NO851602L - CUTTING TOOL AND MANUFACTURING PROCEDURE - Google Patents

CUTTING TOOL AND MANUFACTURING PROCEDURE

Info

Publication number
NO851602L
NO851602L NO851602A NO851602A NO851602L NO 851602 L NO851602 L NO 851602L NO 851602 A NO851602 A NO 851602A NO 851602 A NO851602 A NO 851602A NO 851602 L NO851602 L NO 851602L
Authority
NO
Norway
Prior art keywords
cutting tool
base
microcrystals
metal
coating
Prior art date
Application number
NO851602A
Other languages
Norwegian (no)
Inventor
Alexei Georgievich Gavrilov
Galina Konstantinov Galitskaya
Viktor Petrovich Zhed
Andrei Karlovich Sinselschikov
Albert Michilovich Boyarunas
Anatoly Mikhailovich Lein
Evgeny Mikhailovich Stepnov
Original Assignee
Vni Instrument Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vni Instrument Inst filed Critical Vni Instrument Inst
Publication of NO851602L publication Critical patent/NO851602L/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/141Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness
    • B23B27/145Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness characterised by having a special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Description

Foreliggende oppfinnelse vedrører metallbearbeiding og særlig skjærverktøy og tilvirkningsfremgangsmåte av dette. The present invention relates to metalworking and, in particular, cutting tools and manufacturing methods thereof.

En av de moderne trender i utvikling av metallbearbeidelses-teknikker er forbedring av operasjonskarakteristikkene av skjærverktøy ved å påføre slitasjemotstandsdyktige belegg til deres overflate. One of the modern trends in the development of metalworking techniques is the improvement of the operational characteristics of cutting tools by applying wear-resistant coatings to their surface.

Til nå har stor oppmerksomhet vært rettet mot å foredle verk-tøy ved å velge en egnet kjemisk sammensetning for belegg for å passe bestemte operasjonsbetingelser. Imidlertid kan verk-tøykarakteristikken også foredles ved å forbedre strukturen av beleggene. Until now, much attention has been directed to refining tools by choosing a suitable chemical composition for coating to suit specific operating conditions. However, the tool characteristic can also be refined by improving the structure of the coatings.

Det er kjent et skjærverktøy (jfr. Britisk søknad 16, 1,303,A cutting tool is known (cf. British Application 16, 1,303,

910, Cl. C 23 C 11/08, 24 januar 1973), innbefattende en basis til hvilket av hardlegering og med et slitasjemotstandsdyktig belegg sammensatt av mikrokrystaller av en motstandsdyktig forbindelse innbefattende metaller og elementer av C, N og/ eller B-gruppen. I et slikt skjærverktøy innbefatter et slitas j emotstandsdyktig belegg metaller fra Ti, Zr, Hf, V, Nb, Ta-gruppen. 910, Cl. C 23 C 11/08, 24 January 1973), comprising a base to which of hard alloy and with a wear-resistant coating composed of microcrystals of a resistant compound including metals and elements of the C, N and/or B group. In such a cutting tool, a wear-resistant coating includes metals from the Ti, Zr, Hf, V, Nb, Ta group.

Det er også kjent en fremgangsmåte for tilvirkning av et skjær-verktøy (jfr. Britisk søknad nr. 1,303,910), som innbefatter trinnene av å oppvarme en basis til en temperatur av 1000 til 1100°C ved å innføre reagenter som inneholder metaller og elementer fra C, N, B-gruppen, og å danne et belegg på overflaten av skjærverktøyet, hvor belegget innbefatter mikrokrystaller av en motstandsdyktig metallforbindelse, hvor belegget oppnås som et resultat av en kjemisk reaksjon mellom reagenter som inneholder komponenter av disse. A method for the manufacture of a cutting tool is also known (cf. British Application No. 1,303,910), which includes the steps of heating a base to a temperature of 1000 to 1100°C by introducing reagents containing metals and elements from C, N, B group, and forming a coating on the surface of the cutting tool, the coating comprising microcrystals of a resistant metal compound, the coating being obtained as a result of a chemical reaction between reagents containing components thereof.

Imidlertid har de foranstående skjærverktøy tilvirket ved den ovenfor nevnte fremgangsmåte høy overflateenergi, en faktor som fører til den aktive adhesive og spredende virkning på et mate-riale som skal maskineres. However, the above cutting tools produced by the above-mentioned method have high surface energy, a factor that leads to the active adhesive and spreading effect on a material to be machined.

Også kjent i faget er et skjærverktøy (jfr. US-patent nr. io 4 ,.169,913, Cl. B23B 15/18, 1979), innbefattende en basis hvilke arbeidsflate er forsynt med et slitasjemotstandsdyktig belegg, innbefattende mikrokrystaller av. en motstandsdyktig-metallforbindelse innbefattende elementer av C, N, 0, B-gruppen. Also known in the art is a cutting tool (cf. US patent no. 169,913, Cl. B23B 15/18, 1979), including a base whose working surface is provided with a wear-resistant coating, including microcrystals of. a resistant-metal compound including elements of the C, N, O, B group.

