NO315440B1 - Apparatus for producing cold water for room cooling - Google Patents

Apparatus for producing cold water for room cooling Download PDF

Info

Publication number
NO315440B1
NO315440B1 NO20024015A NO20024015A NO315440B1 NO 315440 B1 NO315440 B1 NO 315440B1 NO 20024015 A NO20024015 A NO 20024015A NO 20024015 A NO20024015 A NO 20024015A NO 315440 B1 NO315440 B1 NO 315440B1
Authority
NO
Norway
Prior art keywords
cooling
heat exchanger
water
condenser
evaporative cooler
Prior art date
Application number
NO20024015A
Other languages
Norwegian (no)
Other versions
NO20024015D0 (en
NO20024015L (en
Inventor
Horst Doerk
Original Assignee
Menerga Appbau Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10042828A external-priority patent/DE10042828A1/en
Application filed by Menerga Appbau Gmbh filed Critical Menerga Appbau Gmbh
Publication of NO20024015D0 publication Critical patent/NO20024015D0/en
Publication of NO20024015L publication Critical patent/NO20024015L/en
Publication of NO315440B1 publication Critical patent/NO315440B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid
    • F28B9/06Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid with provision for re-cooling the cooling water or other cooling liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to a device for producing cold water for the purpose of cooling rooms, especially for cooling surfaces (11) and coolers in the building equipment, especially for cool ceilings. The inventive device comprises a refrigeration machine (1) and an evaporative cooler (14) mounted upstream thereof through which liquid to be cooled and air flows. The cooling air flow of the evaporative cooler (14) can be exposed to water and the liquid to be cooled flows across a heat exchanger (23) or directly to a temporary storage (9) or directly to the consumer (11).

Description

Oppfinnelsen vedrører en anordning for fremstilling av kaldt vann til romavkjøling ved hjelp av kjøleflater og kjølere i et bygningsutstyr, i særdeleshet for kj ølet ak med en kjø-lemaskin og en fordunstningskjøler som kobles foran kjølemaskinen, og som gjennom-strømmes av avkjølende væske og av luft. The invention relates to a device for the production of cold water for room cooling by means of cooling surfaces and coolers in a building equipment, in particular for chilled storage with a cooling machine and an evaporative cooler which is connected in front of the cooling machine, and which is flowed through by cooling liquid and by air.

Det er kjent å fremstille kaldt vann til kjøleflater ved hjelp av en kjølemaskin. Samtidig er det også kjent å avkjøle kondensatoren, henholdsvis fortetningsinnretningen i kjøle-maskinen ved hjelp av et vannkretsløp, i hvilket det anordnes en varmeveksler som gjennomstrømmes av luft. Dessuten er det kjent at man kan, ved hjelp av innstrømning i varmeveksleren med vann, forbedre varmeavgivelsen (våtkjøletåm). It is known to produce cold water for cooling surfaces using a cooling machine. At the same time, it is also known to cool the condenser, respectively the condensing device in the refrigerating machine by means of a water circuit, in which a heat exchanger through which air flows is arranged. In addition, it is known that one can, with the help of inflow into the heat exchanger with water, improve the heat output (wet cooling drain).

Formålet med oppfinnelsen er å forbedre kjøleeffekten i en anordning av typen nevnt innledningsvis med ubetydelige kostnader ved installasjon og anskaffelse. The purpose of the invention is to improve the cooling effect in a device of the type mentioned at the outset with negligible costs for installation and acquisition.

Oppgaven løses i henhold til oppfinnelsen på den måte at den avkjølende luftstrøm i fordunstningskjøleren kan innstrømmes med vann, at den avkjølende væske strømmer via en varmeveksler og en kondensator, eventuelt direkte til et mellomlager eller direkte til en forbruker, at kondensatoren er koblet foran en luftkondensator, og at luftkondensatoren er anordnet i en avløpsluftkanal i fordunstningskjøleren. According to the invention, the task is solved in such a way that the cooling air flow in the evaporative cooler can flow in with water, that the cooling liquid flows via a heat exchanger and a condenser, possibly directly to an intermediate storage or directly to a consumer, that the condenser is connected in front of an air condenser , and that the air condenser is arranged in an exhaust air duct in the evaporative cooler.

Ved hjelp av innstrømningen med vann i varmeveksleren på luftsiden blir på enkel og kostnadsgunstig måte bruksklargjøringen av den nødvendige kjøleeffekt mer effektiv. Dette er derved i særdeleshet fordelaktig når større kjøleeffekt kreves, for eksempel slik som om sommeren. Ved hjelp av innstrømningen med vann i varmeveksleren og luftav-kjølingen, som betinges av dette, skjer avgivelsen av kondenseringsvarme på lavere temperaturnivå. Ved hjelp av den lavere kondenseringstemperatur virker kjølemaskinen med tilsvarende gunstig ytelseskoeffisient. By means of the inflow of water in the heat exchanger on the air side, the preparation for use of the required cooling effect becomes more efficient in a simple and cost-effective way. This is therefore particularly advantageous when a greater cooling effect is required, for example in the summer. With the help of the inflow of water in the heat exchanger and the air cooling, which is conditioned by this, the release of condensation heat takes place at a lower temperature level. With the help of the lower condensing temperature, the cooling machine works with a correspondingly favorable performance coefficient.

Fortrinnsvis forslås at fordunstningskjøleren er en platevarmeveksler av polypropylen. Preferably, it is proposed that the evaporative cooler is a polypropylene plate heat exchanger.

Ettersom varmeveksleren i fordunstningskjøleren skal virke med vann, får derved mate-rialet i platevarmeveksleren stor rolle. Med polypropylen anbringes et materiale, med hvilket det ikke kan skje noen varig avleiring på grunn av vannbruken. As the heat exchanger in the evaporative cooler must work with water, the material in the plate heat exchanger thereby plays a major role. With polypropylene, a material is placed, with which no lasting deposits can occur due to the use of water.

Det er særlig fordelaktig når det, i kjølekretsløpet til kjølemaskinen foran ekspansjons-ventilen, anordnes en varmeveksler som gjennomstrømmes med vann, før vannet bring-es inn i luftstrømmen til fordunstningskjøleren. Ved hjelp av avkjølingen av kjølemid-delet, som oppnås på denne måte før innsprøytingen i fordamperen, oppnås på enkel og økologisk måte en ytterligere forbedring av ytelseskoeffisienten. It is particularly advantageous when, in the cooling circuit of the refrigerating machine in front of the expansion valve, a heat exchanger is arranged through which water flows, before the water is brought into the air flow of the evaporative cooler. By means of the cooling of the refrigerant part, which is achieved in this way before the injection into the evaporator, a further improvement of the performance coefficient is achieved in a simple and ecological way.

En ytterligere økning av kjøleeffekten er mulig ved hjelp av en luftkondensator som er koblet foran vannkondensatoren, og som i særdeleshet er anordnet i en avløpsluftkanal, henholdsvis en avløpsluftåpning i fordunstningskjøleren. A further increase of the cooling effect is possible with the help of an air condenser which is connected in front of the water condenser, and which in particular is arranged in an exhaust air channel, respectively an exhaust air opening in the evaporative cooler.

En ytterligere fordel utgjøres av økningen i avløpslufttemperaturen og senkningen i den relative luftfuktighet som er resultat av denne. Derved reduseres faren for kondensat-dannelse i avløpslutfkanalen. Ved hjelp av fordampningen av den forekommende aero-sol i avløpsluften etter fordunstningskjøleren fratas livsgrunnlaget for bakteriene som eventuelt befinner seg i denne, i særdeles legionella pneumophila. Det er derved særlig fordelaktig når luftkondensatoren er anordnet i avløpsluftkanalen til fordunstningskjøle-ren. A further advantage is constituted by the increase in the discharge air temperature and the lowering in the relative humidity that results from this. Thereby, the risk of condensate formation in the waste outlet duct is reduced. With the help of the evaporation of the aerosol occurring in the exhaust air after the evaporative cooler, the bacteria which may be present in it, in particular legionella pneumophila, are deprived of the basis of life. It is therefore particularly advantageous when the air condenser is arranged in the exhaust air duct of the evaporative cooler.

Ytterligere en fordel er kompaktheten av anlegget. Av denne grunn senkes energitapet ved oppvarming av ledningen for kaldtvann mellom de enkelte konstruksjonsdeler i anlegget, likesom ved den ellers vanlige energikostnad til pumpene. Another advantage is the compactness of the plant. For this reason, the energy loss when heating the line for cold water between the individual construction parts in the plant is reduced, as is the otherwise usual energy cost for the pumps.

To utføringseksempler av oppfinnelsen vises på tegningene og omtales nærmere i det følgende. Two embodiments of the invention are shown in the drawings and are discussed in more detail below.

Fig. 1 viser et første utføringseksempel, og Fig. 1 shows a first design example, and

Fig. 2 viser et andre utføringseksempel. Fig. 2 shows a second design example.

Anordningen, henholdsvis anlegget oppviser en kjølemaskin med et kretsløp l for kjø-lemedium, i hvilket en kompressor (fortetter) 2 er anordnet. I strømningsretningen bak kompressoren 2 er anordnet en kondensator (fortetningsinnretning) 3 som avkjøles ved hjelp av et andre kretsløp 4 for væske som ytterligere omtales nærmere under. Fra kondensatoren 3 når kjølemediet via en ekspansjonsventil 5 frem til en fordamper 6, ved hvilken et tredje kretsløp 7 er tilsluttet. The device, respectively the plant, has a cooling machine with a circuit 1 for cooling medium, in which a compressor (condenser) 2 is arranged. In the direction of flow behind the compressor 2, a condenser (condensing device) 3 is arranged which is cooled by means of a second circuit 4 for liquid, which is discussed in more detail below. From the condenser 3, the refrigerant reaches via an expansion valve 5 to an evaporator 6, to which a third circuit 7 is connected.

Kjøleeffekten avgitt fra fordamperen 6 ved det tredje kretsløp 7 tilføres et mellomlager 9 via en pumpe 8. Fra mellomlageret 9 tilføres via et fjerde kretsløp 10 kjøleeffekten en kjøleflate 11 via et fordelingssystem 12. Det andre kretsløp 4, tilsluttet ved kondensatoren 3, føres fra en pumpe 13 gjennom en fordunstningskjøler 14 som er utformet som flatevarmeveksler og er bestandig mot forurensninger, likeledes korrosjon. Platevarmeveksleren 14 gjennomstrømmes av luft som via et innløp 15 kommer frem mellom platene og avgis via et utløp 16 til omgivelsene. Denne gjennomstrømning bevirkes ved hjelp av en ventilator 17. The cooling effect emitted from the evaporator 6 by the third circuit 7 is supplied to an intermediate storage 9 via a pump 8. From the intermediate storage 9 via a fourth circuit 10 the cooling effect is supplied to a cooling surface 11 via a distribution system 12. The second circuit 4, connected at the condenser 3, is supplied from a pump 13 through an evaporative cooler 14 which is designed as a surface heat exchanger and is resistant to contamination, as well as corrosion. The plate heat exchanger 14 is flowed through by air which comes via an inlet 15 between the plates and is emitted via an outlet 16 to the surroundings. This flow is effected by means of a ventilator 17.

Mellom innløpet 15 og platene i varmeveksleren 14 innføres, i særdeleshet innsprøytes vann via et fordelingssystem 18 i luftstrømmen, slik at den oppnådd kjøleeffekt fra luften i varmeveksleren økes på grunn av fordunstningskulden. Innføringen av vannet skjer ved hjelp av en pumpe 19 som befinner seg i ledningen for vanntilstrømning. Between the inlet 15 and the plates in the heat exchanger 14, water is introduced, in particular, water is injected via a distribution system 18 into the air flow, so that the cooling effect obtained from the air in the heat exchanger is increased due to the evaporative cold. The introduction of the water takes place by means of a pump 19 which is located in the line for water inflow.

Ved bruk av et effektstyrt kjøleanlegg kan mellomlageret 9 utelates. Kretsløpet 7 for væske leder direkte til fordelingssystemet 12. When using a power-controlled cooling system, the intermediate storage 9 can be omitted. The circuit 7 for liquid leads directly to the distribution system 12.

I kjølekretsløpet til kjølemaskinen kan det foran ekspansjons ventilen 5 innsettes en varmeveksler 25, gjennomstrømmet av vannet som tilføres fordelingssystemet 18. Med denne muliggjøres ytterligere forbedring av kjøleeffekten. In the cooling circuit of the refrigerating machine, a heat exchanger 25 can be inserted in front of the expansion valve 5, through which the water supplied to the distribution system 18 flows. This enables further improvement of the cooling effect.

Videre kan det i kjølekretsløpet til kjølemaskinen foran vannkondensatoren 3 innsettes en varmeveksler 26, gjennomstrømmet av luften som kommer ut av fordunstningskjøle-ren 14. Varmeavgivelsen som forhøyes på denne måte, forsterker den samlede effekt fra anordningen. Samtidig utnyttes den omstendighet at varmen fra varmeveksleren 14 i kjølemaskinen 3,13,14 fremdeles er i stand til å oppta mer varme som kommer fra den samme kjølekrets i kjølemaskinen. Furthermore, a heat exchanger 26 can be inserted in the cooling circuit of the cooling machine in front of the water condenser 3, through which the air coming out of the evaporative cooler 14 flows. The heat output which is increased in this way, enhances the overall effect from the device. At the same time, the fact that the heat from the heat exchanger 14 in the refrigerating machine 3,13,14 is still able to absorb more heat coming from the same refrigerating circuit in the refrigerating machine is exploited.

Anordningen, henholdsvis anlegget kjøres fortrinnsvis i tre ulike trinn: The device, respectively the plant, is preferably run in three different stages:

1) er luften tilstrekkelig kald, så er det ikke nødvendig at kuldemaskinen er virk-som, og en innstrømning med vann i platevarmeveksleren kan også utebli. Den avkjølende væske strømmer tilbake via ledningen 21, varmeveksleren 23, ledningen 22 og via fordamperen 6 til mellomlageret 9. 2) er lufttemperaturen så høy at den frie avkjøling ikke lenger er tilstrekkelig, kan kjøleeffekten forhøyes ved hjelp av vanninnstrømningen i fordunstningskjøleren 14. 3) ved ytterligere økning av lufttemperaturen og et eventuelt høyere avkjølingsbe-hov innkobles kjølemaskinen. Innstrømningen med vann i varmeveksleren 25 og 1) if the air is sufficiently cold, it is not necessary for the cooling machine to be active, and an inflow of water into the plate heat exchanger may also not occur. The cooling liquid flows back via the line 21, the heat exchanger 23, the line 22 and via the evaporator 6 to the intermediate storage 9. 2) if the air temperature is so high that the free cooling is no longer sufficient, the cooling effect can be increased by means of the water inflow into the evaporative cooler 14. 3) in the event of a further increase in the air temperature and a possible higher cooling demand, the cooling machine is switched on. The inflow of water into the heat exchanger 25 and

senkningen av kondenseringstemperaturen betinget på denne måte forbedrer ytelseskoeffisienten for kjølemaskinen og reduserer derved strømforbruket. Den samlede effekt fra systemet heves ved hjelp av varmeveksleren 26. the lowering of the condensing temperature conditioned in this way improves the coefficient of performance of the refrigerating machine and thereby reduces the power consumption. The overall effect from the system is raised using the heat exchanger 26.

Den avkjølende væske 21 kan sirkuleres enten via varmeveksleren 23 og deretter via fordamperen 6 i kjølemaskinen, eller ved hjelp av omkobling av ventilen 24 kun via fordamperen 6. The cooling liquid 21 can be circulated either via the heat exchanger 23 and then via the evaporator 6 in the cooling machine, or by switching the valve 24 via the evaporator 6 only.

Alle bestanddeler i anordningen, henholdsvis anlegget, det vil si alle bestanddeler i kjø-lemaskinen, fordunstningskjøleren 14 og styringen og reguleringen, samt alle væske- og strømførende ledninger er anordnet innenfor et hus 20 på kompakt måte. Huset kan derved bestå av flere enheter som lett lar seg transportere. 1 en ytterligere alternativ utførelse er det til vannkondensatoren 3 anordnet et omløp 28 som danner bro over denne, ved hjelp av hvilket omløp væsken i det andre kretsløp 4 strømmer i drift med delbelastning, når en ventil (treveisventil) 27 åpnes. Derved skjer kondensering kun i varmeveksleren (kondensatoren) 26. Samtidig virker kompressoren 2 i ulike trinn. Dette har den fordel at kretsløpet 4 ikke belastes termisk, slik at energi-forbruket for det samlede system senkes. All components of the device, respectively the plant, i.e. all components of the cooling machine, the evaporative cooler 14 and the control and regulation, as well as all liquid and current-carrying lines are arranged within a housing 20 in a compact manner. The house can therefore consist of several units that can be easily transported. In a further alternative embodiment, a circuit 28 is arranged for the water condenser 3 which forms a bridge over it, by means of which circuit the liquid in the second circuit 4 flows in operation with partial load, when a valve (three-way valve) 27 is opened. Condensation thereby only takes place in the heat exchanger (condenser) 26. At the same time, the compressor 2 operates in different stages. This has the advantage that the circuit 4 is not thermally loaded, so that the energy consumption for the overall system is lowered.

Claims (5)

1. Anordning for fremstilling av kaldt vann til romavkjøling ved hjelp av kjøleflater og kjølere i et bygningsutstyr, i særdeleshet for kjøletak (11) med en kjølemaskin (2, 3, 5, 6) og en fordunstningskjøler (14) som kobles foran kjølemaskinen, og som gjennom-strømmes av avkjølende væske og av luft, karakterisert ved: at den avkjølende luftstrøm i fordunstningskjøleren (14) kan innstrammes med vann, at den avkjølende væske (4) strømmer via en varmeveksler (23) og en kondensa tor (3), eventuelt direkte til et mellomlager (9) eller direkte til en forbruker (11), at kondensatoren (3) er koblet foran en luftkondensator (26), og at luftkondensatoren (26) er anordnet i en avløpsluftkanal i fordunstningskjøle- ren (14).1. Device for producing cold water for room cooling using cooling surfaces and coolers in a building equipment, in particular for cooling roofs (11) with a cooling machine (2, 3, 5, 6) and an evaporative cooler (14) which is connected in front of the cooling machine, and which is flowed through by cooling liquid and by air, characterized in that: the cooling air flow in the evaporative cooler (14) can be tightened with water, that the cooling liquid (4) flows via a heat exchanger (23) and a condenser tor (3), possibly directly to an intermediate storage (9) or directly to a consumer (11), that the condenser (3) is connected in front of an air condenser (26), and that the air condenser (26) is arranged in an exhaust air duct in evaporative cooling clean (14). 2. Anordning ifølge krav 1, karakterisert ved at for-dunstningskjøleren (14) er en platevarmeveksler av polypropylen.2. Device according to claim 1, characterized in that the evaporative cooler (14) is a plate heat exchanger made of polypropylene. 3. Anordning ifølge krav 1 eller 2, karakterisert ved at en varmeveksler (25) er anordnet i et kjølekretsløp (1) for kjølemaskinen (2,3, 6) foran en ekspansjonsventil (5), hvilken varmeveksler er gjennomstrømmet med vannet, før vannet innføres i en atmosfæreluftstrøm via et fordelingssystem (18) i fordunstningskjø-leren (14).3. Device according to claim 1 or 2, characterized in that a heat exchanger (25) is arranged in a cooling circuit (1) for the cooling machine (2,3, 6) in front of an expansion valve (5), which heat exchanger is flowed through with the water, before the water is introduced into an atmospheric air flow via a distribution system (18) in the evaporative cooler (14). 4. Anordning ifølge ett av de foranstående krav, karakterisert v e d at alle bestanddeler i kjølemaskinen, fordunstningskjøleren og en sty-ring/regulering er anordnet innenfor et hus (20) som kan bestå av flere transportable enheter.4. Device according to one of the preceding claims, characterized in that all components of the cooling machine, the evaporative cooler and a control/regulation are arranged within a housing (20) which can consist of several transportable units. 5. Anordning ifølge et hvilket som helst av de foranstående krav, karakterisert ved at det er anordnet et omløp (28) som danner bro over kondensatoren (3) i kjølemaskinen, og som kan innkobles ved hjelp av en ventil (27).5. Device according to any one of the preceding claims, characterized in that a circuit (28) is arranged which forms a bridge over the condenser (3) in the refrigerating machine, and which can be switched on by means of a valve (27).
NO20024015A 2000-03-02 2002-08-22 Apparatus for producing cold water for room cooling NO315440B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10010216 2000-03-02
DE10042828A DE10042828A1 (en) 2000-03-02 2000-08-30 Cold water production unit, for cooling rooms, comprises a refrigeration machine and an evaporative cooler mounted upstream, through which liquid and air flow
PCT/EP2001/001249 WO2001065188A1 (en) 2000-03-02 2001-02-06 Device for producing cold water for the purpose of cooling rooms

Publications (3)

Publication Number Publication Date
NO20024015D0 NO20024015D0 (en) 2002-08-22
NO20024015L NO20024015L (en) 2002-10-28
NO315440B1 true NO315440B1 (en) 2003-09-01

Family

ID=26004644

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20024015A NO315440B1 (en) 2000-03-02 2002-08-22 Apparatus for producing cold water for room cooling

Country Status (10)

Country Link
EP (1) EP1259769B1 (en)
AT (1) ATE283463T1 (en)
AU (1) AU2001230251A1 (en)
CZ (1) CZ304827B6 (en)
ES (1) ES2230266T3 (en)
HU (1) HU228723B1 (en)
NO (1) NO315440B1 (en)
PT (1) PT1259769E (en)
SK (1) SK286594B6 (en)
WO (1) WO2001065188A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100242532A1 (en) 2009-03-24 2010-09-30 Johnson Controls Technology Company Free cooling refrigeration system
US11199356B2 (en) 2009-08-14 2021-12-14 Johnson Controls Technology Company Free cooling refrigeration system
CN101988722A (en) * 2010-10-27 2011-03-23 郭海新 Natural cold source cooling water chiller
US20140096562A1 (en) * 2012-10-09 2014-04-10 Inertech Ip Llc Cooling system including a controlled atmospheric heat rejection cycle with water re-capture
DE102017212131A1 (en) * 2017-07-14 2019-01-17 Efficient Energy Gmbh Heat pump assembly with a controllable heat exchanger and method for producing a heat pump assembly
DE102021127490A1 (en) * 2021-10-22 2023-04-27 Efficient Energy Gmbh WATER CHILLER EXPOSED TO THE ENVIRONMENT OUTSIDE A BUILDING ENVELOPE

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH146211A (en) * 1930-01-11 1931-04-15 Simmen Oscar Room ventilation system with artificial cooling of the air to be introduced into the room.
DE972293C (en) * 1952-09-21 1959-07-02 Gea Luftkuehler Ges M B H Evaporative cooler, especially evaporative condenser for refrigeration machines
CH326705A (en) * 1954-11-10 1957-12-31 Sulzer Ag Cooling equipment, in particular condensers for refrigeration systems
CH392576A (en) * 1962-04-27 1965-05-31 Sulzer Ag Process for operating refrigeration machines
DE1947848U (en) * 1966-07-29 1966-10-13 Sueddeutsche Kuehler Behr AIR CONDITIONING FOR MOTOR VEHICLES.
CH655690B (en) * 1982-05-19 1986-05-15
GB2122335B (en) * 1982-06-15 1985-05-01 Wright Air Conditioning Limite Air conditioning system
GB8719345D0 (en) * 1987-08-14 1987-09-23 British Telecomm Cooling equipment
US5377500A (en) * 1993-06-03 1995-01-03 Fast Maker Enterprise Co., Ltd. Water cooled air conditioner
US5651264A (en) * 1993-06-29 1997-07-29 Siemens Electric Limited Flexible process controller
DE29716682U1 (en) * 1997-09-17 1997-11-06 Pfannenberg Otto Gmbh Device for exchanging thermal energy between a housing interior and an environment

Also Published As

Publication number Publication date
EP1259769B1 (en) 2004-11-24
CZ20022941A3 (en) 2002-11-13
NO20024015D0 (en) 2002-08-22
SK286594B6 (en) 2009-01-07
HUP0300422A2 (en) 2003-06-28
AU2001230251A1 (en) 2001-09-12
PT1259769E (en) 2005-03-31
CZ304827B6 (en) 2014-11-26
ES2230266T3 (en) 2005-05-01
ATE283463T1 (en) 2004-12-15
SK12462002A3 (en) 2002-12-03
HU228723B1 (en) 2013-05-28
EP1259769A1 (en) 2002-11-27
NO20024015L (en) 2002-10-28
WO2001065188A1 (en) 2001-09-07

Similar Documents

Publication Publication Date Title
US11262111B2 (en) Heat pump apparatus module
US20060042295A1 (en) Air conditioning system and methods
JP2005195313A (en) Composite air-conditioning system
JP3126239U (en) Air conditioner
JP4203758B2 (en) Water-cooled heat pump type ground-heated air conditioning system
NO315440B1 (en) Apparatus for producing cold water for room cooling
US4065937A (en) Method to transfer heat or refrigerant and heat pump for practical application of this method
KR100599854B1 (en) Regenerative heat pump unit using geothermics
KR101961170B1 (en) Method for Multiple Heat Source Multi Heat Pump System with Air Heat Source Cooling Operation, Air Heat Source Heating Operation, Water Heat Source Cooling and Heating Simultaneous Operation, Water Heat Source Heating and Cooling Simultaneous Operation
KR102128497B1 (en) Data center indoor cooling system
KR200191303Y1 (en) Device for cooling and heating using water cooling type heat pump
KR102128498B1 (en) Cooling device for data center indoor
KR100843779B1 (en) Cooling system without cooling tower and outdoor equipment
JPH0828944A (en) Atmospheric latent heat recovery type air conditioner system
KR101595203B1 (en) Air conditioner
KR102111585B1 (en) Oac system using waste heat from cooling water
JP2007147133A (en) Air conditioner
KR100644832B1 (en) Cogeneration system
KR102080053B1 (en) Heat pump air-conditioner having defrosting function
KR20070087542A (en) Cooling equipment using as the heat pump for water cooled
KR200267511Y1 (en) Indoor Air Conditioner Having Water-Cooling Condenser
JP2006010090A (en) Engine driven air conditioner
KR20070044768A (en) Heat pump system using water supply pipe line
KR100482384B1 (en) Airconditioner with auxiliary heat pump
KR100926807B1 (en) Heat pump air conditioning system that high and low temperature water can be produced at the same time

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees