NO764272L - PROCEDURES FOR THE MANUFACTURE OF A CORROSION-RESISTANT ZINC-BASED COATING ON IRON-BASED SURFACES - Google Patents

PROCEDURES FOR THE MANUFACTURE OF A CORROSION-RESISTANT ZINC-BASED COATING ON IRON-BASED SURFACES

Info

Publication number
NO764272L
NO764272L NO764272A NO764272A NO764272L NO 764272 L NO764272 L NO 764272L NO 764272 A NO764272 A NO 764272A NO 764272 A NO764272 A NO 764272A NO 764272 L NO764272 L NO 764272L
Authority
NO
Norway
Prior art keywords
bath
substrate
weight
zinc
magnesium
Prior art date
Application number
NO764272A
Other languages
Norwegian (no)
Inventor
Roberto Bruno
Original Assignee
Dalmine Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalmine Spa filed Critical Dalmine Spa
Publication of NO764272L publication Critical patent/NO764272L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/30Fluxes or coverings on molten baths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

Den foreliggende oppfinnelse angår en fremgangsmåteThe present invention relates to a method

til industriell fremstilling av sinkbaserte belegg.på jernbaserte underlag, hvorved jernoverflaten beskyttes mot korrosjon, samt de derved erholdte metallartikler. for the industrial production of zinc-based coatings on iron-based substrates, whereby the iron surface is protected against corrosion, as well as the resulting metal articles.

Mer spesielt angår oppfinnelsen en fremgangsmåte, til korrosjonsbeskyttelse av jernbaserte materialer, særlig overflaten av stålplater og spesielt de ytre og indre overflater av stålrør. Denne beskyttelse oppnås ved at man belegger overflatene med en sinkbasert beskyttelseslegering som også inneholder magnesium, aluminium og krom. De således belagte overflater oppviser en forbedret motstand mot generell korrosjon og spesielt mot lokal korrosjon i varmt vann, mot intergranulær korrosjon i dampfase ved høyte temperaturer og polaritetsinversjon i forhold til et jernbasert underlag, idet belegget oppviser meget god adhesjon til nevnte underlag, optimale kontinuitetsegenskaper, og glatt og glansfull overflate. More particularly, the invention relates to a method for corrosion protection of iron-based materials, in particular the surface of steel plates and in particular the outer and inner surfaces of steel pipes. This protection is achieved by coating the surfaces with a zinc-based protective alloy that also contains magnesium, aluminum and chromium. The thus coated surfaces show an improved resistance to general corrosion and especially to local corrosion in hot water, to intergranular corrosion in the vapor phase at high temperatures and polarity inversion in relation to an iron-based substrate, as the coating exhibits very good adhesion to said substrate, optimal continuity properties, and smooth and shiny surface.

Når det gjelder korrosjonsbeskyttelse av jernbaserte overflater, er det kjent å belegge slike overflater med et be-skyttende lag av et ikke-jern-metall, f.eks, ved dypping i et bad av smeltet ikke-jern-metall, typisk sink. Videre er det kjent at den korrosjonsbeskyttelse som oppnås ved sådan belegning, i høy grad avhenger av de følgende overtrekksegenskaper: 1) kontinuitet, homogenitet og tykkelsesjevnhet; 2) tilfredsstillende adhesjon til det jernbaserte underlag; 3) tilfredsstillende egenskaper med hensyn til resistens mot generell korrosjon i forbindelse med den nødvendige varighet av beskyttelsen; 4) tilfredsstillende galvanisk beskyttelse; 5) ingen tendens til polaritetsinversjon i forhold til det jernbaserte underlag; 6) stabilitet overfor lokale angrep, så som gropkorrosjon og underrusting (interstisielle angrep); . When it comes to corrosion protection of iron-based surfaces, it is known to coat such surfaces with a protective layer of a non-ferrous metal, for example, by dipping in a bath of molten non-ferrous metal, typically zinc. Furthermore, it is known that the corrosion protection achieved by such a coating depends to a large extent on the following coating properties: 1) continuity, homogeneity and evenness of thickness; 2) satisfactory adhesion to the iron-based substrate; 3) satisfactory properties with regard to resistance to general corrosion in connection with the required duration of protection; 4) satisfactory galvanic protection; 5) no tendency for polarity inversion in relation to the iron-based substrate; 6) stability against local attacks, such as pitting corrosion and under-rusting (interstitial attacks); .

7) resistens mot selektiv og intergranulær korrosjon.7) resistance to selective and intergranular corrosion.

I det italienske patent nr. 984 964 er det beskrevetIn the Italian patent no. 984 964 it is described

et sinkbasert belegg som i det vesentlige oppviser samtlige ovennevnte ønskelige egenskaper. a zinc-based coating which essentially exhibits all of the above-mentioned desirable properties.

