NO312902B1 - Electrically conductive filler for conductive plastic materials - Google Patents

Electrically conductive filler for conductive plastic materials Download PDF

Info

Publication number
NO312902B1
NO312902B1 NO20002323A NO20002323A NO312902B1 NO 312902 B1 NO312902 B1 NO 312902B1 NO 20002323 A NO20002323 A NO 20002323A NO 20002323 A NO20002323 A NO 20002323A NO 312902 B1 NO312902 B1 NO 312902B1
Authority
NO
Norway
Prior art keywords
microhole
filler according
bodies
filler
conductive
Prior art date
Application number
NO20002323A
Other languages
Norwegian (no)
Other versions
NO20002323L (en
NO20002323D0 (en
Inventor
Helmut Kahl
Bernd Tiburtius
Helmut Wegener
Original Assignee
Helmut Wegener
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmut Wegener filed Critical Helmut Wegener
Publication of NO20002323D0 publication Critical patent/NO20002323D0/en
Publication of NO20002323L publication Critical patent/NO20002323L/en
Publication of NO312902B1 publication Critical patent/NO312902B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

Oppfinnelsen angår et elektrisk ledende fyllstoff for et ledende plastmateriale ifølge innledningen til krav 1. The invention relates to an electrically conductive filler for a conductive plastic material according to the introduction to claim 1.

Det er allerede kjent elektrisk ledende tetningsmaterialer på silikonbasis som er fylt med ledende fyllstoff for fremstilling på stedet ("mold-in-place gaskets" = MIPG eller "form-in-place gaskets" = FIPG) av apparaturhustetninger med elektromagnetisk skjermende virkning. There are already known electrically conductive sealing materials on a silicone basis which are filled with conductive filler for on-site production ("mold-in-place gaskets" = MIPG or "form-in-place gaskets" = FIPG) of apparatus housing seals with an electromagnetic shielding effect.

Til begynnelsen av 1990-tallet ble de særlig brukt til klebende tetninger av enkeltdeler i skjermende hus eller til påklebing av ferdiggjorte skjermende tetninger under monteringen av apparaturhus, og med egenskaper avpasset tilsvarende. For tilsvarende produkter henvises til datablad CS-723 "Conductive Caulking Systems" Until the beginning of the 1990s, they were used in particular for adhesive seals of individual parts in shielding housings or for gluing completed shielding seals during the assembly of apparatus housings, and with properties adapted accordingly. For similar products, refer to data sheet CS-723 "Conductive Caulking Systems"

(1972) fra firma Tecknit, USA, Technical Bulletin 46 "CHO-BOND 1038" (1987) fra firma Comerics, USA, samt DE-A-39 36 534. (1972) from the company Tecknit, USA, Technical Bulletin 46 "CHO-BOND 1038" (1987) from the company Comerics, USA, as well as DE-A-39 36 534.

Fra DE-A-39 34 845 er det kjent en skjermende tetning i flere deler som består av en elastisk bærer og et høyt ledende dekksjikt, og en utførelse av apparatur-husdeler med tetninger for montasje som også tillater gjentatt åpning av huset etter den første lukking. Med denne oppbygning skal det motvirkes inhomogenitetspro-blemene som oppstår på grunn av den høyt spesifikke vekt av metalldelene som gjør materialet ledende. Fremstillingen av flerkomponentstetningen er imidlertid om-stendelig. From DE-A-39 34 845, a shielding seal in several parts is known which consists of an elastic carrier and a highly conductive cover layer, and an embodiment of apparatus housing parts with seals for assembly which also allows repeated opening of the housing after the first closure. With this structure, the inhomogeneity problems that arise due to the high specific weight of the metal parts that make the material conductive are to be counteracted. However, the production of the multi-component seal is cumbersome.