Det ér også kjent en fremgangsmåte for tilvirkning av et skjær-verktøy (jfr. US-patent nr. 4,169,913), innbefattende trinnene av fordamping og ionisering av metall i et vakuummiljø, og deretter innføre en gassreagens inn i nevnte vakuummiljø, .. hvor-gassreagensene inneholder elementer C, N, 0, B, hvor det-sistetrinn;.er,_ dannelsen av.'. ét. slitas jemotstandsdyktig. belegg som et .resultat av gjensidig påvirkning mellom nevnte metall og elementene. Ved denne fremgangsmåten blir metaller for-dampet ved en elektronstråle, ved.å bruke en spesialelektrode for dens ionisering, hvor metaller innvirker på elementene fra C,-N, 0, B-gruppen på en.kald overflate.. There is also known a method for manufacturing a cutting tool (cf. US patent no. 4,169,913), including the steps of vaporizing and ionizing metal in a vacuum environment, and then introducing a gas reagent into said vacuum environment, .. where- the gas reagents contain elements C, N, O, B, where the last step is the formation of one. wear resistant. coating as a result of mutual influence between said metal and the elements. In this method, metals are vaporized by an electron beam, by using a special electrode for its ionization, where metals act on the elements from the C, -N, 0, B group on a cold surface.

Men temperaturbetingelsene under beleggpåføringen ved denne tilvirkningsfremgangsmåten for skjærverktøyet resulterer i absorbsjon av energi av innvirkende metaller og elementer fra C, N, 0, B-gruppen, ved den kalde basis som i sin tur resulterer i dannelse av et belegg med et høyt nivå av fri overflateenergi og forringer varigheten av skjærverktøyene... , However, the temperature conditions during the coating application of this cutting tool manufacturing process result in the absorption of energy by the impinging metals and C, N, 0, B group elements, at the cold base which in turn results in the formation of a coating with a high level of free surface energy and degrades the life of the cutting tools... ,

I tillegg bruker denne tilvirkningsfremgangsmåte for skjærverk-tøy trinnene av evaporasjon og ionisering av metaller uten ■ ■■ <-- In addition, this cutting tool manufacturing process uses the steps of evaporation and ionization of metals without ■ ■■ <--

å nå et passende høyt nivå for deres ionisering, hvilket også fører til-dannelsen av et belegg med et høyt nivå av fri overflateenergi, en faktor som allerede nevnt ovenfor som er ska-delig for varigheten av skjærverktøyene. to reach a suitably high level for their ionization, which also leads to the formation of a coating with a high level of free surface energy, a factor already mentioned above which is detrimental to the durability of the cutting tools.

Kjent i faget er nok en tilvirkningsfremgangsmåte for skjær-verktøy (jfr. f. eks. Thesis by S.V. Kasianov, Investigation of Cutting Properties of Tools Håving Wear-Resistant Coatings and Development Trends in the Field, Moskva 1979, Moskovsky Stanko-Instrumentalny Institut, p. 50 i Russland), innbefatten de trinnene av å evaporere og ionisasjon av i det minste et metall i et vakuummiljø, og oppvarme basisen av skjærverk-tøyet, og å rense bearbeidelsesoverflaten av denne ved bombardering av ioner av i det minste et metall, deretter innføring av en gassreagent inn i vakuummiljøet og innvirkning av i det minste et metall med i det minste et element inntil et slitasjemotstandsdyktig belegg er dannet. Another manufacturing method for cutting tools is known in the art (cf. e.g. Thesis by S.V. Kasianov, Investigation of Cutting Properties of Tools Håving Wear-Resistant Coatings and Development Trends in the Field, Moscow 1979, Moskovsky Stanko-Instrumentalny Institut, p. 50 in Russia), including the steps of evaporating and ionizing at least one metal in a vacuum environment, and heating the base of the cutting tool, and cleaning the working surface thereof by bombardment of ions of at least one metal, then introducing a gaseous reagent into the vacuum environment and contacting at least one metal with at least one element until a wear-resistant coating is formed.

Men selv denne tilvirkningsfremgangsmåten for skjærverktøy kan ikke hjelpe i å nå den minimale bearbeidelsesoverflatens fri energi, en ulempe som bev.irker intensiv spredning og adhesiv påvirkning mellom bearbeidelsesoverflaten og materialet som skal maskineres, hvilket i sin tur reduserer varigheten av de tidligere kjente skjærverktøyer. But even this manufacturing method of cutting tools cannot help in reaching the minimum free energy of the working surface, a disadvantage which causes intensive spreading and adhesive action between the working surface and the material to be machined, which in turn reduces the durability of the previously known cutting tools.