Dette sinkbaserte belegg, som viser redusert tendens til polaritetsinversjon og er motstandsdyktig mot utbredt, lokal og intergranulær korrosjon, og er særlig godt egnet for korrosjonsbeskyttelse av jernoverflater, særlig stålplater og -rør, erkarakterisert vedat det omfatter magnesium, aluminium og krom, hvor forholdet mellom magnesiuminnholdet og aluminiuminnholdet, regnet i vekt-%, er under 5, forholdet mellom krominnholdet og magnesiuminnholdet, regnet i vekt-%, er mellom 0 og 0,2, og hvor magnesiuminnholdet er mellom 1 og 5 vekt-%. This zinc-based coating, which shows a reduced tendency to polarity inversion and is resistant to widespread, local and intergranular corrosion, and is particularly well suited for corrosion protection of iron surfaces, especially steel plates and pipes, is characterized by the fact that it includes magnesium, aluminum and chromium, where the ratio between the magnesium content and the aluminum content, calculated in % by weight, is below 5, the ratio between the chromium content and the magnesium content, calculated in % by weight, is between 0 and 0.2, and where the magnesium content is between 1 and 5 % by weight.

Ovennevnte italienske patentsøknad angir at det nevnte korrosjonsresistente belegg påføres ved konvensjonelle, velkjente metoder, som i det vesentlige består av følgende trinn: (a) avfetting av det jernbaserte underlag; (b) beising av underlaget med mineralsyrer; (c) vasking av underlaget; The above-mentioned Italian patent application states that the said corrosion-resistant coating is applied by conventional, well-known methods, which essentially consist of the following steps: (a) degreasing the iron-based substrate; (b) pickling the substrate with mineral acids; (c) washing the substrate;

(d) behandling av underlaget i sinkklorid og ammoniumklorid(d) treatment of the substrate in zinc chloride and ammonium chloride

ved 80°C; (e) underlaget behandles i et bad av smeltet sink; (f) underlaget behandles i et bad av smeltet sink-, magnesium-, at 80°C; (e) the substrate is treated in a bath of molten zinc; (f) the substrate is treated in a bath of molten zinc, magnesium,

aluminium- (og eventuelt krom-) legering; ogaluminum (and optionally chrome) alloy; and

(<g>) kjøling.(<g>) cooling.

Denne konvensjonelle belegningsprosess er særlig godt egnet for behandling av de innvendige overflater av rør, hvilken behandling er spesielt vanskelig når tradisjonelle metoder, så som Sendzmirs, til vakuummetallisering eller elektrolytisk av-setning anvendes. This conventional coating process is particularly well suited for treating the inner surfaces of pipes, which treatment is particularly difficult when traditional methods, such as Sendzmirs, for vacuum metallization or electrolytic deposition are used.

Det ble nå overraskende funnet at belegg som i særlig høy grad oppviser alle de ovenfor nevnte ønskede egenskaper 1) til 7), kan erholdes ved en fremgangsmåte som i det vesentlige omfatter de allerede kjente, ovennevnte trinn, men hvor para-metrene vedrørende temperaturen av de smeltede bad og det jernbaserte underlags oppholdstid i de smeltede bad nøye reguleres innenfor definerte områder. It was now surprisingly found that coatings exhibiting to a particularly high degree all the above-mentioned desired properties 1) to 7) can be obtained by a method which essentially comprises the already known, above-mentioned steps, but where the parameters relating to the temperature of the molten baths and the iron-based substrate's residence time in the molten baths are carefully regulated within defined areas.

Videre ble det overraskende funnet at særlig tilfredsstillende resultater erholdes hvis man, samtidig med reguleringen av de nevnte parametere innenfor de spesielle områder, som skal angis nedenfor, anvender spesielle smeltebad-sammensetninger. Furthermore, it was surprisingly found that particularly satisfactory results are obtained if, at the same time as the regulation of the mentioned parameters within the special ranges, to be specified below, special melt bath compositions are used.