Ved fremgangsmåten for masseproduksjonen beskrevet i EP-B-0 629 114 blir det ledende materiale bragt til en pastøs tilstand ved hjelp av trykk og med en nål eller dyse anbragt på en husdel hvor det kleber til overflaten og blir elastisk sittende fast slik at det (uten støpeform) dannes en ledende, elastisk skjermingsprofil. Profil-utformingen bestemmes gjennom egnet valg av tverrsnittsform og -størrelse og påføringshastigheten med nålen eller dysen, samt gjennom tilpasning av material-egenskaper som viskositet, tiksotropi og herde- eller tverrbindingshastighet. In the method for mass production described in EP-B-0 629 114, the conductive material is brought to a pasty state by means of pressure and with a needle or nozzle placed on a housing part where it sticks to the surface and becomes elastically stuck so that ( without mould) a conductive, elastic shielding profile is formed. The profile design is determined through suitable choice of cross-sectional shape and size and the application speed with the needle or nozzle, as well as through adaptation of material properties such as viscosity, thixotropy and curing or cross-linking speed.

Som fyllstoff anvendes i tetningsmasser med høy ledningsevne særlig massive edelmetallpartikler, eksempelvis av sølv, edelmetallbelagte partikler med uedel kjerne, som f.eks. Ag- eller Pt-belagte Cu- eller Ni-partikler, kompositter av uedle metaller, som f.eks. Ni-belagte Cu-partikler, eller av edelmetallbelagte glass-eller keramikkpartikler. De likeledes kjente fyllstoffer på karbonbasis oppfyller ikke dagens krav til ledningsevne. As a filler, particularly massive noble metal particles, for example silver, noble metal-coated particles with a non-noble core, such as e.g. Ag- or Pt-coated Cu or Ni particles, composites of base metals, such as e.g. Ni-coated Cu particles, or of precious metal coated glass or ceramic particles. The similarly known carbon-based fillers do not meet today's requirements for conductivity.

Som følge av den pågående masseanvendelse og de synkende priser på elektronisk utstyr som bare funksjonerer sikkert med høyeffektiv skjerming, så vil fremstillingen av skjermende hus være utsatt for et stort prispress som gjør det nødvendig å søke etter prisgunstige fyllstoffer som er lette å bearbeide og som tillater fremstilling av tetningsmaterialer med egenskaper som kan varieres etter ønske. As a result of the ongoing mass use and the falling prices of electronic equipment that only functions safely with highly efficient shielding, the production of shielding housings will be exposed to great price pressure which makes it necessary to search for cost-effective fillers that are easy to process and that allow production of sealing materials with properties that can be varied as desired.

Oppgaven som lå til grunn for oppfinnelsen var således å tilveiebringe et elektrisk ledende fyllstoff for plastmaterialer og en fremgangsmåte for fremstilling av fyllstoffet. The task underlying the invention was thus to provide an electrically conductive filler for plastic materials and a method for producing the filler.

Denne oppgave er løst med et elektrisk ledende fyllstoff for et ledende plastmateriale, bestående av gassfylte mikrohullegemer med et metallskall som har høy ledningsevne, kjennetegnet ved at mikrohullegemene er elastisk komprimerbare. This task is solved with an electrically conductive filler for a conductive plastic material, consisting of gas-filled microhole cells with a metal shell that has high conductivity, characterized by the fact that the microhole cells are elastically compressible.

Oppfinnelsen er basert på den grunnleggende idé å fremstille et fyllstoff av gassfylte mikrohullegemer med et elastisk deformerbart metallskall, og som har lav tetthet. The invention is based on the basic idea of producing a filler of gas-filled micro-hole cells with an elastically deformable metal shell, and which has a low density.

Veggen i mikrohullegemene består fortrinnsvis av to sjikt, med et indre skall av et plastmateriale som i det vesentlige er gasstett og som sammen med den ønskede høye elastisitetsgrad, særlig elastisk kompressibilitet, gir fyllstofflegemer. Som alternativ til oppbyggingen med et indre skall av plast, kan veggen eventuelt bestå utelukkende av et i det vesentlige lukket metallsjikt. The wall in the micro-hole bodies preferably consists of two layers, with an inner shell of a plastic material which is essentially gas-tight and which, together with the desired high degree of elasticity, especially elastic compressibility, gives filler bodies. As an alternative to the structure with an inner shell made of plastic, the wall can possibly consist exclusively of an essentially closed metal layer.