Den foreliggende oppfinnelse er å tilveiebringe et skjærverk-tøy med en slik ny struktur av et belegg, hvilke skaper bedre verktøyvarighet, og for å tilveiebringe en fremgangsmåte for tilvirkning av skjærverktøy, hvor temperaturtilstandene og trykket for påføring av det slitasjemotstandsdyktige belegg skaper bedre varighet av skjærverktøyet. The present invention is to provide a cutting tool with such a new structure of a coating, which creates better tool durability, and to provide a method for manufacturing cutting tools, where the temperature conditions and pressure for applying the wear-resistant coating create better durability of the cutting tool .

Det er tilveiebragt et skjærverktøy innbefattende en basis hvilke bearbeidelsesoverflate har et slitasjemotstandsdyktig belegg innbefattende mikrokrystaller av en motstandsdyktig forbindelse innbefattende i det minste et metall og i det minste et element fra C, N, 0, B-gruppen, i hvilke ifølge oppfinnelsen et maksimalt antall av mikrokrystaller av den motstandsdyktige forbindelse innbefatter i det minste et metall og i det minste et element av C, N, 0, B-gruppen, og i tillegg Si, er orientert parallelt med bearbeidelsesoverflaten av basis-gruppen ved det samme krystallografiske plan. There is provided a cutting tool including a base, the working surface of which has a wear-resistant coating including microcrystals of a resistant compound including at least one metal and at least one element from the C, N, 0, B group, in which, according to the invention, a maximum number of microcrystals of the resistant compound includes at least one metal and at least one element of the C, N, 0, B group, and in addition Si, are oriented parallel to the processing surface of the base group at the same crystallographic plane.

Det er fordelaktig at i skjærverktøyet ifølge oppfinnelsen det krystallografiske plan i hvilken nevnte mikrokrystaller er orientert, bør ha minimal overflateenergi. It is advantageous that in the cutting tool according to the invention the crystallographic plane in which said microcrystals are oriented should have minimal surface energy.

Det-er.-også tilveiebragt-en-tilvirkningsfremgangsmåte for" - et skjærverktøy, innbefattende trinnet av evaporering og ionisering av - i det minste et-metall, i det minste et vakuum--miljø, og oppvarme en basis av nevnte skjærverktøy, og å rense dets bearbeidelsesoverflate ved bombardering av ioner av i det minste et"metall, og deretter tilføre en gassreagens inn i vakuummiljøet, og gjensidig påvirking av i det minste et metall med i det minste et element for å danne et slitasjemotstandsdyktig belegg oppbygd av deres forbindelser og innbefattende mikrokrystaller i hvilket ifølge oppfinnelsen basisen av skjærverktøyet oppvarmes til en temperatur-mindre enn 100°C under "dets bløtgjøringstemperatur, en oppvarmingstemperatur av basisen under beleggdannelsen opprettholdes i området av fra nevnte temperatur av basisen og +50°C, og gassreagent-trykket holdt i området fra 13,33 til 1,33 10~<2>Pa. There-is.-also-provided-a-manufacturing method for" - a cutting tool, including the step of evaporating and ionizing - at least one metal, at least a vacuum environment, and heating a base of said cutting tool, and cleaning its processing surface by bombarding ions of at least one metal, and then introducing a gaseous reagent into the vacuum environment, and interacting at least one metal with at least one element to form a wear-resistant coating made up of their compounds and including microcrystals in which, according to the invention, the base of the cutting tool is heated to a temperature less than 100°C below its softening temperature, a heating temperature of the base during coating formation is maintained in the range of from said temperature of the base and +50°C, and the gas reagent pressure held in the range from 13.33 to 1.33 10~<2>Pa.

I overensstemmelse med oppfinnelsen, minimaliseres intermolekylær samvirkning mellom skjærverktøyet og materialet som skal maskineres, en fordel som minsker adhesivintensiteten, den kjemiske og spredende prosess som oppstår gjennom skjærverk-tøyet og materialet som"skal maskineres, hvilke i sin tur øker varigheten av skjærverktøyet dannet ifølge oppfinnelsen. In accordance with the invention, intermolecular interaction between the cutting tool and the material to be machined is minimized, an advantage that reduces the adhesive intensity, the chemical and spreading process that occurs through the cutting tool and the material to be machined, which in turn increases the duration of the cutting tool formed according to the invention.

Oppfinnelsen vil nå bli beskrevet videre med henvisning til.The invention will now be described further with reference to

en spesiell utførelse av denne, tatt i forbindelse med de ved-lagte tegninger, hvor: Fig. 1 er et generelt snitt av et skjærverktøy tilvirket i samsvar med-den foreslåtte fremgangsmåte (et snitt delvis ut-, skåret), Fig. 2 er et generelt snitt av skjærverktøyet i fig. 1 med krystallografiske plan av mikrokrystaller med minimal overflateenergi i samsvar med oppfinnelsen (et snitt delvis ut-skåret) . a special embodiment of this, taken in connection with the attached drawings, where: Fig. 1 is a general section of a cutting tool manufactured in accordance with the proposed method (a section partially cut out), Fig. 2 is a general section of the cutting tool in fig. 1 with crystallographic planes of microcrystals with minimal surface energy in accordance with the invention (a section partially cut out).

