP4486339B2 (en) * | 2003-10-16 | 2010-06-23 | 新日本石油株式会社 | Lubricating oil composition |
JP4578115B2 (en) * | 2004-02-04 | 2010-11-10 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
MX2007001788A (en) * | 2004-08-18 | 2007-03-26 | Ciba Sc Holding Ag | Lubricating oil compositions with improved performance. |
JP4885442B2 (en) * | 2004-11-26 | 2012-02-29 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition and drive transmission device using the same |
CA2528380C (en) * | 2004-11-30 | 2013-05-14 | Infineum International Limited | Low saps lubricating oil compositions comprising overbased detergent |
JP4806528B2 (en) | 2004-12-22 | 2011-11-02 | 出光興産株式会社 | Lubricating oil composition for internal combustion engines |
US7485603B2 (en) * | 2005-02-18 | 2009-02-03 | Infineum International Limited | Soot dispersants and lubricating oil compositions containing same |
JP4955998B2 (en) * | 2005-12-27 | 2012-06-20 | シェブロンジャパン株式会社 | Lubricating oil composition |
CN101336286B (en) * | 2006-01-31 | 2013-01-02 | 日产自动车株式会社 | Lubricant oil composition containing nano particle |
US20090048129A1 (en) * | 2006-01-31 | 2009-02-19 | Nissan Motor Co., Ltd. | Nanoparticle-containing lubricating oil compositions |
JP5094030B2 (en) | 2006-03-22 | 2012-12-12 | Jx日鉱日石エネルギー株式会社 | Low ash engine oil composition |
US8389451B2 (en) * | 2006-07-28 | 2013-03-05 | Exxonmobil Research And Engineering Company | Lubricant air release rates |
EP2049635A2 (en) * | 2006-07-28 | 2009-04-22 | ExxonMobil Research and Engineering Company | Lubricant compositions, their preparation and use |
WO2008013753A2 (en) * | 2006-07-28 | 2008-01-31 | Exxonmobil Research And Engineering Company | Novel application of thickeners to achieve favorable air release in lubricants |
WO2008013755A2 (en) * | 2006-07-28 | 2008-01-31 | Exxonmobil Research And Engineering Company | Lubricant compositions having improved rates of air release |
US20080103072A1 (en) * | 2006-11-01 | 2008-05-01 | The Lubrizol Corporation | Antiwear Containing Lubricating Composition |
US20080119377A1 (en) * | 2006-11-22 | 2008-05-22 | Devlin Mark T | Lubricant compositions |
US20080128184A1 (en) * | 2006-11-30 | 2008-06-05 | Loper John T | Lubricating oil compositions having improved corrosion and seal protection properties |
JP5180466B2 (en) * | 2006-12-19 | 2013-04-10 | 昭和シェル石油株式会社 | Lubricating oil composition |
US20080146473A1 (en) * | 2006-12-19 | 2008-06-19 | Chevron Oronite Company Llc | Lubricating oil with enhanced piston cleanliness control |
KR101435701B1 (en) | 2007-03-28 | 2014-09-01 | 이데미쓰 고산 가부시키가이샤 | Lubricant composition |
US7910530B2 (en) * | 2007-03-30 | 2011-03-22 | Exxonmobil Research And Engineering Company | Method for improving the air release rate of GTL base stock lubricants using synthetic ester, and composition |
US8338342B2 (en) * | 2007-03-30 | 2012-12-25 | Idemitsu Kosan Co., Ltd. | Lubricant composition |
US7989408B2 (en) | 2007-04-10 | 2011-08-02 | Exxonmobil Research And Engineering Company | Fuel economy lubricant compositions |
US7770914B2 (en) * | 2007-07-31 | 2010-08-10 | Autoliv Asp, Inc. | Passenger airbag mounting apparatus |
EP2128232A1 (en) * | 2008-05-20 | 2009-12-02 | Castrol Limited | Lubricating composition for ethanol fueled engines |
JP5432537B2 (en) * | 2009-01-28 | 2014-03-05 | 昭和シェル石油株式会社 | Antiwear agent and lubricating oil composition containing the same and excellent in wear resistance |