Fremgangsmåten ifølge oppfinnelsen til på et jernbasert underlag å fremstille et sinkbasert belegg med et mini-mum av tendens til polaritetsinversjon og med motstandsdyktighet mot utbredt, lokal og intergranulær korrosjon, for beskyttelse mot korrosjon av jernbaserte overflater, særlig overflater av stålplater og ytre og indre overflater av stålrør, hvor det til forbedring av korrosjonsmotstanden tilsettes magnesium, aluminium og krom som additiver til sink, og hvor forholdet mellom magnesiuminnholdet og aluminiuminnholdet regnet i vekt-% er lavere enn 5, mens forholdet mellom krominnholdet og magnesiuminnholdet regnet i vekt-% er mellom 0 og 0,2, og magnesiuminnholdet er mellom 0,5 og 5 vekt-%, omfatter de følgende trinn: (a) avfetting av det jernbaserte underlag; (b) beising av underlaget med mineralsyrer; (c) vasking av underlaget; (d) underlaget behandles i sinkklorid og ammoniumklorid ved 80°C; (e) underlaget behandles i et første bad bestående hovedsakelig av smeltet sink, hvoretter det uttas fra dette første bad; (f) underlaget behandles i et annet smeltebad av sink, magnesium, aluminium og eventuelt krom, hvor forholdet mellom magnesiuminnholdet og aluminiuminnholdet regnet i vekt-% er lavere enn 5, forholdet mellom krominnholdet og magnesiuminnholdet regnet i vekt-% er mellom 0 og 0,2, idet magnesiuminnholdet er mellom 0,5 og 5 vekt-%, hvoretter underlaget uttas fra det nevnte annet bad, og (g) underlaget kjøles, og fremgangsmåten erkarakterisert vedat: (1) trinn (e) hvor underlaget behandles i det nevnte første bad og uttas fra dette, utføres ved en temperatur i det første bad på 440-460°C, fortrinnsvis ved 450°C, med en oppholdstid i det første bad på 5-40 sekunder, fortrinnsvis 10 sek.; (2) trinn (f) hvor underlaget behandles i det nevnte annet bad og uttas fra dette, utføres ved en badtemperatur mellom 440°C og 500°C, med en oppholdstid på 20-60 sekunder, fortrinnsvis 50 sekunder. The method according to the invention for producing on an iron-based substrate a zinc-based coating with a minimum tendency to polarity inversion and with resistance to widespread, local and intergranular corrosion, for protection against corrosion of iron-based surfaces, in particular surfaces of steel plates and external and internal surfaces of steel pipes, where magnesium, aluminum and chromium are added as additives to zinc to improve corrosion resistance, and where the ratio between the magnesium content and the aluminum content calculated in % by weight is lower than 5, while the ratio between the chromium content and the magnesium content calculated in % by weight is between 0 and 0.2, and the magnesium content is between 0.5 and 5% by weight, comprising the following steps: (a) degreasing the iron-based substrate; (b) pickling the substrate with mineral acids; (c) washing the substrate; (d) the substrate is treated in zinc chloride and ammonium chloride at 80°C; (e) the substrate is treated in a first bath consisting mainly of molten zinc, after which it is withdrawn from this first bath; (f) the substrate is treated in another molten bath of zinc, magnesium, aluminum and possibly chromium, where the ratio between the magnesium content and the aluminum content calculated in % by weight is lower than 5, the ratio between the chromium content and the magnesium content calculated in % by weight is between 0 and 0 ,2, the magnesium content being between 0.5 and 5% by weight, after which the substrate is removed from the aforementioned second bath, and (g) the substrate is cooled, and the method is characterized by: (1) step (e) where the substrate is treated in the aforementioned first bath and taken from this, is carried out at a temperature in the first bath of 440-460°C, preferably at 450°C, with a residence time in the first bath of 5-40 seconds, preferably 10 sec.; (2) step (f) where the substrate is treated in the aforementioned second bath and removed from this, is carried out at a bath temperature between 440°C and 500°C, with a residence time of 20-60 seconds, preferably 50 seconds.

I henhold til en særlig foretrukken utførelsesform av fremgangsmåten ifølge oppfinnelsen består det i trinn (e) nevnte første bad av sink og inneholder 0,02 vekt-% aluminium, mens det. i trinn (f) nevnte annet bad består av sink, magnesium og aluminium, hvor magnesium kan være til stede i en mengde på 0,5-3 vekt-%., aluminium i en mengde på 0,5 vekt-% for hvilket som helst magnesiuminnhold opp til 2 vekt-%, mens aluminiuminnholdet kan gå opp til 1 vekt-% for hvilket som helst magnesiuminnhold over 2 vekt-%. According to a particularly preferred embodiment of the method according to the invention, the first bath mentioned in step (e) consists of zinc and contains 0.02% by weight of aluminum, while it. in step (f) said second bath consists of zinc, magnesium and aluminium, where magnesium may be present in an amount of 0.5-3% by weight, aluminum in an amount of 0.5% by weight for which preferably magnesium content up to 2% by weight, while the aluminum content can go up to 1% by weight for any magnesium content above 2% by weight.

Fremgangsmåten ifølge oppfinnelsen skal nå belyses nærmere ved de følgende eksempler i forbindelse med tegningen, som viser resultatene av korrosjonsforsøk utført i naturlig vann ved 65°C. Fig. 1-4 gjelder gjentatte cykler av anodepolarisering i avluftet vann, mens fig. 5 gjelder forsøk utført ved fri nedsenkning i luftholdig sirkulerende vann.. The method according to the invention will now be explained in more detail by the following examples in connection with the drawing, which show the results of corrosion tests carried out in natural water at 65°C. Fig. 1-4 apply to repeated cycles of anode polarization in deaerated water, while fig. 5 applies to tests carried out by free immersion in aerated circulating water.