Idet det vises til tegningene innbefatter skjærverktøyet som former målet med oppfinnelsen, en basis 1 (fig. 1), hvilke bearbeidelsesmåte 2 har et belegg 3 formet ved en TiN-forbindelse. Fig. 1 er et forstørret skjematisk riss av TiN mikrokrystaller orientert ved lignende krystallografiske plan 4 parallelt med basis 1. Fig. 2 er en forstørret skjematisk skisse av TiN mikrokrystalle-ene orientert ved et krystallografisk plan 5 med minimal overflateenergi parallelt med basisen 1. Referring to the drawings, the cutting tool which forms the object of the invention includes a base 1 (Fig. 1), which processing method 2 has a coating 3 formed by a TiN compound. Fig. 1 is an enlarged schematic view of TiN microcrystals oriented by a similar crystallographic plane 4 parallel to base 1. Fig. 2 is an enlarged schematic sketch of the TiN microcrystals oriented by a crystallographic plane 5 with minimal surface energy parallel to base 1.

Den foreslåtte tilvirkningsfremgangsmåte for skjærverktøy i overensstemmelse med oppfinnelsen innbefatter trinnene av evaporering og ionisering i det minste av et metall i et basisk miljø. Deretter blir basisen av skjærverktøyet oppvarmet, The proposed manufacturing method for cutting tools in accordance with the invention includes the steps of evaporation and ionization of at least one metal in a basic environment. Then the base of the cutting tool is heated,

og dets bearbeidelsesoverflate renses ved metallionenbombard-ering. Basisen av skjærverktøyet 1, oppvarmes til en temperatur som er. mindre enn 100°C under dens bløtgjøringstemperat- and its machining surface is cleaned by metal ion bombardment. The base of the cutting tool 1 is heated to a temperature which is less than 100°C below its softening tempera-

ur. Oppvarmingstemperaturen av basisen under beleggdannelsen, opprettholdes i området fra dets temperatur til +50°C. Deretter blir det innført en gassreagens innbefattende elementene C, N, 0, B, Si, hvor dets trykk blir justert i området fra clock. The heating temperature of the base during coating formation is maintained in the range from its temperature to +50°C. Then a gas reagent is introduced including the elements C, N, 0, B, Si, where its pressure is adjusted in the range from

13,33 til 1,33 10 -2 Pa, hvor det følgende trinn er samvirkning mellom i det minste et metall og i det minste et element fra C, N, 0, B, Si-gruppen, som resulterer i dannelsen av et slitas j emotstandsdyktig belegg innbefattende mikrokrystaller av en motstandsdyktig forbindelse innbefattende i det minste et metall og i det minste et element fra gruppen C, N, 0, B, Si, hvor nevnte mikrokrystaller er orientert ved det samme krystallografiske plan, parallelt med bearbeidelsesoverflaten av basisen. 13.33 to 1.33 10 -2 Pa, where the following step is interaction between at least one metal and at least one element from the C, N, 0, B, Si group, resulting in the formation of a wear j resistant coating comprising microcrystals of a resistant compound comprising at least one metal and at least one element from the group C, N, 0, B, Si, where said microcrystals are oriented by the same crystallographic plane, parallel to the processing surface of the base.

Skjærverktøyet ifølge oppfinnelsen opererer på følgende måte. Under metallbearbeidingsprosedyren, virker det slitasjemotstandsdyktige belegg 3, (fig 1,2) ved et metallarbeidsstykke under nøye temperatur- og trykkbetingelser som oppstår i skjær-sonen. Orientering av et maksimalt antall av mikrokrystaller ved det. samme .krystallograf iske--plan 4-parallelt med bear^ beidelsesoverflaten 2 av basis-1, skaper avtagende fri energi av bearbeidelsesoverflaten 2 av basisen 1, et trekk som reduserer intensiteter av intermolekylær samvirkning mellom bearbeidelsesoverflaten.og materialet som maskineres. The cutting tool according to the invention operates in the following way. During the metalworking procedure, the wear-resistant coating 3, (fig. 1,2) acts on a metal workpiece under careful temperature and pressure conditions that occur in the shear zone. Orientation of a maximum number of microcrystals by it. same crystallographic plane--plane 4-parallel to the machined surface 2 of the base-1, creates decreasing free energy of the machined surface 2 of the base 1, a feature that reduces intensities of intermolecular interaction between the machined surface and the material being machined.

Når det krystallografiske plan 5 (fig. 2) hvor mikrokrystallene er orientert har minimal overflateenergi, minimaliserer intermolekylær samvirkning, en fordel som øker ytterligere varigheten - av.skjærverktø<yet>. Eksempler nedenfor er gitt for å.mulig-gjøre bedre forståelse av den foreliggende oppfinnelse. When the crystallographic plane 5 (Fig. 2) where the microcrystals are oriented has minimal surface energy, intermolecular interaction minimizes, an advantage that further increases the tool life. Examples below are given to enable a better understanding of the present invention.