CA2758298A1 (en) * | 2009-04-10 | 2010-10-14 | Ls9, Inc. | Production of commercial biodiesel from genetically modified microorganisms |
US8288326B2 (en) * | 2009-09-02 | 2012-10-16 | Chevron Oronite Company Llc | Natural gas engine lubricating oil compositions |
US8841243B2 (en) | 2010-03-31 | 2014-09-23 | Chevron Oronite Company Llc | Natural gas engine lubricating oil compositions |
WO2012112658A1 (en) | 2011-02-17 | 2012-08-23 | The Lubrzol Corporation | Lubricants with good tbn retention |
SG11201505109QA (en) | 2012-12-27 | 2015-08-28 | Jx Nippon Oil & Energy Corp | System lubricant composition for crosshead diesel engines |
US20140187455A1 (en) * | 2012-12-28 | 2014-07-03 | Chevron Oronite LLC | Ultra-low saps lubricants for internal combustion engines |
US9777021B2 (en) | 2016-02-02 | 2017-10-03 | Qatar Foundation | Lubricant additives |
JP7454556B2 (en) * | 2019-03-29 | 2024-03-22 | 出光興産株式会社 | lubricating oil composition |
CN113512452B (en) * | 2020-04-09 | 2023-10-10 | 中国石油化工股份有限公司 | Diesel engine lubricating oil composition and preparation method thereof |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2584884A (en) * | 1983-09-16 | 1985-03-21 | Bankamerica Corp. | Lubricant for use with alcoholic fuels |
JP2614149B2 (en) * | 1991-03-11 | 1997-05-28 | 富士写真フイルム株式会社 | New alkyl phosphate |
JP3086727B2 (en) * | 1991-08-09 | 2000-09-11 | オロナイトジャパン株式会社 | Additive composition for producing low phosphorus engine oil |
US5629272A (en) * | 1991-08-09 | 1997-05-13 | Oronite Japan Limited | Low phosphorous engine oil compositions and additive compositions |
US5672572A (en) * | 1993-05-27 | 1997-09-30 | Arai; Katsuya | Lubricating oil composition |
JP3500445B2 (en) * | 1994-06-06 | 2004-02-23 | 新日本石油株式会社 | Lubricating oil composition for internal combustion engines |
JP3615267B2 (en) * | 1995-04-28 | 2005-02-02 | 新日本石油株式会社 | Engine oil composition |
US5726133A (en) | 1996-02-27 | 1998-03-10 | Exxon Research And Engineering Company | Low ash natural gas engine oil and additive system |
JP4334623B2 (en) * | 1996-06-12 | 2009-09-30 | 出光興産株式会社 | Lubricating oil composition for automatic transmission |
WO1998017747A1 (en) * | 1996-10-22 | 1998-04-30 | Tonen Corporation | Lubricating oil composition for automatic transmissions |
US5792733A (en) * | 1997-08-14 | 1998-08-11 | The Lubrizol Corporation | Antiwear compositions containing phosphorus compounds and olefins |
US6136759A (en) * | 1998-01-29 | 2000-10-24 | Idemitsu Kosan Co., Ltd. | Additive composition |
JP2000001685A (en) * | 1998-06-18 | 2000-01-07 | Cosmo Sogo Kenkyusho:Kk | Engine oil composition |
US6001780A (en) * | 1998-06-30 | 1999-12-14 | Chevron Chemical Company Llc | Ashless lubricating oil formulation for natural gas engines |
JP2000319682A (en) * | 1999-05-10 | 2000-11-21 | Tonen Corp | Lubricating oil composition for internal combustion engine |
JP2001158896A (en) | 1999-12-02 | 2001-06-12 | Chevron Oronite Ltd | Lubricant oil composition for internal combustion engine especially effective for lubricant of gas engine |
JP2001164283A (en) * | 1999-12-10 | 2001-06-19 | Tonengeneral Sekiyu Kk | Lubricating oil composition for internal-combustion engine |
JP4416261B2 (en) * | 2000-03-29 | 2010-02-17 | 新日本石油株式会社 | Engine oil composition |
US6569818B2 (en) * | 2000-06-02 | 2003-05-27 | Chevron Oronite Company, Llc | Lubricating oil composition |
JP4856305B2 (en) * | 2000-10-30 | 2012-01-18 | Jx日鉱日石エネルギー株式会社 | Engine oil composition |
JP3841687B2 (en) * | 2001-01-24 | 2006-11-01 | 新日本石油株式会社 | Lubricating oil composition |
EP1360264B1 (en) * | 2001-02-07 | 2015-04-01 | The Lubrizol Corporation | Lubricating oil composition |
US6784143B2 (en) * | 2001-05-11 | 2004-08-31 | Infineum International Ltd. | Lubricating oil composition |
-
2002
- 2002-10-15 EP EP02770233A patent/EP1439217B1/en not_active Expired - Lifetime
- 2002-10-15 WO PCT/JP2002/010679 patent/WO2003033629A1/en active Application Filing
-
2004
- 2004-04-12 US US10/822,480 patent/US20040242434A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2003033629A1 (en) | 2003-04-24 |
EP1439217A4 (en) | 2009-09-02 |
EP1439217A1 (en) | 2004-07-21 |
US20040242434A1 (en) | 2004-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1439217B1 (en) | Lubricating oil composition for internal combustion engine | |
US7790659B2 (en) | Lubricating oil compositions | |
US7612025B2 (en) | Lubricating oil composition | |
US7696137B2 (en) | Lubricating oil compositions | |
JP3841687B2 (en) | Lubricating oil composition | |
EP1227145B1 (en) | Lubricating oil compositions | |
US7625847B2 (en) | Lubricating oil compositions | |
EP1516910A1 (en) | Lubricating oil composition | |
US7563752B2 (en) | Lubricating oil compositions | |
JP3662228B2 (en) | Lubricating oil composition | |
JP2004083891A (en) | Lubricant oil composition | |
JP3738228B2 (en) | Lubricating oil composition | |
JP4309635B2 (en) | Lubricating oil composition for internal combustion engines | |
JP4227764B2 (en) | Lubricating oil composition | |
JP3709379B2 (en) | Lubricating oil composition | |
JP4373650B2 (en) | Lubricating oil composition | |
JP4528286B2 (en) | Lubricating oil composition | |
EP1526169B1 (en) | Lubricating oil composition | |
JP4286500B2 (en) | Lubricating oil composition | |
JP4257082B2 (en) | Lubricating oil composition | |
JP4286501B2 (en) | Lubricating oil composition | |
JP4257081B2 (en) | Lubricating oil composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040413 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20090731 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10M 133/56 20060101ALI20090727BHEP Ipc: C10N 40/12 20060101ALI20090727BHEP Ipc: C10M 133/16 20060101ALI20090727BHEP Ipc: C10M 135/00 20060101ALI20090727BHEP Ipc: C10M 133/12 20060101ALI20090727BHEP Ipc: C10M 137/04 20060101ALI20090727BHEP Ipc: C10M 159/20 20060101ALI20090727BHEP Ipc: C10N 10/02 20060101ALI20090727BHEP Ipc: C10N 30/08 20060101ALI20090727BHEP Ipc: C10N 40/25 20060101ALI20090727BHEP Ipc: C10N 10/04 20060101ALI20090727BHEP Ipc: C10N 30/04 20060101ALI20090727BHEP Ipc: C10N 30/06 20060101ALI20090727BHEP Ipc: C10M 163/00 20060101AFI20030508BHEP Ipc: C10M 129/10 20060101ALI20090727BHEP |
|
17Q | First examination report despatched |
Effective date: 20091015 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60243187 Country of ref document: DE Effective date: 20120823 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130321 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60243187 Country of ref document: DE Effective date: 20130321 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181002 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20181010 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190913 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60243187 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 |