Fig. 1 viser kurver vedrørende anodepolarisering i Fig. 1 shows curves regarding anode polarization i

naturlig vann ved 65°C på det sinkbaserte belegg; natural water at 65°C on the zinc-based coating;

Fig. 2 viser kurver vedrørende anodepolarisering i Fig. 2 shows curves regarding anode polarization i

naturlig vann ved 65°C på dupleks-beleggene Mg 1%-Al 0,5%; natural water at 65°C on the duplex coatings Mg 1%-Al 0.5%;

Fig. 3 viser kurver vedrørende anodepolarisering i Fig. 3 shows curves regarding anode polarization i

naturlig vann ved 65°C på dupleks-beleggene Mg 3%-Al 1%; natural water at 65°C on the duplex coatings Mg 3%-Al 1%;

Fig. 4 viser kurver vedrørende anodepolarisering i Fig. 4 shows curves regarding anode polarization i

naturlig vann ved 65°C på dupleks-beleggene Mg 5%-Al 2%; og natural water at 65°C on the duplex coatings Mg 5%-Al 2%; and

Fig. 5 viser kurver vedrørende korrosjonspotensialet som funksjon av tiden, målt på sinkpletterté rør og belagt ined en sink-, magnesium-, aluminium-legering, idet rørene var ned-senket i naturlig vann ved 6 5°C. Fig. 5 shows curves regarding the corrosion potential as a function of time, measured on zinc-plated pipes and coated with a zinc, magnesium, aluminum alloy, the pipes being immersed in natural water at 65°C.

Forsøk vedrørende belegning av stålplater med sink Experiments concerning the coating of steel plates with zinc

EKSEMPEL 1EXAMPLE 1

Forsøket omfattet en enkelt nedsenkningsbehandling i bad av Zn-Mg 1% og Zn-Mg 2%, idet det ble anvendt stålplater som var avfettet i damper av varm trikloretylen, beiset i 1:1 HC1 i 15 minutter, vasket med vann, behandlet i 10%'s NH^Cl-Zn Cl^-oppløsning ved 80 C i 30 sekunder, fulgt av tørring i varm luft. The experiment comprised a single immersion treatment in a bath of Zn-Mg 1% and Zn-Mg 2%, using steel plates that had been degreased in vapors of hot trichlorethylene, stained in 1:1 HC1 for 15 minutes, washed with water, treated in 10% NH^Cl-Zn Cl^ solution at 80 C for 30 seconds, followed by drying in hot air.

Det ble utført noen forsøk i smeltebad-temperaturom-rådet mellom 460 og 480°C, hvor stålplatenes oppholdstid i badet var mellom 60 og 300 sekunder. Badet hadde en meget høy oksyda-sjonshasighet, hvilket medførte slaggdannelse både på overflaten og inne i belegget som derfor er heterogene med dårlig heftfast-het til underlaget. Anvendelse av en strøm av argon i kontakt med badoverflaten under nedsenkningsforsøket forbedrer ikke beleggets egenskaper. Some experiments were carried out in the molten bath temperature range between 460 and 480°C, where the steel plates' residence time in the bath was between 60 and 300 seconds. The bath had a very high rate of oxidation, which led to the formation of slag both on the surface and inside the coating, which are therefore heterogeneous with poor adhesion to the substrate. Application of a stream of argon in contact with the bath surface during the immersion test does not improve the properties of the coating.

EKSEMPEL 2EXAMPLE 2

Forsøk med to gangers nedsenkning i Zn-bad (det første trinn) og Zn-Mg 1% (annet trinn). Experiment with two immersions in a Zn bath (the first step) and Zn-Mg 1% (second step).

Forbehandlingen av stålplatene var som i eksempel 1. Badtemperaturen var 460°C i det første trinn og 480°C i det annet trinn, og behandlingstiden var henholdsvis 10 og 10+30 sekunder. • The pre-treatment of the steel plates was as in example 1. The bath temperature was 460°C in the first stage and 480°C in the second stage, and the treatment time was 10 and 10+30 seconds respectively. •

De således erholdte belegg er mer homogene enn de tid-ligere, særlig som følge av den kortere nedsenkningstid i det annet bad; i hvert fall er adhesjonen av<p>elegget til underlaget fremdeles dårlig. The coatings thus obtained are more homogeneous than the earlier ones, particularly as a result of the shorter immersion time in the second bath; in any case, the adhesion of the<p>egg to the substrate is still poor.

EKSEMPEL 3EXAMPLE 3

Forsøk med to gangers nedsenkning i sinkbadet (første trinn) og Zn-Mg 1%-Al 0,2%-bad (annet trinn). Experiment with two immersions in the zinc bath (first step) and Zn-Mg 1%-Al 0.2% bath (second step).

Aluminiumtilsetning til det annet bad foretas for re-gulering av badets oksydasjonshastighet. Badtemperaturene er de samme som i eksempel 2; 460°C (i det første bad) og 480°C Aluminum is added to the second bath to regulate the bath's oxidation rate. The bath temperatures are the same as in example 2; 460°C (in the first bath) and 480°C

(i det annet bad); nedsenkningstiden var henholdsvis 10 og 30 sekunder. Mengden av slagg dannet på overflaten av det annet bad er ubetydelig når det gjelder eksempler 1 og 2; beleggets adhesjon til underlaget er imidlertid fremdeles utilstrekkelig. (in the second bathroom); the immersion time was 10 and 30 seconds respectively. The amount of slag formed on the surface of the second bath is negligible in the case of Examples 1 and 2; however, the adhesion of the coating to the substrate is still insufficient.

EKSEMPEL 4EXAMPLE 4

Forsøk med to gangers nedsenkning i Zn-bad (første trinn) og Zn-Mg 1%-Al 0,5%-bad (annet trinn). Experiment with two immersions in a Zn bath (first step) and a Zn-Mg 1%-Al 0.5% bath (second step).

Badtemperaturen og nedsenkningstiden var som i eksempel 3. De således erholdte belegg var homogene, glansfulle og heftet godt til underlaget endog etter at stålplatene var blitt underkastet en bøyningsprøve. Nedenstående tabell 1 viser de beleggtykkelser som erholdtes i de forskjellige forsøk. The bath temperature and immersion time were as in example 3. The coatings thus obtained were homogeneous, glossy and adhered well to the substrate even after the steel plates had been subjected to a bending test. Table 1 below shows the coating thicknesses obtained in the various experiments.

EKSEMPEL 5 EXAMPLE 5

Forsøk med to gangers nedsenkning i Zn-0,2% Al-bad (første trinn) og Zn-1% Mg-0,5% Al (annet trinn). Experiment with two immersions in Zn-0.2% Al bath (first step) and Zn-1% Mg-0.5% Al (second step).

Tilsetningen av små prosentvise mengder av aluminium til det første bad har sammenheng med den kjente virkning som dette element oppviser når det gjelder å hindre vekst av Fe-Zn-faser og derved nedsette tykkelsen og skjørheten av belegget som dannes under behandlingen i det første bad. The addition of small percentage amounts of aluminum to the first bath is related to the known effect that this element exhibits when it comes to preventing the growth of Fe-Zn phases and thereby reducing the thickness and fragility of the coating formed during treatment in the first bath.

Nedenstående tabell II viser de tykkelser som erholdtes med to forskjellige nedsenkningstider (henholdsvis 50 og 80 sekunder) i det annet bad. Table II below shows the thicknesses obtained with two different immersion times (respectively 50 and 80 seconds) in the second bath.

EKSEMPEL 6 EXAMPLE 6

Forsøk med to gangers nedsenkning i et Zn-0,02% Al-bad (første trinn) og Zn-2% Mg-0,5% Al (annet trinn) Experiment with two immersions in a Zn-0.02% Al bath (first step) and Zn-2% Mg-0.5% Al (second step)

Det første trinn er uforandret; i det annet trinn ble legeringsbadets minimumstemperatur for oppnåelse av homogene belegg funnet å være 490°C. The first step is unchanged; in the second step, the alloy bath's minimum temperature for obtaining homogeneous coatings was found to be 490°C.

Nedenstående tabell III viser de tykkelser som tilsvarer de tre forskjellige nedsenkningstider i det annet bad, nemlig 40, 50 og 6 0 sekunder. Table III below shows the thicknesses corresponding to the three different immersion times in the second bath, namely 40, 50 and 60 seconds.

EKSEMPEL 7 EXAMPLE 7

Forsøk med to gangers nedsenkning i Zn + 0,02% Al-bad (første trinn) og Zn+3% Mg + 0,5% Al (og 1% Al) (2. trinn). Experiment with two immersions in Zn + 0.02% Al bath (first step) and Zn+3% Mg + 0.5% Al (and 1% Al) (2nd step).

Det første trinn er uforandret; i det annet trinn var temperaturen 465°C. Zn+3% Mg+0,5% Al-badene var meget reaktive, og de belegg som erholdtes ved forskjellige behandlingstider (fra 20 til 100 sekunder) viste derfor dårlig homogenitet og adhesjon.' The first step is unchanged; in the second stage the temperature was 465°C. The Zn+3% Mg+0.5% Al baths were very reactive, and the coatings obtained at different treatment times (from 20 to 100 seconds) therefore showed poor homogeneity and adhesion.'

En markert forbedring i både reguleringen av badets oksydasjonshastighet og beleggenes egenskaper erholdtes ved at man økte aluminiuminnholdet i det annet bad fra 0,5 til 1% med behandlingstider fra 40 til 7o sekunder. De tilsvarende tykkelser er vist i nedenstående tabell IV. A marked improvement in both the regulation of the bath's oxidation rate and the properties of the coatings was obtained by increasing the aluminum content in the second bath from 0.5 to 1% with treatment times from 40 to 7o seconds. The corresponding thicknesses are shown in table IV below.

EKSEMPEL 8 EXAMPLE 8

Forsøk med to gangers nedsenkning i Zn+0,2% Al (første trinn) og Zn+5% Mg+1%; 1,5% og 2% Al (2. trinn). Experiment with two times immersion in Zn+0.2% Al (first step) and Zn+5% Mg+1%; 1.5% and 2% Al (2nd step).

Det første trinn er uforandret. Blant de forskjellige bad som ble utprøvet for den 2. nedsenkningsbehandling valgte man badet med relativt høy aluminiumkonsentrasjon (2%), da dette har lavere oksydasjonshastighet, som dog stadig forble høy. The first step is unchanged. Among the different baths that were tested for the 2nd immersion treatment, the bath with a relatively high aluminum concentration (2%) was chosen, as this has a lower oxidation rate, which however still remained high.

Av denne grunn var det, når belegg med god heftfast-het skal oppnås, nødvendig å fjerne den store mengde slagg som ble dannet, fra badoverflaten før hver nedsenkning. I betrakt-ning av den temperatur som legeringsbadet måtte oppvarmes til for oppnåelse av tilstrekkelig fluiditet og homogenitet (ca. 500°C) måtte man av hensyn til reguleringen av beleggets tykkelse be-grense varigheten av den annen nedsenkning innenfor 10 sekunder. Av nedenstående tabell V vil det sees at allerede etter bare For this reason, when coatings with good adhesion strength are to be achieved, it was necessary to remove the large amount of slag that was formed from the bath surface before each immersion. Considering the temperature to which the alloy bath had to be heated to achieve sufficient fluidity and homogeneity (approx. 500°C), the duration of the second immersion had to be limited to 10 seconds in order to regulate the thickness of the coating. From Table V below, it will be seen that already after just

20 sekunders nedsenkningsbehandling er belegget altfor tykt; under disse betingelser er belegget dessuten ujevnt og uhomogent. 20 second immersion treatment, the coating is far too thick; under these conditions, the coating is also uneven and inhomogeneous.

Forsøk vedrørende belegning av rør med sink Experiments concerning the coating of pipes with zinc

EKSEMPEL 9EXAMPLE 9

Noen forsøk med to gangers nedsenkningsbehandling ble utført under anvendelse av rør fremstilt av Dalmine (lengde = 50 mm, indre diameter 16 mm, ytre diameter 21 mm) hvis éle-mentinnhold er angitt i nedenstående tabell VI. Some experiments with two times immersion treatment were carried out using tubes manufactured by Dalmine (length = 50 mm, inner diameter 16 mm, outer diameter 21 mm) whose elemental content is given in Table VI below.

Det ble valgt to legeringer med følgende sammenset-ning: Zn+1% Mg+0,5% Al og Zn+3% Mg+1% Al. Two alloys with the following composition were chosen: Zn+1% Mg+0.5% Al and Zn+3% Mg+1% Al.

Nedenstående tabell VII viser tykkelsene av de innvendige og utvendige belegg erholdt med de nevnte to legeringer. Table VII below shows the thicknesses of the internal and external coatings obtained with the aforementioned two alloys.

Korrosjonsforsøk i naturlig vann ved 65°C Corrosion test in natural water at 65°C

(a) Gjentatte cykler av anodepolarisering i avluftet vann.(a) Repeated cycles of anode polarization in deaerated water.

Fig. 1 og 4 viser kurver vedrørende gjentatt anodepolarisering for belegningsmaterialene Zn 1% Mg 0,5% Al, Figs 1 and 4 show curves regarding repeated anode polarization for the coating materials Zn 1% Mg 0.5% Al,

Zn 3% Mg 1% Al, Zn 5% Mg 2% Al og et standard sinkbelegg. Zn 3% Mg 1% Al, Zn 5% Mg 2% Al and a standard zinc coating.

Disse kurvenes mening i forbindelse med definisjonen av tendensen til lokal korrosjon av belegget vil forstås av fag-folk på området. The meaning of these curves in connection with the definition of the tendency to local corrosion of the coating will be understood by experts in the field.

For hvert belegg ble utviklingen av de kinetiske parametere som er karakteristisk for kurvene, bestemt som funksjon av antall polariseringer: maksimumspotensial og strømtetthet, For each coating, the evolution of the kinetic parameters characteristic of the curves was determined as a function of the number of polarizations: maximum potential and current density,

■Ec og Ic; passiverings-strømtettheten 1^; passiverings-brudd-potensial eller gropkorrosjonspotensial, E pitting (se f.eks. fig. 1). ■Ec and Ic; the passivation current density 1^; passivation fracture potential or pitting corrosion potential, E pitting (see e.g. Fig. 1).

(b) Forsøk vedrørende fri nedsenkning i luftholdig sirkulerende vann ( 0, 01 l/ sekund) (b) Experiments regarding free immersion in aerated circulating water (0.01 l/second)

Disse forsøk ble utført under anvendelse av en rekke sink-pletterte rør belagt med Zn l%.Mg 0,5M Al og Zn 3%Mg 1% Al-legeringer og en referanseprøve bestående av et sinkplettert rør. These tests were carried out using a series of zinc-plated tubes coated with Zn 1%.Mg 0.5M Al and Zn 3%Mg 1% Al alloys and a reference sample consisting of a zinc-plated tube.

Forsøkstiden var 3 måneder. To rør ble anvendt for The trial period was 3 months. Two tubes were used for

hver type belegg.each type of coating.

Fig. 5 viser hvordan korrosjonspotensialene varierer med tiden, og vekt-data er angitt i nedenstående tabell VIII. Fig. 5 shows how the corrosion potentials vary with time, and weight data is given in table VIII below.

Forsøk vedrørende interkrystallinsk korrosjon (på stålplater) Tests regarding intercrystalline corrosion (on steel plates)

i vanndamp fra destillert vannin water vapor from distilled water

Nedenstående tabell IX viser de erholdte resultaterTable IX below shows the results obtained

i form av gjennomsnittlig penetrasjon av det interkrystallinske angrep på sink-pletterte belegg og belegg av Zn 1% Mg 0,5% Al; Zn 3% Mg 1% Al og Zn 5% Mg 2% Al. in terms of average penetration of the intercrystalline attack on zinc-plated coatings and coatings of Zn 1% Mg 0.5% Al; Zn 3% Mg 1% Al and Zn 5% Mg 2% Al.

Claims (3)

1. Fremgangsmåte til' på et jernbasert underlag å-fremstille et sinkbasert belegg med en minimal tendens til polari-tetsinvers jon og med resistens mot utbredt, lokal og intergranulær korrosjon til beskyttelse av jernoverflaten mot korrosjon, spesielt overflater av stålplater og utvendige og innvendige overflater av stålrør, hvor det for forbedring av motstanden mot korrosjon tilsettes magnesium, aluminium og krom som additiver til sink, og hvor forholdet mellom magnesiuminnholdet og aluminiuminnholdet regnet i vekt-% er lavere enn 5, mens forholdet mellom krominnholdet og magnesiuminnholdet regnet i vekt-% er mellom 0 og 0,2, idet magnesiuminnholdet er mellom 0,5 og 5 vekt-%, hvilken fremgangsmåte omfatter de følgende trinn: (a) avfetting av det jernbaserte under]ag; (b) beising av underlaget med mineralsyrer; (c) vasking av underlaget; (d) underlaget underkastes behandling i sinkklorid og magnesium-klorid ved 80°C; (e) underlaget behandles i et første bad bestående hovedsakelig av smeltet sink og uttas fra badet; (f) underlaget behandles i et annet smeltebad av sink, magnesium, aluminium og eventuelt krom, hvor forholdet mellom magnesiuminnholdet og aluminiuminnholdet regnet i vekt-% er lavere enn 5, forholdet mellom krominnholdet og magnesiuminnholdet regnet i vekt-%. er mellom 0 og 0,2, og hvor magnesiuminnholdet er mellom 0,5 og 5 vekt-%, og underlaget uttas fra nevnte annet bad, og (g) underlaget kjøles; karakterisert ved at1. Method of producing on an iron-based substrate a zinc-based coating with a minimal tendency to polarity inversion and with resistance to widespread, local and intergranular corrosion for the protection of the iron surface against corrosion, especially surfaces of steel plates and external and internal surfaces of steel pipes, where magnesium, aluminum and chromium are added as additives to zinc to improve corrosion resistance, and where the ratio between the magnesium content and the aluminum content calculated in % by weight is lower than 5, while the ratio between the chromium content and the magnesium content calculated in % by weight is between 0 and 0.2, the magnesium content being between 0.5 and 5% by weight, which method comprises the following steps: (a) degreasing the ferrous substrate; (b) pickling the substrate with mineral acids; (c) washing the substrate; (d) the substrate is subjected to treatment in zinc chloride and magnesium chloride at 80°C; (e) the substrate is treated in a first bath consisting mainly of molten zinc and withdrawn from the bath; (f) the substrate is treated in another molten bath of zinc, magnesium, aluminum and possibly chromium, where the ratio between the magnesium content and the aluminum content calculated in % by weight is lower than 5, the ratio between the chromium content and the magnesium content calculated in % by weight. is between 0 and 0.2, and where the magnesium content is between 0.5 and 5% by weight, and the substrate is taken from said second bath, and (g) the substrate is cooled; characterized by that (1) trinn (e) i hvilket underlaget behandles i nevnte første bad og uttas fra dette, utføres ved en temperatur i det første bad mellom 440 og 460°C, fortrinnsvis ved 450°C, idet under-lagets oppholdstid i det første bad er fra 5 til 40 sekunder, fortrinnsvis 10 sekunder;(1) step (e) in which the substrate is treated in said first bath and removed from it, is carried out at a temperature in the first bath between 440 and 460°C, preferably at 450°C, the residence time of the substrate in the first bath is from 5 to 40 seconds, preferably 10 seconds; (2) trinn (f) i hvilket underlaget behandles i det nevnte annet bad og uttas fra dette, utføres ved en badtemperatur mellom 440 og 500°C, idet oppholdstiden er fra 20 til 60 sekunder, fortrinnsvis 50 sekunder.(2) step (f) in which the substrate is treated in the aforementioned second bath and removed from it, is carried out at a bath temperature between 440 and 500°C, the residence time being from 20 to 60 seconds, preferably 50 seconds. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at (I) det første bad består av sink og 0,02 vekt-% aluminium; og (II) det nevnte annet bad består av sink, 0,5-3 vekt-% magnesium og 0,5 vekt-% aluminium for magnesiuminnhold opp til 2 vekt-%, eller 1 vekt-% aluminium for magnesiuminnhold over 2% .2. Method according to claim 1, characterized in that (I) the first bath consists of zinc and 0.02% by weight aluminum; and (II) said second bath consists of zinc, 0.5-3% by weight magnesium and 0.5% by weight aluminum for magnesium content up to 2% by weight, or 1% by weight aluminum for magnesium content above 2%. 3. Jernbaserte underlag omfattende et sinkbasert belegg med redusert tendens til polaritetsinversjon og med resistens mot utbredt, lokal og intergranulær korrosjon til beskyttelse av jernoverflåtene mot korrosjon, særlig overflater av stålplater og utvendige og innvendige overflater av stålrør, når de er fremstilt ved fremgangsmåten ifølge de foregående krav.3. Iron-based substrates comprising a zinc-based coating with a reduced tendency to polarity inversion and with resistance to widespread, local and intergranular corrosion for the protection of the iron surfaces against corrosion, in particular surfaces of steel plates and external and internal surfaces of steel pipes, when produced by the method according to the preceding requirements.
NO764272A 1976-08-04 1976-12-16 PROCEDURES FOR THE MANUFACTURE OF A CORROSION-RESISTANT ZINC-BASED COATING ON IRON-BASED SURFACES NO764272L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT2602276 1976-08-04

Publications (1)

Publication Number Publication Date
NO764272L true NO764272L (en) 1978-02-07

Family

ID=11218437

Family Applications (1)

Application Number Title Priority Date Filing Date
NO764272A NO764272L (en) 1976-08-04 1976-12-16 PROCEDURES FOR THE MANUFACTURE OF A CORROSION-RESISTANT ZINC-BASED COATING ON IRON-BASED SURFACES

Country Status (3)

Country Link
JP (1) JPS5318434A (en)
NO (1) NO764272L (en)
SE (1) SE7708843L (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68914941T2 (en) * 1988-09-19 1994-08-11 Margaret Pamela Richardson Abuse or damage indicator elements.

Also Published As

Publication number Publication date
JPS5318434A (en) 1978-02-20
SE7708843L (en) 1978-02-05

Similar Documents

Publication Publication Date Title
JP3770875B2 (en) Flux and method for hot dip galvanizing
KR101504863B1 (en) High-corrosion-resistance hot-dip galvanized steel plate having highly uniform appearance and manufacturing method therefor
CA2712557C (en) Method for coating a hot-rolled or cold-rolled steel flat product, containing 6 - 30 % wt. mn, with a metallic protective layer
CA2605487C (en) A method for hot-dip galvanizing
CN101665895A (en) Composite method of plating steel by hot dipping
JPS60125360A (en) Zinc alloy hot-dipped steel material and its production and flux composition
US9499894B2 (en) Method for producing high-strength hot-dip galvannealed steel sheet
KR102527548B1 (en) plated steel
HU222318B1 (en) Zinc alloys yielding anticorrosive coatings on ferrous materials
NO764272L (en) PROCEDURES FOR THE MANUFACTURE OF A CORROSION-RESISTANT ZINC-BASED COATING ON IRON-BASED SURFACES
JPS6260854A (en) Manufacture of screw thread product
JPS6138259B2 (en)
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JPH0472091A (en) Surface-treated steel sheet for two-piece can and production thereof
JPH0711409A (en) Production of galvanized steel sheet
JPS63186860A (en) Manufacture of surface-treated steel sheet excellent in rust resistance and weldability
JP6128158B2 (en) Molten Mg-Zn alloy plated steel
JPH0394050A (en) Flux for galvanizing zn-al alloy
CA1241572A (en) Galvanizing procedure and galvanized product thereof
JP2577246B2 (en) Manufacturing method of surface-treated steel sheet for coating base with excellent processing corrosion resistance
WO2005080635A1 (en) Sn-zn alloy hot dip plated steel sheet
JP4166412B2 (en) Method for producing hot-dip galvanized steel sheet
JP3643559B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same
JPH04224666A (en) Production of hot-dip galvanized stainless steel strip excellent in adhesive strength of plating and corrosion resistance
JPH04221053A (en) Production of galvanized stainless steel material