Eksempel 1.... i Det ble tilveiébragt bor méd diameter 5 mm, og en prøve for en røntgendiffråksjonsanalyse av et stålbelegg med følgende sammensetning: Example 1... i A drill with a diameter of 5 mm was provided, and a sample for an X-ray diffraction analysis of a steel coating with the following composition:

Stålets anløpningstemperatur var 56 0°C. Borene og prøvestykket som skulle utsettes for røntgenstrålediffraksjonsanalysen ble renset for foruresning, plassert i spesielle beholdere, og samtidig senket ned i et vakuumkammer i hvilke en titankatode> • var innstallert. Et unertrykk på 6,65 10 Pa ble skapt i kammeret hvoretter en elektrisk bue ble injitiert. Således ble titanet evaporert og ionisert. The tempering temperature of the steel was 56 0°C. The drills and the sample to be subjected to the X-ray diffraction analysis were cleaned of contamination, placed in special containers, and at the same time lowered into a vacuum chamber in which a titanium cathode> • was installed. A negative pressure of 6.65 10 Pa was created in the chamber after which an electric arc was injected. Thus, the titanium was evaporated and ionized.

Borene og prøvestykket utsatt for røntgenstråletraksjonsana-lysen ble matet med en negativ spenning som aksellererte po-sitivt ladede titanioner. Bombardering.av bearbeidelsesoverflaten av borene og prøvestykket med titanioner ble brukt for å rense deres overflate og oppvarme basisen. Så ble spenningen påført sporene og prøvestykket minsket. Samtidig ble nitrogen innført i kammeret. Nitrogenet reagerte med titan, og formet derved et belegg av en motstandsdyktig forbindelse (TiN) som innbefattet mikrokrystaller. Belegget av TiN ble påført til bearbeidelsesoverflaten av sporene og til overflaten av prøve-stykket under ulike oppvarmingsbetingelser og ved forskjellige nitrogentrykk. The drills and the specimen subjected to the X-ray tensile analysis were fed with a negative voltage which accelerated positively charged titanium ions. Bombardment of the machining surface of the drills and the specimen with titanium ions was used to clean their surface and heat the base. Then the tension was applied to the grooves and the test piece was reduced. At the same time, nitrogen was introduced into the chamber. The nitrogen reacted with titanium, thereby forming a coating of a resistant compound (TiN) that included microcrystals. The coating of TiN was applied to the machining surface of the grooves and to the surface of the test piece under different heating conditions and at different nitrogen pressures.

Et nytt sett av bor og et nytt prøvestykke ble brukt for hver prøvemåte. Orienteringsgraden av mikrokrystallene av den motstandsdyktige TiN-forbindelse, ble evaluert ved å utføre en røntgenstrålediffraksjonsanalyse av prøvestykket i forhold til høyden av diffraksjonstoppen av røntgenstråling fra det krystallograf iske plan 4 (5) av et mikrokrystall med minimal overflateenergi. Den maksimale høyde av dif f rak sjonstoppen av røntgenstråling fra planet 4 (5) i den gitte serie av eksperimenter ble tatt for å være 100%. I andre eksperimenter, ble den ovenfor nevnte høyde brukt for referanse i evaluering av høyden av diffraksjonstoppen i nevnte plan som inneholder TiN-mikrokrystaller. A new set of drills and a new specimen were used for each test method. The degree of orientation of the microcrystals of the resistive TiN compound was evaluated by performing an X-ray diffraction analysis of the sample in relation to the height of the X-ray diffraction peak from the crystallographic plane 4 (5) of a microcrystal with minimal surface energy. The maximum height of the diffraction peak of X-ray radiation from plane 4 (5) in the given series of experiments was taken to be 100%. In other experiments, the above-mentioned height was used for reference in evaluating the height of the diffraction peak in said plane containing TiN microcrystals.

Fem bor i hvert utvalg av ferdige gjenstander med et belegg av motstandsdyktig TiN-forbindelse ble utprøvd i borehull med 15 mm dybde i stål med den følgende sammensetning: Five drills in each selection of finished items with a coating of resistant TiN compound were tested in boreholes of 15 mm depth in steel with the following composition:

En vertikal boremaskin ble brukt under de følgende drifts-betingelser: A vertical drilling machine was used under the following operating conditions:

hastighet, V = 4,5 m/min,speed, V = 4.5 m/min,

mating S = 0,13 mm.feed S = 0.13 mm.

Tabellen nedenfor gir resultatene oppnådd i et prøveutvalg av bor og prøvestykker utsatt for en røntgenstråletraksjonsana-lyse, hvilke var tilvirket under ni forskjellige operasjonsbetingelser. Prøveresultatene viser at den høyeste varighet av bor ble oppnådd under de følgende betingelser: en bor- basis-: oppvarmings tempera tur .på.-.500 .til 550oc.før .innføring--. av.nitrogen;. et nitrogentrykk på .1,19 Pa; og en. boroppvar^- .... mingstemperatur på +50 til 500PC ved det tidspunkt titan rea-gerer med nitrogen. Den høyeste varighet ble oppnådd i tile-feilet av bor med et belegg av en motstandsdyktig TiN-forbindelse innbefattende mikrokrystaller, et maksimalt antall av hvilke ble orientert parallelt, med bearbeidelsesoverflaten av basisen med planet: 4. (5).. ; .:-" - The table below gives the results obtained in a sample selection of drills and test pieces subjected to an X-ray tensile analysis, which were manufactured under nine different operating conditions. The test results show that the highest duration of boron was obtained under the following conditions: a boron-base-: heating temperature .of.-.500 .to 550oc.before .introduction--. of.nitrogen;. a nitrogen pressure of .1.19 Pa; and a. boron heating^- ... mixing temperature of +50 to 500 PC at the time titanium reacts with nitrogen. The highest duration was achieved in the tile failure of boron with a coating of a resistant TiN compound including microcrystals, a maximum number of which were oriented parallel, with the processing surface of the base with the plane: 4. (5).. ; .:-" -

Eksempel . 2 ........; Example . 2 ........;

Det ble tilvirket bor med diameter 5 mm og prøvestykker som" skuile"utsettes for en røntgénstrålediffraksjonsanalyse. Hardlegeringen som ble brukt hadde den følgende sammensetning: Drills with a diameter of 5 mm were produced and test pieces as "skuile" were subjected to an X-ray diffraction analysis. The hard alloy used had the following composition:

Bløtgjøringstemperaturen var t = 700-720°C. Borene og prøve-stykkene som skulle utsettes for en røntgénstrålediffraksjons-analyse, ble samtidig ført inn i et vakuumkammer inneholdende en katode oppbygd av en legering som var 50 % Ti og 50 % Hf. Belegget ble påført mye på samme måte som i eksempel 1, den ene forskjell var at katoden innstallert i kammeret besto av 50 % Ti og 50 % Hf. Overflaten av borene og prøvestykkene ble belagt med en motstandsdyktig forbindelse (Ti, Hf) N under forskjellig oppvarmingsbet i.ngelse, og ved forskjellige nitrogentrykk. Orienteringsgraden av mikrokrystallene av den van-skelig smeltbare forbindelse ble evaluert som i eksempel 1. The softening temperature was t = 700-720°C. The drills and the test pieces to be subjected to an X-ray diffraction analysis were simultaneously introduced into a vacuum chamber containing a cathode made up of an alloy that was 50% Ti and 50% Hf. The coating was applied in much the same way as in Example 1, the one difference being that the cathode installed in the chamber consisted of 50% Ti and 50% Hf. The surface of the drills and test pieces was coated with a resistant compound (Ti, Hf) N under different heating conditions and at different nitrogen pressures. The degree of orientation of the microcrystals of the poorly fusible compound was evaluated as in Example 1.

Fem bor i hvert utvalg av ferdige gjenstander med et belegg av den motstandsdyktige forbindelse (Ti,Hf), N ble utprøvd ved å bore hull i grafitt med en vertikal bormaskin under de føl-gende skjærbetingelser: Five drills in each sample of finished objects with a coating of the resistant compound (Ti,Hf), N were tested by drilling holes in graphite with a vertical drilling machine under the following shear conditions:

hastighet, V = 68 m/minspeed, V = 68 m/min

mating, S = 0,18 mm/r,feed, S = 0.18 mm/r,

hulldybde, 16 mm.hole depth, 16 mm.

Tabellen under viser resultatene oppnådd i prøving av bor og prøvestykker utsatt for en røntgénstrålediffraksjonsanalyse under forskjellige operasjonsbetingelser. Prøveresultatene viser at den høyeste varighet av bor ble oppnådd under følgende betingelser: En hardlegeringsbasis oppvarmingstemperatur på 600 til 700°C før innføring av nitrogen;"et nitrogentrykk på 6,65 10 Pa; og en hardlegeringsbasis oppvarmingstemperatur på 100 til 600°C ved tidspunktet for påføring av belegg. The table below shows the results obtained in testing drills and test pieces subjected to an X-ray diffraction analysis under different operating conditions. The test results show that the highest durability of boron was obtained under the following conditions: a hard alloy base heating temperature of 600 to 700°C before the introduction of nitrogen; a nitrogen pressure of 6.65 10 Pa; and a hard alloy base heating temperature of 100 to 600°C at the time for the application of coatings.

Den høyeste varighet ble oppnådd i tilfelle hvor borene hadde et belegg av en motstandsdyktig forbindelse (Ti, Hf) N, som innbefattet mikrokrystaller, et maksimalt antall av hvilke var orientert parallelt med bearbeidelsesoverflaten av basisen ved planet 4 (5) med minimal overflateenergi. The highest duration was achieved in the case where the drills had a coating of a resistant compound (Ti, Hf) N, which included microcrystals, a maximum number of which were oriented parallel to the machining surface of the base at plane 4 (5) with minimal surface energy.

Oppfinnelsen kan anvendes for å tilvirke skjærverktøy fra ulike verktøymaterialer. The invention can be used to manufacture cutting tools from various tool materials.

Claims (3)

1. Skjærverktøy innbefattende en basis hvilke bearbeidelses-overf late har et slitasjemotstandsdyktig belegg innbefattende mikrokrystaller av en motstandsdyktig forbindelse som inneholder i det minste et metall og i det minste et element fra C, N, 0, B-gruppen, karakterisert ved at et maksimalt antall av mikrokrystaller av den motstandsdyktige forbindelse inneholder i det minste et metall og i det minste et element fra C, N, 0, B-gruppen og i tillegg inneholder Si, er orientert parallelt med bearbeidelsesflaten (2) av en basis1. Cutting tool including a base, the processing surface of which has a wear-resistant coating including microcrystals of a resistant compound containing at least one metal and at least one element from the C, N, 0, B group, characterized in that a maximum number of microcrystals of the resistant compound containing at least one metal and at least one element from the C, N, 0, B group and additionally containing Si are oriented parallel to the processing surface (2) of a base (1) i det samme krystallografiske plan (4,5).(1) in the same crystallographic plane (4,5). 2. Verktøy ifølge krav 1, karakterisert ved at det krystallografiske plan (4,5) i hvilke mikrokrystaller er orientert har minimal overflateenergi.2. Tool according to claim 1, characterized in that the crystallographic plane (4,5) in which microcrystals are oriented has minimal surface energy. 3. Fremgangsmåte for tilvirkning av et skjæreverktøy ifølge krav 1, innbefattende trinnene av å fordampe og ionisere i det minste et metall i et vakuummiljø, og oppvarme nevnte basis (1) av skjærverktøyet og å rense den bearbeidingsflate.3. Method for manufacturing a cutting tool according to claim 1, including the steps of vaporizing and ionizing at least one metal in a vacuum environment, and heating said base (1) of the cutting tool and cleaning the processing surface. (2) ved bombardering av ioner av i det minste et metall, og tilføre en gassreagens og påvirkning med i det minste et metall med i det minste et element inntil et slitasjemotstandsdyktig belegg er formet fra nevnte motstandsdyktige forbindelse som inneholder mikrokrystaller, karakterisert ved at basisen (1) av skjærverktøyet oppvarmes til en temperatur mindre enn 100°C under dets bløtgjøringspunkt og opp-rettholder under dannelsen av et belegg (3) innenfor området fra nevnte temperatur til +50°C, mens trykket av gassen opprettholdes innenfor området av fra 13,3 Pa til 1,33 10 Pa.(2) by bombarding ions of at least one metal, and adding a gas reagent and impacting with at least one metal with at least one element until an abrasion-resistant coating is formed from said resistant compound containing microcrystals, characterized in that the base (1) of the cutting tool is heated to a temperature less than 100°C below its softening point and maintained during the formation of a coating (3) within the range from said temperature to +50°C, while the pressure of the gas is maintained within the range of from 13 .3 Pa to 1.33 10 Pa.
NO851602A 1983-08-25 1985-04-22 CUTTING TOOL AND MANUFACTURING PROCEDURE NO851602L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SU1983/000031 WO1985000999A1 (en) 1983-08-25 1983-08-25 Cutting tool and method of manufacture thereof

Publications (1)

Publication Number Publication Date
NO851602L true NO851602L (en) 1985-04-22

Family

ID=21616809

Family Applications (1)

Application Number Title Priority Date Filing Date
NO851602A NO851602L (en) 1983-08-25 1985-04-22 CUTTING TOOL AND MANUFACTURING PROCEDURE

Country Status (14)

Country Link
JP (1) JPS60502093A (en)
AU (1) AU563891B2 (en)
BR (1) BR8307747A (en)
CA (1) CA1219549A (en)
CH (1) CH667605A5 (en)
DE (1) DE3390522C2 (en)
DK (1) DK179185A (en)
FI (1) FI851486A0 (en)
FR (1) FR2558087B1 (en)
GB (1) GB2156387B (en)
NL (1) NL8320321A (en)
NO (1) NO851602L (en)
SE (1) SE453468B (en)
WO (1) WO1985000999A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116762A (en) * 1985-11-15 1987-05-28 Citizen Watch Co Ltd Production of external parts
DD243514B1 (en) * 1985-12-17 1989-04-26 Karl Marx Stadt Tech Hochschul HARD COATINGS FOR MECHANICAL AND CORROSIVE CLADDED PARTS
DE3606529A1 (en) * 1986-02-28 1987-09-03 Glyco Metall Werke METHOD FOR THE PRODUCTION OF LAYING MATERIAL OR LAYING MATERIAL PIECES BY EVAPORATING AT LEAST ONE METAL MATERIAL ONTO A METAL SUBSTRATE
EP0404973A1 (en) * 1989-06-27 1991-01-02 Hauzer Holding B.V. Process and apparatus for coating substrates
DE3936550C1 (en) * 1989-11-03 1991-04-18 Arthur Klink Gmbh, 7530 Pforzheim, De Substrate coating for wear resistance - with titanium nitride in vacuum chamber contg. titanium evaporator and heater with rotary substrate holder
DE19629456C1 (en) * 1996-07-23 1997-11-20 Fraunhofer Ges Forschung Tool, in particular, for cutting materials

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1160895A (en) * 1965-08-25 1969-08-06 Rank Xerox Ltd Coating Surfaces by Vapour Deposition
AT301299B (en) * 1970-09-09 1972-08-25 Plansee Metallwerk Use of cutting tools to process steel that forms deposits
DE2727659B2 (en) * 1977-06-20 1980-01-10 Siemens Ag, 1000 Berlin Und 8000 Muenchen Process for the production of coarsely crystalline or monocrystalline metal layers
US4169913A (en) * 1978-03-01 1979-10-02 Sumitomo Electric Industries, Ltd. Coated tool steel and machining tool formed therefrom
JPS56156767A (en) * 1980-05-02 1981-12-03 Sumitomo Electric Ind Ltd Highly hard substance covering material

Also Published As

Publication number Publication date
GB2156387B (en) 1987-03-18
FI851486L (en) 1985-04-12
GB8508271D0 (en) 1985-05-09
SE8501672D0 (en) 1985-04-03
WO1985000999A1 (en) 1985-03-14
CH667605A5 (en) 1988-10-31
SE8501672L (en) 1985-04-03
CA1219549A (en) 1987-03-24
DE3390522T1 (en) 1985-10-03
FI851486A0 (en) 1985-04-12
DE3390522C2 (en) 1987-10-15
GB2156387A (en) 1985-10-09
AU563891B2 (en) 1987-07-23
SE453468B (en) 1988-02-08
FR2558087A1 (en) 1985-07-19
NL8320321A (en) 1985-07-01
DK179185D0 (en) 1985-04-22
AU2122383A (en) 1985-03-29
BR8307747A (en) 1985-07-30
FR2558087B1 (en) 1986-06-20
DK179185A (en) 1985-04-22
JPS60502093A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
US7217466B2 (en) Wear-resistant coating for metal-removing tools, particularly for rotary metal-cutting tools
SU1373326A3 (en) Method of nitriding steel articles in glow discharge
Felba et al. Electron beam activated brazing of cubic boron nitride to tungsten carbide cutting tools
NO851602L (en) CUTTING TOOL AND MANUFACTURING PROCEDURE
Gicquel et al. Plasma and nitrides: application to the nitriding of titanium
Firouzi-Arani et al. Dependence of surface nano-structural modifications of Ti implanted by N+ ions on temperature
JPS63166957A (en) Surface coated steel product
DE3390523T1 (en) Method of applying a coating
CA1218585A (en) Method for surface hardening a ferrous-alloy article and the resulting product
Grigoriev et al. Combined vacuum plasma surface treatment for increase of durability of face milling cutters from high‐speed steel: Kombinierte Oberflächenbehandlung durch Vakuum‐Plasmatechnik zur Erhöhung der Lebensdauer von Planfräsern aus Schnellarbeitstahl
Kuzin et al. The influence of duplex vacuum-plasma treatment on the mechanics of complex-profile cutting tool wearing in the production of aircraft engine parts
Rakhadilov et al. Changing the structure and phasestates and the microhardness of the R6M5 steel surface layer after electrolytic-plasma nitriding
IE54872B1 (en) Cutting tool and method of manufacture thereof
Zdanowski et al. Modification of metal properties by ion plating of TiN
Riviere et al. Structure and mechanical properties of coatings produced by dynamic ion mixing
Vershina Combined plasma-vacuum processing of wood-cutting tools
Fedorov et al. Tool surface microalloying by self-extending high-temperature synthesis
Rai et al. Formation of TiN phase in SiO2 and Si through ion implantation of constituent elements
Anatoly et al. Results of approbation of the innovative method of ion nitriding for steels with low temperatures of tempering
Sobol et al. A. Andreev
Andreev et al. Results of approbation of the innovative method of ion nitriding for steels with low temperatures of tempering
Ivanov et al. Materials surface modification by reactive gas-ion bombardment: low-energy irradiation
Barlak et al. Verification of the modification possibility of the circular saw blades for the machining of wood materials using ion implantation
Samigullin et al. Ion-plasma nitriding as a method of instruments and parts durability
NO162546B (en) CUTTING TOOL AND PROCEDURE FOR MANUFACTURING THIS.