NO760232L - - Google Patents
Info
- Publication number
- NO760232L NO760232L NO760232A NO760232A NO760232L NO 760232 L NO760232 L NO 760232L NO 760232 A NO760232 A NO 760232A NO 760232 A NO760232 A NO 760232A NO 760232 L NO760232 L NO 760232L
- Authority
- NO
- Norway
- Prior art keywords
- bleaching
- peroxide
- softening
- pulp
- wood
- Prior art date
Links
- 238000004061 bleaching Methods 0.000 claims description 38
- 150000002978 peroxides Chemical class 0.000 claims description 28
- 239000002023 wood Substances 0.000 claims description 23
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 229920001131 Pulp (paper) Polymers 0.000 claims description 15
- 239000007844 bleaching agent Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 239000012978 lignocellulosic material Substances 0.000 claims description 2
- 230000003134 recirculating effect Effects 0.000 claims description 2
- 238000007792 addition Methods 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 8
- 238000002203 pretreatment Methods 0.000 description 8
- 239000002253 acid Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 239000011122 softwood Substances 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000609240 Ambelania acida Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- -1 carbohydrate acids Chemical class 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21B—FIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
- D21B1/00—Fibrous raw materials or their mechanical treatment
- D21B1/04—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
- D21B1/12—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
- D21B1/14—Disintegrating in mills
- D21B1/16—Disintegrating in mills in the presence of chemical agents
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Mechanical Engineering (AREA)
- Paper (AREA)
Description
Foreliggende oppfinnelse vedrorer en fremgangsmåte ved fremstilling av mekanisk masse med hdy styrke og lyshet. The present invention relates to a method for producing mechanical pulp with high strength and lightness.
Mekanisk masse er ikke noe enhetlig definert begrep, men i det etterfølgende betegner mekanisk masse raffinormasse, termomekanisk masse, kjemimekanisk masse og halvkjemisk masse, dvs. masser fremstilt med et utbytte hoyere enn 75%, regnet på vedråstoffet. Mechanical pulp is not a uniformly defined term, but in the following, mechanical pulp denotes refiner pulp, thermomechanical pulp, chemical mechanical pulp and semi-chemical pulp, i.e. pulp produced with a yield higher than 75%, calculated on the wood raw material.
Ved at mekanisk masse kan fremstilles med meget hoyt utbytte regnet på vedråstoffet, blir den billig og dermed meget attraktiv, og meget arbeid er nedlagt for å forbedre egenskapene og dermed mulighetene for i visse tilfelle å anvende mekanisk masse isteden-for den dyrere kjemiske masse. Således kan for tiden mekanisk masse blekes -eksempelvis med ditionitt eller peroksyder til lyshet er på 8 2-84% SCAN for lovved og 74-76% SCAN for barved. Because mechanical pulp can be produced with a very high yield based on the wood raw material, it becomes cheap and thus very attractive, and much work has been done to improve the properties and thus the possibilities of using mechanical pulp in certain cases instead of the more expensive chemical pulp. Thus, mechanical pulp can currently be bleached - for example with dithionite or peroxides until lightness is 8 2-84% SCAN for softwood and 74-76% SCAN for softwood.
Den storste ulempen ved mekanisk masse er imidlertid at styrkeegenskapene er dårligere enn for den kjemiske masse. Likeledes er også absorpsjonsegenskapene og mykheten dårligere, hvilket imidlertid er av mindre betydning i de fleste tilfeller. However, the biggest disadvantage of mechanical pulp is that the strength properties are worse than for chemical pulp. Likewise, the absorption properties and softness are also poorer, which is, however, of less importance in most cases.
Grunnen til den dårligere styrken for den mekaniske massen er i det vesentlige den samme som grunnen til det hoyere utbytte, nemlig at fibrene inneholder en stor del av vedens lignin, hvilket innebærer at fleksibiliteten og bindingsevnen blir tilsvarende dårligere. The reason for the poorer strength of the mechanical pulp is essentially the same as the reason for the higher yield, namely that the fibers contain a large part of the wood's lignin, which means that the flexibility and binding ability are correspondingly worse.
En annen faktor som bidrar til styrkenedsettelsen, er at fibreneAnother factor that contributes to the reduction in strength is that the fibres
i stor grad er forkortet ved avklipning og maling til mellignende fragmenter under defibreringen av veden. Visse' lipofile bestanddeler, såsom harpiks og fettsyrer og ytterligere de såkalte eks- is largely shortened by cutting and grinding into flour-like fragments during the defibration of the wood. Certain lipophilic components, such as resins and fatty acids and further the so-called ex-
traktivstoffer, kan i visse tilfeller finnes tilbake i massen og påvirker styrkeegenskapene for det ferdige papir» i negativ retning. tractive substances, can in certain cases be found back in the pulp and affect the strength properties of the finished paper" in a negative direction.
For å lose disse problemer, anvendes forskjellige metoder for å myke opp veden og dermed de bindinger som holder de enkelte fibre sammen, forst og fremst midtlamelligninet, for derved å oppnå en mer skånsom defibrering, hvilket resulterer i lengre og mykere fibre. To solve these problems, different methods are used to soften the wood and thus the bonds that hold the individual fibers together, primarily the middle lamellar lignin, in order to achieve a more gentle defibration, which results in longer and softer fibers.
Ved den termomekaniske prosess oppvarmes veden således med dampIn the thermomechanical process, the wood is thus heated with steam
og mykgjores på denne måte for defibrering. Dette kan også kom-bineres med en samtidig tilsetning av forskjellige kjemikalier, såsom sulfittopplosninger med forskjellig pH eller peroksyder. and softened in this way for defibration. This can also be combined with a simultaneous addition of different chemicals, such as sulphite solutions with different pH or peroxides.
En annen måte å myke opp veden på er med kjemikalier og en oppvarming begrenset til hva som er nodvendig for å få en rimelig reaksjonstid. Som kjemikalier kan anvendes sulfittopplosninger med forskjellig pH, alkalimetallkarbonat og/eller -hydroksyd, og hvor spesielt alkalimetallhydroksyd er meget effektivt med hensyn til oppmykning av veden. Avhengig av reaksjonstiden, kjemikalie-mengden og temperaturen oppnås forskjellige egenskaper og utbytter av massene. Disse masser innbefatter kjemimekaniske og halv-kjemiske masser, inklusive koldsodamasse. Another way to soften the wood is with chemicals and a heating limited to what is necessary to get a reasonable reaction time. Sulphite solutions with different pH, alkali metal carbonate and/or hydroxide can be used as chemicals, and where alkali metal hydroxide in particular is very effective with regard to softening the wood. Depending on the reaction time, the amount of chemicals and the temperature, different properties and yields of the masses are achieved. These pulps include chemical mechanical and semi-chemical pulps, including cold soda pulp.
I praksis kan denne kjemikaliebehandling utfores på forskjellig måte, og den enkleste er å besprute veden, vanligvis i form av flis, med kjemikaliene umiddelbart for defibreringen. Selv på denne enkle måte får man gode resultater med hensyn til styrkeegenskapene, slik som eksempelvis beskrevet i svensk patentansok-ning nr. 1850/7 2. In practice, this chemical treatment can be carried out in different ways, and the simplest is to spray the wood, usually in the form of chips, with the chemicals immediately for defibration. Even in this simple way, good results are obtained with regard to the strength properties, as for example described in Swedish patent application no. 1850/7 2.
En annen måte er å behandle veden i et separat trinn for defibreringen. Derved kan de mykgjorende kjemikaliers inntrengning i veden forbedres, og tiden, temperaturen og trykket kan variere innen vide grenser. Eksempler på en slik fremgangsmåte er kald-sodaprosessen samt de fremgangsmåter som beskrives i de svenske patentskrifter nr. 303 088 og 226 593 samt i de amerikanske patentskrifter nr. 3 069 309 og 3 023 140. Another way is to treat the wood in a separate step for the defibration. Thereby, the penetration of the softening chemicals into the wood can be improved, and the time, temperature and pressure can vary within wide limits. Examples of such a method are the cold-soda process and the methods described in the Swedish patent documents no. 303 088 and 226 593 as well as in the American patent documents no. 3 069 309 and 3 023 140.
Felles for både termisk og kjemisk mykgjoring av veden for defibrering er at den resulterende masse morkner sterkt. Skal massen deretter blekes på kjent måte etter mykgjoring, blir forbruket av blekekjemikalier sterkt foroket. Common to both thermal and chemical softening of the wood for defibration is that the resulting mass darkens strongly. If the pulp is then to be bleached in a known manner after softening, the consumption of bleaching chemicals is greatly increased.
Det er mulig, og i visse tilfeller også fordelaktig, å tilsette blekemidler under den termiske og/eller den kjemiske behandling, og de ovenfor gitte patentskrifter beskriver slike fremgangsmåter. It is possible, and in certain cases also advantageous, to add bleaching agents during the thermal and/or chemical treatment, and the patents given above describe such methods.
Vanskeligheten med å kombinere termisk eller kjemisk mykgjoring og bleking er at de optimale betingelser for mykgjoringen sjelden eller aldri faller sammen med de optimale betingelser for blekingen. De mest egnede pH-verdier for impregneringsvæsken er 11,0-13,5 for mykgjoring, mens de mest passende pH-verdier for peroksyd-bleking ligger i området 8,5-11. The difficulty with combining thermal or chemical softening and bleaching is that the optimum conditions for softening rarely or never coincide with the optimum conditions for bleaching. The most suitable pH values for the impregnation liquid are 11.0-13.5 for softening, while the most suitable pH values for peroxide bleaching are in the range 8.5-11.
Om således prosessen rettes på en maksimal mykgjoring, skjer det en kraftig peroksydspaltning som folge av den hoye hydroksydion-konsentrasjon, og dette må kompenseres med en oket peroksydmengde for at den tilsiktede lyshet skal oppnås. Om derimot den samme oppmyking av veden erholdes ved kjemisk behandling uten samtidig tilsetning av blekemiddel og ved den samme hoye pH-verdi, blir lysheten av den resulterende masse så lav at man som regel må anvende en ennå storre peroksydmengde enn i det kombinerte tilfelle for å oppnå den samme lyshet. If the process is therefore aimed at maximum softening, a strong peroxide cleavage occurs as a result of the high hydroxide ion concentration, and this must be compensated with an increased amount of peroxide in order for the intended lightness to be achieved. If, on the other hand, the same softening of the wood is obtained by chemical treatment without the simultaneous addition of bleach and at the same high pH value, the lightness of the resulting mass is so low that you usually have to use an even larger amount of peroxide than in the combined case in order to achieve the same brightness.
Foreliggende oppfinnelse har til hensikt å tilveiebringe en alka-lisk oppmykning av veden under de for mykgjoringen optimale betingelser, uten at massens lyshet derved senkes. Helt overraskende har det nemlig vist seg at allerede små tilsetninger av peroksyd i form av hydrogenperoksyd, organiske peroksyder eller natriumperoksyd er tilstrekkelig for å inhibere eller i alle fall i betyde-lig grad forhindre morkning av massen innenfor det for mykgjoringen optimale pH-intervall. The purpose of the present invention is to provide an alkaline softening of the wood under the optimal conditions for the softening, without thereby lowering the lightness of the pulp. Quite surprisingly, it has been shown that even small additions of peroxide in the form of hydrogen peroxide, organic peroxides or sodium peroxide are sufficient to inhibit or at any rate to a significant extent prevent darkening of the mass within the optimal pH range for softening.
Summarisk kan det sies at oppmykningen i et forste trinn med sterkt alkali gir en sterk masse, men uten oppmykning slås fibrene i styk-ker under defibreringen og massen blir svakere. Tilsettes en liten mengde hydrogenperoksyd til luten, forebygges morkfargingen, og den etterfolgende blekning ved en lavere pH-verdi lettes. In summary, it can be said that softening in a first step with strong alkali gives a strong mass, but without softening the fibers are broken into pieces during defibration and the mass becomes weaker. If a small amount of hydrogen peroxide is added to the lye, the mordant staining is prevented, and the subsequent bleaching at a lower pH value is facilitated.
Det har naturligvis tidligere vært kjent at en hoy pH medforer peroksydspaltning, hvorfor det har vært en naturlig forholds-regel å dele opp peroksydtilsetningen mellom mykgjorende forbehandlingstrinn og defibreringen. Slike forsok er utfort og beskrevet i de ovenfor nevnte patentskrifter samt også i Pulp and Paper Magazine of Canada, vol. 73, 1972, side 80, men man har tidligere tilsatt minst 75% av den totale peroksydmengde i forbehandlingstrinnet og resten i et separat bleketrinn eller til raffinoren etter mykgjoringstrinnet. I samtlige tilfeller har man oversett delprosessenes helt forskjellige pH-optima. It has naturally been known in the past that a high pH leads to peroxide splitting, which is why it has been a natural precaution to divide the peroxide addition between the softening pretreatment step and the defibration. Such attempts have been carried out and described in the above-mentioned patents and also in Pulp and Paper Magazine of Canada, vol. 73, 1972, page 80, but previously at least 75% of the total amount of peroxide was added in the pretreatment step and the rest in a separate bleaching step or to the refiner after the softening step. In all cases, the completely different pH optima of the sub-processes have been overlooked.
Det overraskende ved foreliggende-oppfinnelse er således ikke at det tilsatte peroksyd utnyttes bedre om man deler det opp i flere trinn, men at peroksydtilsatsen i forbehandlingstrinnet kan hol-des lavt. Den beste effekt oppnås nemlig allerede ved en tilsats på 10 - 30% av den totalt nodvendige peroksydmengde til mykningstrinnet, og ikke i noe tilfelle har det vist seg motivert å gå så hoyt opp som til 75%. The surprising thing about the present invention is thus not that the added peroxide is utilized better if it is divided into several steps, but that the peroxide addition in the pretreatment step can be kept low. The best effect is already achieved with an addition of 10 - 30% of the total amount of peroxide required for the softening step, and in no case has it proven to be motivated to go as high as 75%.
Forbehandlingen skjer nå frem til det punkt der en synkende pH-verdi gjor den virkelige bleking mulig, og det er derfor fordelaktig å sette et bleketårn direkte etter raffinoren for ferdig-bleking1 av massen. Den nodvendige pH-senkningen fra mykningstrinnet til bleketrinnet kan i de fleste tilfeller erholdes ved kun å regulere oppholdstiden og temperaturen under forbehandlingen slik at rett pH for blekingen innstiller seg. Selvsagt kan også pH-senkningen ved behov også oppnås ved tilsetning av en syre, eksempelvis en sulfittopplosning, svovelsyre eller surt bakvann fra et annet fabrikasjonstrinn. For å oppnå en effektiv innblanding av blekemidlet, kan dette tilsettes for raffinoren, da denne virker som en meget effektiv blandeanordning. The pre-treatment now takes place up to the point where a decreasing pH value makes the actual bleaching possible, and it is therefore advantageous to place a bleaching tower directly after the refiner for final bleaching1 of the pulp. The necessary pH reduction from the softening step to the bleaching step can in most cases be obtained by only regulating the residence time and temperature during the pre-treatment so that the correct pH for the bleaching is set. Of course, if necessary, the pH reduction can also be achieved by adding an acid, for example a sulphite solution, sulfuric acid or acidic waste water from another manufacturing step. In order to achieve an effective mixing of the bleaching agent, this can be added to the refiner, as this acts as a very efficient mixing device.
Ved at peroksydtilsetningen til forbehandlingstrinnet er så lav, blir restperoksydene fra det etterfolgende bleketrinn ofte tilstrekkelig for tilsetning til forbehandlingstrinnet. For en effektiv bleking må det nemlig anvendes et overskudd på 15-20% hydrogenperoksyd i bleketrinnet. Because the peroxide addition to the pretreatment step is so low, the residual peroxides from the subsequent bleaching step are often sufficient for addition to the pretreatment step. For effective bleaching, an excess of 15-20% hydrogen peroxide must be used in the bleaching step.
Grunnen til at en så liten mengde hydrogenperoksyd trengs under forbehandlingen er ikke fullstendig klarlagt, men det kan bero på at utloste karbohydratsyrer ved forbehandlingstrinnet, og om ti lbakesir kuler ing anvendes, også fra bleketrinnet,* fungerer som kompleksdannere for de i veden tilstedeværende tungmetaller og derved stabiliserer peroksydene. En tilbakesirkulering av avluten fra bleketrinnet til forbehandlingstrinnet reduserer også kraftig mengden av utloste, oksygenforbrukende substanser. The reason why such a small amount of hydrogen peroxide is needed during the pre-treatment is not completely clear, but it may be because released carbohydrate acids during the pre-treatment step, and if baking acid cooling is used, also from the bleaching step,* act as complex formers for the heavy metals present in the wood and thereby stabilizing the peroxides. A recirculation of the effluent from the bleaching stage to the pre-treatment stage also greatly reduces the quantity of discharged, oxygen-consuming substances.
Med utgangspunkt i det ovenfor angitte, er det gjort forsok med tilsetning av ytterligere kompleksdannere til hydrogenperoksyden under forbehandlingstrinnet. Blant annet er de fra vaskemiddel-området kjente kompleksdannere undersokt, NTA, EDTA, DTPA, dvs. nitrilotrieddiksyre, etylendiamintetraeddiksyre og dietylentri-aminopentaeddiksyre samt tripolyfosfat. Based on the above, attempts have been made to add further complexing agents to the hydrogen peroxide during the pre-treatment step. Among other things, the complex formers known from the detergent area have been investigated, NTA, EDTA, DTPA, i.e. nitrilotriacetic acid, ethylenediaminetetraacetic acid and diethylenetriaminopentaacetic acid as well as tripolyphosphate.
En optimal styrke for massen erholdes således ifolge oppfinnelsen med et forbehandlingstrinn som gjennomfores uten lyshetstap og med en minimal peroksydmengde. Den etterfolgende bleking utfores deretter på kjent måte i raffinoren og/eller i et bleketårn, og da massen for det egentlige bleketrinn allerede har en hoy lyshet, og da bleketrinnet ytterligere kan skje under optimale betingelser, erholdes en hoy lyshet ved maksimal styrke av massen med et mini-malt peroksydforbruk. An optimal strength for the mass is thus obtained according to the invention with a pre-treatment step which is carried out without loss of brightness and with a minimal amount of peroxide. The subsequent bleaching is then carried out in a known manner in the refiner and/or in a bleaching tower, and since the pulp for the actual bleaching step already has a high brightness, and since the further bleaching step can take place under optimal conditions, a high brightness is obtained at maximum strength of the pulp with a minimal peroxide consumption.
Mulighetene for å styre tilsetningen,av lut og hydrogenperoksyd uavhengig av hverandre gjor at alle reaksjonsbetingelsene kan hol-des på optimale nivåer. Ifolge tidligere fremgangsmåter har man anvendt lut og hydrogenperoksyd i et konstant forhold, og eksempelvis en tilsetning av kun natriumperoksyd i et konstant forhold på 1/2 mol hydrogenperoksyd pr. mol natriumhydroksyd. The possibilities of controlling the addition of lye and hydrogen peroxide independently of each other mean that all reaction conditions can be kept at optimum levels. According to previous methods, lye and hydrogen peroxide have been used in a constant ratio, and for example an addition of only sodium peroxide in a constant ratio of 1/2 mol of hydrogen peroxide per moles of sodium hydroxide.
Oppfinnelsen belyses i det etterfølgende utforelseseksempel, hvor den samme, forsoksmetodikk er tilpasset alle forsokene. De forskjellige variabler er sammenstilt i den etterfolgende tabell, og i hvilken forsokene 1-10 vedrorer granved og forsokene 11-14 ved-ror er lovved. Forsokene 1, 2, 5, 7, 13 og 14 er sammenlignings-eksempler ifolge tidligere kjent teknikk, mens de ovrige forsok er utfort i henhold til foreliggende, oppfinnelse. The invention is illustrated in the subsequent embodiment example, where the same experimental methodology is adapted to all the experiments. The various variables are compiled in the following table, and in which trials 1-10 relate to spruce wood and trials 11-14 relate to hardwood. Experiments 1, 2, 5, 7, 13 and 14 are comparative examples according to prior art, while the other experiments were carried out in accordance with the present invention.
Samtlige forsok er gjort med fyrstikkflis med en dimensjon på 25All experiments were carried out with match chips with a dimension of 25
x 5 x 3 mm plassert i et stålkar som deretter evakueres. Kjemi- x 5 x 3 mm placed in a steel vessel which is then evacuated. Chemistry-
kaliene sammen med vann ble insugd i veden, og deretter pålegges et hydraulisk overtrykk på 6 bar. Der intet annet .er angitt var impregneringstiden 1 h og impregneringstemperaturen 45°C. I forbindelse med alkalitilsetningen tilsettes i samtlige tilfeller 41° BG vannglass i en mengde tilsvarende 4,5 vektprosent regnet på veden. the potash together with water was sucked into the wood, and then a hydraulic overpressure of 6 bar is applied. Where nothing else is stated, the impregnation time was 1 h and the impregnation temperature 45°C. In connection with the addition of alkali, in all cases 41° BG water glass is added in an amount corresponding to 4.5% by weight calculated on the wood.
Etter forbehandlingen defibreres flisen i en laboratoriedefibra-tor til 10 ml CSF. After the pretreatment, the chip is defibrated in a laboratory defibrator to 10 ml of CSF.
Bleketrinnet ble utfort ved at ytterligere kjemikalier tilsettes delvis i defibratoren under defibreringen og delvis separat etter defibreringen. Massekonsentrasjonen under blekingen var 15% både ved defibratorblekingen og ved den separate bleking. Ved den separate bleking etter defibreringen var oppholdstiden 2 h og temperaturen 70°C. Når blekingen ble utfort som defibrator- eller raffinorbleking, ble massen lagret ved 70°C etter defibrering slik at den totale oppholdstid var 2 h. The bleaching step was carried out by adding further chemicals partly in the defibrator during defibration and partly separately after defibration. The mass concentration during the bleaching was 15% both in the defibrator bleaching and in the separate bleaching. In the separate bleaching after defibration, the residence time was 2 h and the temperature 70°C. When the bleaching was carried out as defibrator or raffinor bleaching, the mass was stored at 70°C after defibration so that the total residence time was 2 h.
x For å få rett initial-pH i bleketrinnet xx Tilbakesirkulerende restperoksyder fra eksempel nr. 6 x To obtain the correct initial pH in the bleaching step xx Recirculating residual peroxides from example no. 6
xxx Forbehandling ved 110°C og 0,5% S03~2 tilsatt, tid ca. 5 min. xxx Pretreatment at 110°C and 0.5% SO3~2 added, time approx. 5 min.
Avhengig av ved, vedtypen og den onskede massetype kan kjemikalie-tilsetningene varieres innen vide grenser, og eksemplene har til hensikt å vise lyshetsvariasjonene ved sammenlignbare blekemiddel-tilsetninger. De erholdte styrkeverdier henforer seg til prover fremstilt i laboratorieraffinorer og må derfor betraktes som en påvisning av den påfallende styrkeforbedring som oppnås når alka-liteten i mykningstrinnet okes. Depending on the wood, the type of wood and the desired type of pulp, the chemical additions can be varied within wide limits, and the examples are intended to show the lightness variations with comparable bleaching agent additions. The obtained strength values relate to samples produced in laboratory refineries and must therefore be regarded as a demonstration of the striking strength improvement that is achieved when the alkalinity in the softening step is increased.
Av forsoksserien fremgår tydelig den betydelige lyshetsokning som erholdes ved fremgangsmåten ifolge oppfinnelsen, til tross for den hoye alkalitilsetning. Det skal særskilt påpekes at i forsokene 8 og 9 ble peroksydbehovet til mykningstrinnet fullstendig dekket av restperoksydene i avluten fra sluttblekningstrinnet. From the test series, the significant increase in brightness obtained by the method according to the invention, despite the high alkali addition, is clearly evident. It should be particularly pointed out that in experiments 8 and 9 the peroxide requirement for the softening step was completely covered by the residual peroxides in the effluent from the final bleaching step.
Av forsok 11 fremgår det at oppfinnelsen kan tillempes også for termomekanisk masse. Experiment 11 shows that the invention can also be applied to thermomechanical mass.
Foreliggende oppfinnelse er ikke begrenset til utforelsesformen med noe spesielt forbehandlingsapparatur. Derfor påtenkes behand-lingsapparaturen å være vedimpregneringsutrustning med eller uten oppvarming, såsom cellulosekokere, trykkar med eller uten skrue-matning, flisvask med sluttet vaskevæskesystem, pulserende flis-behandling av typen "live bottom bin", etc. Tilpasningen kan og-så skje ved mykgjoring direkte i et forste defibreringstrinn og viderebleking i et andre raffineringstrinn eller alternativt med et separat bleketrinn eller kombinasjon av andre raffinor- og bleketrinn. Dette er vist i forsokene 9, 10 og 11. Det vesentlige er at oppmykningen skjer ved en pH hoyere enn 11 i nærvær av relativt små mengder peroksyd og at den endelige bleking deretter skjer ved en pH som maksimalt er 11 under tilsetning av ytterligere peroksyd. The present invention is not limited to the embodiment with any special pre-treatment equipment. Therefore, the treatment equipment is intended to be wood impregnation equipment with or without heating, such as cellulose boilers, pressure vessels with or without screw feeding, tile washing with a closed washing liquid system, pulsating tile treatment of the "live bottom bin" type, etc. The adaptation can also take place by softening directly in a first defibration step and further bleaching in a second refining step or alternatively with a separate bleaching step or combination of second refining and bleaching steps. This is shown in experiments 9, 10 and 11. The essential thing is that the softening takes place at a pH higher than 11 in the presence of relatively small amounts of peroxide and that the final bleaching then takes place at a pH that is a maximum of 11 with the addition of further peroxide.
Også på utslippet av oksygenforbrukende bestanddeler, BS7, fra prosessen, har oppfinnelsen en gunstig virkning. Ved bleking av to prover av raffinormasse ble således anvendt halvparten av bak-vannet fra det forste forsok som utspedningsvann i den andre prove. Ved forsoket ble det dosert 4% hydrogenperoksyd, 4% vannglass og 1,4% natriumhydroksyd. Bleketemperaturen var 60°C, bleketiden 2 h og massekonsentrasjonen 10%. De erholdte verdier for oksy genforbruket fremgår av den etterfølgende tabell 2. The invention also has a beneficial effect on the emission of oxygen-consuming components, BS7, from the process. When bleaching two samples of raffinor pulp, half of the backwater from the first trial was thus used as dilution water in the second sample. In the experiment, 4% hydrogen peroxide, 4% water glass and 1.4% sodium hydroxide were dosed. The bleaching temperature was 60°C, the bleaching time 2 h and the pulp concentration 10%. The obtained values for oxygen consumption appear in the following table 2.
Av verdiene fremgår det således at nydannelse av oksygenforbrukende substans avtar til ca. halvparten ved anvendelse av fremgangsmåten ifolge oppfinnelsen. From the values, it thus appears that new formation of oxygen-consuming substance decreases to approx. half when using the method according to the invention.
Også andre lignocellulosematerialer enn barved og lovved kan anvendes for massefremstilling ifolge oppfinnelsen, nemlig gress, bambus, bagasse, etc. Lignocellulosic materials other than softwood and softwood can also be used for pulp production according to the invention, namely grass, bamboo, bagasse, etc.
Claims (5)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7500843A SE387977B (en) | 1975-01-27 | 1975-01-27 | WAY TO PRODUCE BLEACH, MECHANICAL PULP WITH HIGH STRENGTH AND BRIGHTNESS |
Publications (1)
Publication Number | Publication Date |
---|---|
NO760232L true NO760232L (en) | 1976-07-28 |
Family
ID=20323502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO760232A NO760232L (en) | 1975-01-27 | 1976-01-26 |
Country Status (7)
Country | Link |
---|---|
CA (1) | CA1078558A (en) |
DE (1) | DE2601380C2 (en) |
FI (1) | FI760103A (en) |
FR (1) | FR2298642A1 (en) |
IT (1) | IT1053387B (en) |
NO (1) | NO760232L (en) |
SE (1) | SE387977B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE452346C (en) * | 1982-12-17 | 1990-03-26 | Sunds Defibrator | PROCEDURES FOR PEROXID WHITING OF LIGNOCELLULOSALLY MATERIAL IN TWO STEPS |
FR2661430B1 (en) * | 1990-04-30 | 1992-07-17 | Atochem | HIGH-YIELD PAPER PULP HYDROGEN PEROXIDE BLEACHING PROCESS. |
FR2661431B1 (en) * | 1990-04-30 | 1992-07-17 | Atochem | HIGH-YIELD PAPER PULP HYDROGEN PEROXIDE BLEACHING PROCESS. |
WO2003008703A1 (en) | 2001-07-19 | 2003-01-30 | Andritz Inc. | Four stage alkaline peroxide mechanical pulping |
US20040200586A1 (en) | 2002-07-19 | 2004-10-14 | Martin Herkel | Four stage alkaline peroxide mechanical pulping |
DE10234833A1 (en) * | 2002-07-31 | 2004-02-12 | Stora Enso Publication Paper Gmbh & Co. Kg | Process for digesting waste wood |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR925243A (en) * | 1945-04-05 | 1947-08-28 | St Regis Paper Co | Improvements to bleached ground wood pulp and its manufacturing processes |
FR1204356A (en) * | 1957-04-05 | 1960-01-26 | Degussa | Mechanical wood pulp manufacturing process |
GB838893A (en) * | 1957-04-05 | 1960-06-22 | Degussa | A process for the production of mechanical wood pulp and newsprint produced therefrom |
GB846232A (en) * | 1958-01-14 | 1960-08-31 | Hawailan Dev Company Ltd | Improvements in and relating to paper-making pulp |
FR1277371A (en) * | 1960-10-19 | 1961-12-01 | Papeteries De Clairefontaine | Process and apparatus for the manufacture of pulp from sawmill waste |
SE341322B (en) * | 1968-04-02 | 1971-12-20 | Defibrator Ab | |
BE792031A (en) * | 1971-12-14 | 1973-03-16 | Mo Och Domsjoe Ab | PROCESS FOR THE PREPARATION OF MECHANICAL PULPS |
JP2014197074A (en) * | 2013-03-29 | 2014-10-16 | ブラザー工業株式会社 | Fixing device |
-
1975
- 1975-01-27 SE SE7500843A patent/SE387977B/en unknown
- 1975-12-24 CA CA242,593A patent/CA1078558A/en not_active Expired
-
1976
- 1976-01-15 DE DE2601380A patent/DE2601380C2/en not_active Expired
- 1976-01-19 FI FI760103A patent/FI760103A/fi not_active Application Discontinuation
- 1976-01-20 IT IT47704/76A patent/IT1053387B/en active
- 1976-01-21 FR FR7601510A patent/FR2298642A1/en active Granted
- 1976-01-26 NO NO760232A patent/NO760232L/no unknown
Also Published As
Publication number | Publication date |
---|---|
SE387977B (en) | 1976-09-20 |
FR2298642B1 (en) | 1981-10-23 |
DE2601380A1 (en) | 1976-07-29 |
SE7500843L (en) | 1976-07-28 |
IT1053387B (en) | 1981-08-31 |
DE2601380C2 (en) | 1984-03-15 |
CA1078558A (en) | 1980-06-03 |
FI760103A (en) | 1976-07-28 |
FR2298642A1 (en) | 1976-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4486267A (en) | Chemithermomechanical pulping process employing separate alkali and sulfite treatments | |
US4187141A (en) | Method of producing bleached mechanical pulp | |
RU2322540C2 (en) | Method of production of wood fibrous pulp and wood fibrous pulp produced by that method | |
CA1272563A (en) | Method of manufacturing bleached chemimechanical and semichemical fibre pulp by means of a one-stage impregnation process | |
US3888727A (en) | Treatment of lignocellulosic material in an alkaline pulping liquor containing anthraquinone sulphonic acid followed by oxygen delignification | |
US5002635A (en) | Method for producing pulp using pre-treatment with stabilizers and refining | |
AU595505B2 (en) | A method of manufacturing bleached chemimechanical and semichemical fibre pulp by means of a two-stage impregnation process | |
NO175948B (en) | Method of treating lignocellulosic pulp | |
GB2227759A (en) | Hydrogen peroxide bleaching process | |
US4849053A (en) | Method for producing pulp using pre-treatment with stabilizers and defibration | |
Hedjazi et al. | Bagasse alkaline sulfite-anthraquinone (AS/AQ) pulping and totally chlorine free (TCF) bleaching | |
NO760232L (en) | ||
IE75202B1 (en) | Process for preparing bleached paper pulp | |
NO152096B (en) | PROCEDURE FOR THE PREPARATION OF XANTAN BY CONTINUOUS CULTIVATION OF POLYSACCHARIDE PRODUCING BACTERIES | |
US4689117A (en) | Thermomechanical digestion process for enhancing the brightness of cellulose pulp using bleachants | |
NO160325B (en) | REMOVABLE CHAIR FOOT. | |
CA1173604A (en) | Production of chemimechanical pulp | |
US2527563A (en) | Method of bleaching semichemical pulps | |
US3013932A (en) | Printing paper and process of making the same | |
AU663781B2 (en) | Non-sulfonated pulp | |
US3738908A (en) | Prehydrolysis and digestion of bagasse fibers | |
NO171801B (en) | PROCEDURE FOR THE PREPARATION OF CHEMOTHEROMICAL MASSES | |
US2956918A (en) | Chemically assisted mechanical wood pulp | |
US3832278A (en) | Prehydrolysis and digestion of bagasse fibers | |
US3013934A (en) | High yield pulp from hardwoods |