En termoplastisk eller herdbar plastmasse fylt med et slikt rislebart fyllstoff - spesielt en ledende tetningsmasse, et ledende, spaltefyllende klebemateriale eller en ledende beleggingsmasse - har for alle kravtilpassede volumledningsevner et forholdsvis lavt metallinnhold, lav tetthet og høy elastisitet og resilienskraft, og det egner seg derfor fremragende for mange oppgaver innen området elektromagnetisk skjerming, men også for andre anvendelser. A thermoplastic or hardenable plastic mass filled with such a trickleable filler - in particular a conductive sealing compound, a conductive, gap-filling adhesive material or a conductive coating compound - has a relatively low metal content, low density and high elasticity and resilience for all required volume conductivity, and is therefore suitable outstanding for many tasks in the field of electromagnetic shielding, but also for other applications.

Mikrohullegemene har fortrinnsvis en diameter i området mellom 5 \ xm og 100 |im, særlig mellom 15 um og 50 um, og er i det enkleste tilfelle fylt med luft med tilnærmet normaltrykk eller atmosfæretrykk. Alt etter fremstillingsmetoden kan det imidlertid også anvendes en annen fyllgass, så som nitrogen eller karbondioksid. Fordi det innvendige trykk er en parameter som vesentlig påvirker elastisiteten, kan det også avvike fra normaltrykket, særlig kan det være et måtelig overtrykk. The microhole bodies preferably have a diameter in the range between 5 µm and 100 µm, in particular between 15 µm and 50 µm, and in the simplest case are filled with air at approximately normal pressure or atmospheric pressure. However, depending on the manufacturing method, another filling gas, such as nitrogen or carbon dioxide, can also be used. Because the internal pressure is a parameter that significantly affects the elasticity, it can also deviate from the normal pressure, in particular there can be a moderate overpressure.

Enklest fremstilles hullegemene i tilnærmet kuleform med hjelp av en pass-ende sikt. Ved å blande et fyllstoff som har denne hullegemeform (etter metallisk belegging) inn i et matriksmateriale, oppnås et tetningsmateriale med isotrope mekaniske og elektriske egenskaper. The easiest way is to make the holes in an approximately spherical shape with the help of a suitable sieve. By mixing a filler that has this hollow body shape (after metallic coating) into a matrix material, a sealing material with isotropic mechanical and electrical properties is obtained.

Derimot er det mulig å fremstille et mekanisk og elektrisk anisotropt tet-nings- og skjermingsmateriale ved hjelp av et fyllstoff hvor minst en del av mikrohullegemene har en tilnærmet ellipsoidisk, sylindrisk eller prismatisk utforming (derunder også en brikettaktig utforming eller flakform), hvor ellipsoidens største hovedakse har en lengde som er minst 1,5 ganger den nest største hovedakse, eller sylinderhøyden er minst 1,5 ganger radien, eller prismets høyde er minst 1,5 ganger lengden på den største side i grunnflaten. Spesielt når et slikt materiale føres ut gjennom en nål eller dyse, eller også ved påføring med et rakel, kan det skje en orientering av de langstrakte mikro-hullegemer som følge av den dynamiske grense-flate-orienteringseffekt, og under en påfølgende klebing til underlaget bevares denne orientering. In contrast, it is possible to produce a mechanical and electrically anisotropic sealing and shielding material using a filler in which at least part of the microhole bodies have an approximately ellipsoidal, cylindrical or prismatic design (including a briquette-like design or flake shape), where the ellipsoid's largest major axis has a length that is at least 1.5 times the second largest major axis, or the cylinder height is at least 1.5 times the radius, or the height of the prism is at least 1.5 times the length of the largest side in the base surface. In particular, when such a material is fed out through a needle or nozzle, or also when applied with a squeegee, an orientation of the elongated micro-hole bodies can occur as a result of the dynamic interface orientation effect, and during a subsequent adhesion to the substrate this orientation is preserved.

Den metalliske omhylling (metallsjiktet) omfatter fortrinnsvis hele overflaten på mikrohullegemet. Omhyllingen opprettholder dermed gasstettheten og gjør hul-legemet i høy grad inkompressibelt, uten at formelastisiteten påvirkes vesentlig. Omhyllingen har en midlere tykkelse i området mellom 0,1 fim og 5 fim, hvor tykkelsen er tilpasset mikrohullegemene slik at de belagte mikrohullegemer får en effektiv tetthet av samme størrelsesorden som tettheten hos plastmatriksen som det ledende fyllstoff skal anvendes i. The metallic covering (metal layer) preferably comprises the entire surface of the microhole body. The casing thus maintains the gas density and makes the hollow body largely incompressible, without the shape elasticity being significantly affected. The coating has an average thickness in the range between 0.1 fim and 5 fim, where the thickness is adapted to the microhole bodies so that the coated microhole bodies have an effective density of the same order of magnitude as the density of the plastic matrix in which the conductive filler is to be used.

Med denne måte å realisere en ønsket midlere tetthet på gjennom et gjensidig avhengig avstemt valg av størrelsen på mikrohullegemene og den midlere skall-tykkelse, oppnås det overordnede mål å oppnå et forutbestemt nivå på volumled-ningsevnen. Ved dette må man ta hensyn til at ledningsevnen hos et fyllstoff i en matriks også vil bli vesentlig påvirket av beleggets struktur (se nærmere nedenfor). With this way of realizing a desired average density through a mutually dependent coordinated choice of the size of the microhole cores and the average shell thickness, the overall goal of achieving a predetermined level of volume conductivity is achieved. In doing so, it must be taken into account that the conductivity of a filler in a matrix will also be significantly affected by the structure of the coating (see below).

Med en utførelsesform hvor det metalliske skall består av minst to sjikt og hvor bare det ytterste sjikt er av edelmetall, er det mulig å oppnå særlig høye inn-sparinger i materialkostnader. With an embodiment where the metallic shell consists of at least two layers and where only the outermost layer is of precious metal, it is possible to achieve particularly high savings in material costs.

Overflaten på det metalliske belegg er fortrinnsvis fra ru eller porøs til et sterkt strukturert belegg med krystallittaktige, dendrittiske eller stjerneformige, vidtgående radielt utoverrettede forlengelser av beleggingsmaterialet som gir en god indre forbindelse med matriksen i en tetningsmasse - gjennom en regelrett sammen-haking av nabo-hullegemer i matriksen - som sikrer en høy volumledningsevne også ved forholdsvis lave fyllingsgrader. The surface of the metallic coating is preferably from rough or porous to a highly structured coating with crystallite-like, dendritic or star-shaped, far-reaching radially outward extensions of the coating material which provide a good internal connection with the matrix in a sealant - through a regular interlocking of neighboring hollow bodies in the matrix - which ensure a high volume conductivity even at relatively low levels of filling.

Dannelsen av en slik utpreget overflatestruktur oppnås på fordelaktig måte med en fremgangsmåte med vakuumbelegging, så som pådamping i vakuum eller ved påsprøyting. The formation of such a distinct surface structure is advantageously achieved with a method of vacuum coating, such as evaporation in a vacuum or by spraying.

Det ledende belegg blir dannet på kostnadsgunstig måte, fortrinnsvis ved hjelp av en strømløs og/eller en elektrolytisk fremgangsmåte for metallisering i flytende fase, eller ved en fremgangsmåte for galvanisering. Dannelsen av det ledende belegg omfatter derved, særlig når det gjelder mikrohullegemer av plast, hensiktsmessig et første trinn med dannelse av et første metalliseringssjikt ved en fremgangsmåte for strømløs metallisering, og et andre trinn for dannelse av et andre metalliseringssjikt ved en fremgangsmåte for elektrolytisk metallisering. The conductive coating is formed in a cost-effective manner, preferably by means of an electroless and/or an electrolytic method for metallization in the liquid phase, or by a method for electroplating. The formation of the conductive coating thereby includes, particularly in the case of plastic microhole cells, a first step of forming a first metallization layer by a method of electroless metallization, and a second step of forming a second metallization layer by a method of electrolytic metallization.

Som alternativ til belegging i metalliseringsbad utføres dannelsen av det ledende belegg ved hjelp av en fremgangsmåte for gassfasemetallisering, særlig vakuumpådamping eller ved reaktiv påsprøyting. As an alternative to coating in a metallization bath, the formation of the conductive coating is carried out using a method for gas phase metallization, in particular vacuum vaporization or by reactive spraying.

Særlig når det gjelder varianten med flytende fase, blir det fortrinnsvis før og/eller etter dannelsen av det ledende belegg utført minst ett trinn med etsing eller beising av mikrohullegemenes overflate, for å gjøre denne ru eller porøs. En slik behandling før metalliseringen forbedrer vedheftingen av metallsjiktet, og for visse termoplaster er det nødvendig for overhodet å få en første, tilstrekkelig hefting. Especially when it comes to the variant with a liquid phase, preferably before and/or after the formation of the conductive coating, at least one step of etching or pickling the surface of the microhole bodies is carried out, in order to make it rough or porous. Such a treatment before the metallization improves the adhesion of the metal layer, and for certain thermoplastics it is necessary to obtain an initial, sufficient adhesion at all.

Foretrukne utførelsesformer av oppfinnelsen er angitt nedenfor. Preferred embodiments of the invention are set forth below.

I en første utførelsesform består fyllstoffet av hule kuler av plast (så som PVDC = polyvinylidenklorid, PTFE = polytetrafluoretylen, akrylnitril eller poly-propylen) med en midlere diameter på ca. 20 um med et sterkt krystallaktig strukturert Ag-belegg med en midlere tykkelse (basert på vekt eller anslått ut fra tetthet) mellom 300 nm og 1 [im, som er avsatt fra gassfase i en spesiell ryste-prøveholder med hule kuler. Den utpregede overflatestruktur kan oppnås gjennom egnet inn-stilling av utførelsesparametrene, eksempelvis HF-spenning, prøveholderens temperatur og material- og transportgassens sammensetning, samt strømningshastig-heten ved påsprøyting, uten at det er nødvendig med noen spesiell for- eller etter-behandling. In a first embodiment, the filler consists of hollow balls of plastic (such as PVDC = polyvinylidene chloride, PTFE = polytetrafluoroethylene, acrylonitrile or polypropylene) with a mean diameter of approx. 20 µm with a highly crystalline structured Ag coating with an average thickness (based on weight or estimated from density) between 300 nm and 1 µm, which is deposited from the gas phase in a special shaking sample holder with hollow spheres. The pronounced surface structure can be achieved through suitable setting of the execution parameters, for example HF voltage, the temperature of the sample holder and the composition of the material and transport gas, as well as the flow rate during spraying, without the need for any special pre- or post-treatment.

Uansett lar det seg gjøre, ved en modifikasjon av den første utførelsesform, gjennom etsing av utgangs-hulkulene i et i og for seg kjent kromsvovelsyre- eller alkalihydroksidetsebad å oppnå en primærstruktur i plastoverflaten som med en egnet prosessutførelse av beleggingstrinnet fordelaktig overlagrer den dannede sekundær-struktur hos Ag-sjiktet slik at det i forhold til den midlere partikkeldiameter oppnås store spiss-til-spiss-avstander. Et slikt fyllstoff, selv i forholdsvis lav konsentrasjon, gir tetningsmaterialet på plastbasis tilstrekkelig høy ledningsevne og har i tillegg en særlig liten tilbøyelighet til sedimentering. In any case, it is possible, by a modification of the first embodiment, through etching of the output hollow spheres in a chrome sulfuric acid or alkali hydroxide etching bath known per se to achieve a primary structure in the plastic surface which, with a suitable process execution of the coating step, advantageously superimposes the formed secondary structure of the Ag layer so that, in relation to the average particle diameter, large tip-to-tip distances are achieved. Such a filler, even in a relatively low concentration, gives the plastic-based sealing material sufficiently high conductivity and, in addition, has a particularly low tendency to sedimentation.

I en andre utførelsesform består fyllstoffet av tilnærmet terningformede termoplasthullegemer (f.eks. av én av de ovennevnte polymerer eller av polyimid) med kantlengder i området mellom 10 og 40 um, som har en metallisering med et Ni-sjikt og liggende over dette et porøst Ag-sjikt med en totaltykkelse på ca. 2 (im. Påføringen av Ni-sjiktet skjer erter at utgangs-hullegemene er beiset i et kromsvovel-syrebad, renset i et rengjøringsbad og edelmetallaktivert i et strømløst Pd-holdig aktiveringsbad, mens den påfølgende avsetning av Ag-sjiktet skjer elektrolytisk. Hullegemene blir ved dette alltid holdt neddykket i en trommel med tilsvarende fmmaskede vegger. In a second embodiment, the filler consists of approximately cube-shaped thermoplastic hollow cells (e.g. of one of the above-mentioned polymers or of polyimide) with edge lengths in the range between 10 and 40 µm, which have a metallization with a Ni layer and lying above this a porous Ag layer with a total thickness of approx. 2 (im. The application of the Ni layer takes place after the output hole cores have been pickled in a chromium-sulfur acid bath, cleaned in a cleaning bath and noble metal activated in an electroless Pd-containing activation bath, while the subsequent deposition of the Ag layer occurs electrolytically. The hole cores are in this way, the immersion was always kept in a drum with corresponding fmmasked walls.

I en tredje utførelsesform består hullegemene utelukkende av et Ni- eller Ni/Ag-metallskall med en veggtykkelse på 4 til 5 (im og dannes gjennom påføring av et metallsjikt på plastpartikler med egnet diameter og påfølgende fjerning av plast-kjernen gjennom pyrolyse. In a third embodiment, the hole cores consist exclusively of a Ni or Ni/Ag metal shell with a wall thickness of 4 to 5 (im and is formed by applying a metal layer to plastic particles of a suitable diameter and subsequent removal of the plastic core through pyrolysis.

Claims (10)

1. Elektrisk ledende fyllstoff for et ledende plastmateriale, bestående av gassfylte mikrohullegemer med et metallskall som har høy ledningsevne, karakterisert ved at mikrohullegemene er elastisk komprimerbare.1. Electrically conductive filler for a conductive plastic material, consisting of gas-filled microhole cells with a metal shell that has high conductivity, characterized in that the microhole cells are elastically compressible. 2. Fyllstoff ifølge krav 1, karakterisert ved at mikrohullegemene er gasstette.2. Filler according to claim 1, characterized in that the microhole bodies are gas-tight. 3. Fyllstoff ifølge krav 1 eller 2, karakterisert ved at mikrohullegemene har et indre skall av plast.3. Filler according to claim 1 or 2, characterized in that the microhole cores have an inner shell made of plastic. 4. Fyllstoff ifølge krav 1-3, karakterisert ved at mikrohullegemene har en diameter i området mellom 5 um og 100 (im, særlig mellom 15 (im og 50 (im.4. Filler according to claims 1-3, characterized in that the microhole bodies have a diameter in the range between 5 µm and 100 µm, in particular between 15 µm and 50 µm. 5. Fyllstoff ifølge krav 1-4, karakterisert ved at minst en delmengde av mikrohullegemene er tilnærmet kuleformet.5. Filler according to claims 1-4, characterized in that at least a subset of the microhole cores is approximately spherical. 6. Fyllstoff ifølge krav 1 - 5, karakterisert ved at minst en delmengde av mikrohullegemene har en tilnærmet ellipsoidisk, sylindrisk eller prismatisk utforming, hvor ellipsoidens største hovedakse har en lengde som er minst 1,5 ganger den nest største hovedakse, sylinderhøyden er minst 1,5 ganger radien, eller høyden på prismet er minst 1,5 ganger lengden på den største side i grunnflaten.6. Filler according to claims 1 - 5, characterized in that at least a subset of the microhole bodies has an approximately ellipsoidal, cylindrical or prismatic design, where the largest major axis of the ellipsoid has a length that is at least 1.5 times the second largest major axis, the cylinder height is at least 1.5 times the radius, or the height of the prism is at least 1.5 times the length of the largest side in the base surface. 7. Fyllstoff ifølge krav 1-6, karakterisert ved at det metalliske skall dekker hele overflaten av mikrohullegemet og fortrinnsvis omslutter dette gasstett.7. Filler according to claims 1-6, characterized in that the metallic shell covers the entire surface of the microhole body and preferably encloses this in a gas-tight manner. 8. Fyllstoff ifølge krav 1 -7, karakterisert ved at det metalliske skall består av minst to sjikt.8. Filler according to claims 1 -7, characterized in that the metallic shell consists of at least two layers. 9. Fyllstoff ifølge krav 1-8, karakterisert ved at det metalliske skall har en ru overflate, særlig med en hovedsakelig radielt utadrettet krystallittstruktur.9. Filler according to claims 1-8, characterized in that the metallic shell has a rough surface, in particular with a mainly radially outwardly oriented crystallite structure. 10. Fyllstoff ifølge krav 1 -9, karakterisert ved at det metalliske skall har en midlere tykkelse i området mellom 0,1 (im og 5 um, hvor den midlere tykkelse er avpasset til dimensjonen på mikrohullegemene slik at den effektive tetthet for mikrohullegemene er i området mellom 0,3 og 3 g/cm .10. Filler according to claims 1 -9, characterized in that the metallic shell has an average thickness in the range between 0.1 (im and 5 um, where the average thickness is adapted to the dimension of the microhole bodies so that the effective density of the microhole bodies is in the range between 0.3 and 3 g/ cm.
NO20002323A 1997-11-03 2000-05-02 Electrically conductive filler for conductive plastic materials NO312902B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19749956 1997-11-03
PCT/DE1998/003267 WO1999023152A1 (en) 1997-11-03 1998-11-03 Electrically conductive filler and method for the production thereof

Publications (3)

Publication Number Publication Date
NO20002323D0 NO20002323D0 (en) 2000-05-02
NO20002323L NO20002323L (en) 2000-06-20
NO312902B1 true NO312902B1 (en) 2002-07-15

Family

ID=7848379

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20002323A NO312902B1 (en) 1997-11-03 2000-05-02 Electrically conductive filler for conductive plastic materials

Country Status (13)

Country Link
EP (1) EP1030880A1 (en)
JP (1) JP2001521964A (en)
KR (1) KR100421334B1 (en)
CN (1) CN1283213A (en)
AU (1) AU730445B2 (en)
CA (1) CA2309074A1 (en)
DE (1) DE19881647D2 (en)
HU (1) HUP0004285A3 (en)
IL (1) IL135862A0 (en)
NO (1) NO312902B1 (en)
RU (1) RU2199556C2 (en)
TR (1) TR200001006T2 (en)
WO (1) WO1999023152A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU739520B2 (en) * 1997-11-03 2001-10-11 Karl Gielnik Plastic material and conductive plastic object
CA2920372A1 (en) * 2013-09-24 2015-04-02 Henkel IP & Holding GmbH Pyrolized organic layers and conductive prepregs made therewith
CN104448562A (en) * 2014-12-04 2015-03-25 苏州润佳工程塑料股份有限公司 Coated conductive powder and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096548A (en) * 1983-10-31 1985-05-30 Nippon Chem Ind Co Ltd:The Electrically conductive material
US4621024A (en) * 1984-12-31 1986-11-04 Paper Applications International, Inc. Metal-coated hollow microspheres
JP3042101B2 (en) * 1991-11-22 2000-05-15 ジェイエスアール株式会社 Method for producing composite particles and hollow particles
DE4405156C1 (en) * 1994-02-18 1995-10-26 Univ Karlsruhe Process for the production of coated polymeric microparticles
DE19518942C2 (en) * 1995-05-23 1998-12-10 Fraunhofer Ges Forschung Process for the production of metallized polymer particles and polymer material produced by the process and their use

Also Published As

Publication number Publication date
KR100421334B1 (en) 2004-03-09
HUP0004285A1 (en) 2001-03-28
AU730445B2 (en) 2001-03-08
CA2309074A1 (en) 1999-05-14
NO20002323L (en) 2000-06-20
NO20002323D0 (en) 2000-05-02
KR20010031755A (en) 2001-04-16
JP2001521964A (en) 2001-11-13
DE19881647D2 (en) 2000-04-13
AU1749599A (en) 1999-05-24
TR200001006T2 (en) 2000-07-21
CN1283213A (en) 2001-02-07
RU2199556C2 (en) 2003-02-27
IL135862A0 (en) 2001-05-20
WO1999023152A1 (en) 1999-05-14
HUP0004285A3 (en) 2002-02-28
EP1030880A1 (en) 2000-08-30

Similar Documents

Publication Publication Date Title
Fattah-alhosseini et al. Impressive strides in amelioration of corrosion and wear behaviors of Mg alloys using applied polymer coatings on PEO porous coatings: A review
EP0110548B1 (en) Conductive gaskets
US4557957A (en) Microporous metal-plated polytetrafluoroethylene articles and method of manufacture
JP5360963B2 (en) Catalyst-free metallization method on dielectric substrate surface and dielectric substrate with metal film
JP4485508B2 (en) Method for producing conductive particles and anisotropic conductive film using the same
EP0616558A1 (en) Method of coating surfaces with finely particulate materials
JP2011519392A (en) Method for producing a three-dimensional structure having a hydrophobic surface using an immersion method
NO312902B1 (en) Electrically conductive filler for conductive plastic materials
WO2022173760A4 (en) Silicon material and method of manufacture
US20030113531A1 (en) Conductive fillers and conductive polymers made therefrom
RU2207353C2 (en) Conducting synthetic material and conducting shielding profile
US3671317A (en) Method of making fuel cell electrodes
Du et al. Electrically conductive acrylonitrile–butadiene rubber elastomers prepared by dopamine‐induced surface functionalization and metallization
US20060228434A1 (en) Forming tool for producing shaped foam bodies
KR101801859B1 (en) fabrication methods of metal structures using conducting polymers
US5762777A (en) Process of directly electroplating onto a nonconductive substrate
KR20080087774A (en) Method of making article made of biodegradable resin
US20180327925A1 (en) Anodization involving a lubricant
CN208791749U (en) A kind of hydrophobic waterproof membrane of nanoscale structures
JPH0677408B2 (en) Conductive particles
KR101664540B1 (en) Electrolytic plating electrode and plating apparatus comprising thereof
US11884426B2 (en) Compression apparatus and methods of making and using the same
JP2005322863A (en) Electromagnetic wave shielding packing
KR20020095805A (en) A Method of Coating Body with Parylene
CN1954096A (en) Method for forming plated coating, electromagnetic shielding member, and housing

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees