NO20111247A1 - Nitrogen removal procedure - Google Patents

Nitrogen removal procedure Download PDF

Info

Publication number
NO20111247A1
NO20111247A1 NO20111247A NO20111247A NO20111247A1 NO 20111247 A1 NO20111247 A1 NO 20111247A1 NO 20111247 A NO20111247 A NO 20111247A NO 20111247 A NO20111247 A NO 20111247A NO 20111247 A1 NO20111247 A1 NO 20111247A1
Authority
NO
Norway
Prior art keywords
fraction
nitrogen
methane
rich fraction
rich
Prior art date
Application number
NO20111247A
Other languages
Norwegian (no)
Inventor
Heinz Bauer
Rainer Sapper
Georg Schopfer
Daniel Garthe
Original Assignee
Linde Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Ag filed Critical Linde Ag
Publication of NO20111247A1 publication Critical patent/NO20111247A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/20Control for stopping, deriming or defrosting after an emergency shut-down of the installation or for back up system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

En fremgangsmåte for utskillelse av en nitrogenrik fraksjon fra en matefraksjon som i det vesentlige inneholder nitrogen og hydrokarboner, hvor matefraksjonen blir separert til en nitrogenrik og en metanrik fraksjon ved rektifikasjon. Ifølge oppfinnelsen blir den nitrogenrike fraksjon (4") og den metanrike fraksjon (5") under et avbrudd av tilføringen av matefraksjonen komprimert i det minste midlertidig og sammen tilført fremgangsmåten som matefraksjon, hvor kompresjonene av den nitrogenrike fraksjon (4") og den metanrike fraksjon (5") kan skje atskilt og/eller samlet.A process for separating a nitrogen-rich fraction from a feed fraction containing substantially nitrogen and hydrocarbons, wherein the feed fraction is separated into a nitrogen-rich and a methane-rich fraction by rectification. According to the invention, the nitrogen-rich fraction (4 ") and the methane-rich fraction (5") are interrupted at least temporarily and together as the feed fraction, the compressions of the nitrogen-rich fraction (4 ") and the methane-rich are interrupted. fraction (5 ") can occur separately and / or collectively.

Description

Oppfinnelsen angår en fremgangsmåte for utskillelse av en nitrogenrik fraksjon fra en matefraksjon som i det vesentlige inneholder nitrogen og hydrokarboner, hvor matefraksjonen blir separert til en nitrogenrik og en metanrik fraksjon ved rektifikasjon. The invention relates to a method for separating a nitrogen-rich fraction from a feed fraction which essentially contains nitrogen and hydrocarbons, where the feed fraction is separated into a nitrogen-rich and a methane-rich fraction by rectification.

En lignende fremgangsmåte for utskillelse av en nitrogenrik fraksjon fra en materfraksjon som i det vesentlige inneholder nitrogen og hydrokarboner skal beskrives nærmere ved hjelp av prosessen vist på figur 1. A similar method for separating a nitrogen-rich fraction from a feed fraction which essentially contains nitrogen and hydrocarbons shall be described in more detail using the process shown in Figure 1.

Via ledningen 1 blir matefraksjonen, som i det vesentlige inneholder nitrogen og hydrokarboner som eksempelvis stammer fra et forkoblet LNG-anlegg, før frem.. Den har fortrinnsvis et trykk som er større enn 25 bar. Den ble eventuelt underkastet en forbehandling som svovelfjerning, kulldioksidfjerning, tørking, osv. I varmeveksleren El ble den avkjølt og partielt kondensert mot fremgangsmåtestrømmer som det skal kommes nærmere inn på i det følgende. Via ledningen 1' blir den partielt kondenserte matefraksjon deretter tilført en forskillekolonne Tl. Via line 1, the feed fraction, which essentially contains nitrogen and hydrocarbons originating, for example, from a pre-connected LNG plant, is led forward. It preferably has a pressure greater than 25 bar. It was optionally subjected to a pre-treatment such as sulfur removal, carbon dioxide removal, drying, etc. In the heat exchanger El, it was cooled and partially condensed against process streams, which will be discussed in more detail below. Via line 1', the partially condensed feed fraction is then supplied to a separation column T1.

Denne forskillekolonne Tl danner sammen med lavtrykkskolonnen T2 en dobbeltkolonne T1/T2. Den termiske kobling av skillekolonnene Tl og T2 skjer via kondensatoren/oppkokeren E3. This separation column Tl together with the low-pressure column T2 forms a double column T1/T2. The thermal coupling of the separating columns Tl and T2 takes place via the condenser/reboiler E3.

Fra sumpen i forskillekolonnen Tl blir en hydrokarbonrik flytende fraksjon trukket ut via ledningen 2, underkjølt i varmeveksleren E2 mot fremgangsmåte-strømmer, som det skal kommes nærmere inn på i det følgende, og deretter tilført lavtrykkskolonnen T2 i det øvre området via ledningen 2' og ekspansjons ventilen a. From the sump in the separation column Tl, a hydrocarbon-rich liquid fraction is extracted via line 2, subcooled in the heat exchanger E2 against process flows, which will be discussed in more detail below, and then supplied to the low-pressure column T2 in the upper area via line 2' and the expansion valve a.

Via ledningen 3 blir det trukket ut en flytende nitrogenrik fraksjon fra det øvre området av forskillekolonnen Tl. En delstrøm av denne fraksjon blir via ledningen 3' gitt til forskillekolonnen Tl som tilbakeløp. Den uttrukne nitrogenrike fraksjon som er trukket ut via ledningen 3 blir underkjølt i varmeveksleren E2 og tilført lavtrykkskolonnen T2 ovenfor innmatingspunktet for den foran beskrevne metanrike fraksjon via ledningen 3" og ekspansjonsventilen b. Via line 3, a liquid nitrogen-rich fraction is extracted from the upper area of the separation column Tl. A partial flow of this fraction is given via line 3' to the separation column Tl as reflux. The extracted nitrogen-rich fraction which is extracted via line 3 is subcooled in the heat exchanger E2 and supplied to the low-pressure column T2 above the feed point for the methane-rich fraction described above via line 3" and the expansion valve b.

Via ledningen 4 blir en nitrogenrik gassfraksjon trukket ut ved toppen av lavtrykkskolonnen T2. Dens metaninnhold utgjør typisk mindre enn 1 vol%. I varme-vekslerne E2 og El blir den nitrogenrike fraksjon deretter oppvarmet og eventuelt overhetet før den trekkes ut via ledningen 4" og slippes ut i atmosfæren eller eventuelt tilføres en annen anvendelse. Via line 4, a nitrogen-rich gas fraction is extracted at the top of the low-pressure column T2. Its methane content is typically less than 1 vol%. In the heat exchangers E2 and E1, the nitrogen-rich fraction is then heated and optionally superheated before it is extracted via the line 4" and released into the atmosphere or optionally supplied to another application.

Via ledningen 5 blir det fra sumpen i lavtrykkskolonnen T2 trukket ut en metanrik flytende fraksjon som ved siden av metan inneholder de høyere hydrokarboner som er i matefraksjonen. Dens nitrogeninnhold utgjør typisk mindre enn 5 vol%. Den metanrike fraksjon blir pumpet ved hjelp av pumpen P til et høyest mulig trykk som vanligvis ligger mellom 5 og 15 bar. I varmeveksleren E2 blir den metanrike flytende fraksjon oppvarmet og eventuelt delfordampet. Via ledningen 5' blir den deretter tilført varmeveksleren El og fullstendig fordampet og overhetet i denne mot matefraksjonen som skal avkjøles. Via line 5, a methane-rich liquid fraction is extracted from the sump in the low-pressure column T2, which, in addition to methane, contains the higher hydrocarbons that are in the feed fraction. Its nitrogen content is typically less than 5 vol%. The methane-rich fraction is pumped using pump P to the highest possible pressure, which is usually between 5 and 15 bar. In the heat exchanger E2, the methane-rich liquid fraction is heated and possibly partly evaporated. Via line 5', it is then supplied to the heat exchanger E1 and completely vaporized and superheated in this towards the feed fraction to be cooled.

Ved hjelp av kompressoren V blir den metanrike fraksjon deretter komprimert til det ønskede utleveringstrykk, som vanligvis tilsvarer trykket i matefraksjonen i ledningen 1, komprimert og trukket ut av prosessen via ledningen 5". By means of the compressor V, the methane-rich fraction is then compressed to the desired delivery pressure, which usually corresponds to the pressure in the feed fraction in line 1, compressed and withdrawn from the process via line 5".

Lignende typer fremgangsmåter for utskillelse av en nitrogenrik fraksjon fra en matefraksjon som i det vesentlige inneholder nitrogen og hydrokarboner blir realisert i en såkalt NRU (Nitrogen Rejection Unit). En nitrogenutskillelse fira blandinger av nitrogen/hydrokarboner blir alltid gjennomført dersom et øket nitrogeninnhold hindrer den tilsiktede anvendelse av blandingen av nitrogen/hydrokarboner. Således overskrider eksempelvis et nitrogeninnhold på mer enn 5 mol% typiske spesifikasjoner av jordgassrørledninger hvor blandingen av nitrogen/hydrokarboner blir transportert. Også gassturbiner kan bare drives opp til et bestemt nitrogeninnhold i brenngassen. Similar types of methods for separating a nitrogen-rich fraction from a feed fraction which essentially contains nitrogen and hydrocarbons are realized in a so-called NRU (Nitrogen Rejection Unit). A nitrogen separation for mixtures of nitrogen/hydrocarbons is always carried out if an increased nitrogen content prevents the intended use of the mixture of nitrogen/hydrocarbons. Thus, for example, a nitrogen content of more than 5 mol% exceeds typical specifications of natural gas pipelines where the mixture of nitrogen/hydrocarbons is transported. Gas turbines can also only be operated up to a certain nitrogen content in the fuel gas.

Slike NRU blir som regel bygget som sentralprosessenhet lignende en luft-atskiller med en dobbeltkolonne som beskrevet eksempelvis på figur 1, og blir som regel anordnet i en såkalt Cold Box. Such NRUs are usually built as a central process unit similar to an air separator with a double column as described for example in Figure 1, and are usually arranged in a so-called Cold Box.

I tilfelle med større anleggskapasiteter kommer det som regel til anvendelse flere parallelt anordnede Cold Box. In the case of larger plant capacities, several cold boxes arranged in parallel are usually used.

Avhengig av bruksområdet kan tilgjengeligheten av en NRU være av stor betydning. En hindring for en høy tilgjengelighet er den lange tidsvarighet som er nødvendig for å sette prosessen i drift på nytt etter et lengre vedvarende frafall av matefraksjonen (NRU-mategass) som i det vesentlige inneholder nitrogen og hydrokarboner. Frafall av NRU-mategassen kan, avhengig av de forkoblede prosesser henholdsvis anlegg, inntreffe flere ganger i året, eksempelvis ved frafall av en forkoblet NRU-mategasskompressor eller et forkoblet LNG/NGL-anlegg Depending on the area of use, the availability of an NRU can be of great importance. An obstacle to a high availability is the long duration of time required to restart the process after a longer sustained drop-off of the feed fraction (NRU feed gas) which essentially contains nitrogen and hydrocarbons. Failure of the NRU feed gas can, depending on the connected processes or facilities, occur several times a year, for example in the case of failure of a connected NRU feed gas compressor or a connected LNG/NGL plant

I denne sammenheng må det skilles mellom den nye idriftsettelsen fra den varmetilstand (Warm Start-up) og den kalde tilstand (Cold Restart). "Warm Start-up" er forholdsvis tidsintensiv da det komplette utstyr på nytt må avkjøles til meget lave temperaturer og de flytende tilstander i prosessen må bygges opp. En "Cold Restart" etter forholdsvis korte frafall av NRU-mategassen fra den kalde tilstand, kan derimot gjennomføres forholdsvis hurtig. Her skal det forstås frafallstider mellom 1 og 24 timer, hvor disse avhenger av omgivelsesbetingelsene, størrelsen av "Cold box", byggemåten og massen i varmeveksleren så vel som strategien for "Cold Restart" In this context, a distinction must be made between the new commissioning from the warm state (Warm Start-up) and the cold state (Cold Restart). "Warm Start-up" is relatively time-intensive as the complete equipment must be cooled again to very low temperatures and the liquid states in the process must be built up. A "Cold Restart" after relatively short withdrawals of the NRU feed gas from the cold state, on the other hand, can be carried out relatively quickly. This is to be understood as failure times between 1 and 24 hours, where these depend on the ambient conditions, the size of the "Cold box", the construction method and the mass in the heat exchanger as well as the strategy for "Cold Restart"

(med/uten væsker fra prosessen). (with/without liquids from the process).

Under en stillstand av NRU skjer det på grunn av uunngåelige isolasjonstap en oppvarming av skillekolonnen (E) så vel som varmevekslere, ledninger, osv. Etter en bestemt oppvarmingstid som blir bestemt av anleggsstørrelsen og omgivelsesbetingelsene, er en "Cold Restart" ikke lenger mulig. Grunnen til dette ligger i de uunngåelige forekommende utillatelige mekaniske spenninger som forekommer når de (delvis) oppvarmede varmevekslere påføres med kalde væsker eller gasser fra prosessen. I et slikt tilfelle må NRU derfor oppvarmes til omgivelsestemperatur før en "Warm Start-up" kan gjennomføres. During a shutdown of the NRU, due to unavoidable insulation losses, a heating of the separation column (E) as well as heat exchangers, lines, etc. takes place. After a certain heating time which is determined by the plant size and the ambient conditions, a "Cold Restart" is no longer possible. The reason for this lies in the unavoidable inadmissible mechanical stresses that occur when the (partially) heated heat exchangers are applied with cold liquids or gases from the process. In such a case, the NRU must therefore be heated to ambient temperature before a "Warm Start-up" can be carried out.

I tilfelle med lengre frafall av NRU-mategassen, som kan være forårsaket av anleggsfeil eller vedlikeholdsarbeider, må NRU derfor oppvarmes fullstendig før en tidsintensiv "Warm Start-up" kan gjennomføres. Denne prosedyre kan eventuelt ved-vare lenger enn en uke. Denne lange "Warm Start-up"-oppstarttid går tapt som produksjonstid og kan derfor føre til betydelige finansielle tap. Dette er særlig tilfelle dersom NRU er integrert i andre anlegg hvor produksjonen er avhengig av funksjons-evnen for NRU; eksempelvis skal det nevnes LNG-anlegg med en brenngass-tilberedning for gassturbiner gjennom NRU. In the event of a longer failure of the NRU feed gas, which may be caused by installation errors or maintenance work, the NRU must therefore be fully heated before a time-intensive "Warm Start-up" can be carried out. This procedure may possibly last longer than a week. This long "Warm Start-up" start-up time is lost as production time and can therefore lead to significant financial losses. This is particularly the case if the NRU is integrated into other facilities where production is dependent on the functionality of the NRU; for example, mention must be made of LNG plants with fuel gas preparation for gas turbines through NRU.

Formålet med den foreliggende oppfinnelse er å tilveiebringe en lignende type fremgangsmåte for utskillelse av en nitrogenrik fraksjon fra en matefraksjon som i det vesentlige inneholder nitrogen og hydrokarboner, hvor de foran beskrevne ulemper unngås. The purpose of the present invention is to provide a similar type of method for separating a nitrogen-rich fraction from a feed fraction which essentially contains nitrogen and hydrocarbons, where the disadvantages described above are avoided.

For å oppnå dette formål er det tilveiebrakt en lignende type fremgangsmåte for utskillelse av en nitrogenrik fraksjon fra en matefraksjon som i det vesentlige inneholder nitrogen og hydrokarboner, som er kjennetegnet ved at under et avbrudd av tilføringen av matefraksjonen blir den nitrogenrike fraksjon og metanrike fraksjon komprimert i det minste midlertidig og sammen tilført fremgangsmåten som matefraksjon, hvor kompresjonen av den nitrogenrike fraksjon og den metanrike fraksjon kan skje atskilt og/eller samlet. To achieve this purpose, a similar type of method is provided for the separation of a nitrogen-rich fraction from a feed fraction which essentially contains nitrogen and hydrocarbons, which is characterized in that during an interruption of the supply of the feed fraction, the nitrogen-rich fraction and methane-rich fraction are compressed at least temporarily and together added to the process as a feed fraction, where the compression of the nitrogen-rich fraction and the methane-rich fraction can take place separately and/or together.

I prinsippet er således 3 alternative fremgangsmåter realiserbare: sammenblanding av de to fraksjoner og deretter komprimering sammen, In principle, 3 alternative methods are therefore feasible: mixing the two fractions and then compacting them together,

atskilt komprimering av begge fraksjoner og deretter blanding av de to separate compression of both fractions and then mixing of the two

fraksjoner, factions,

atskilt komprimering av begge fraksjoner, sammenblanding og deretter komprimering av begge fraksjoner sammen. separate compression of both fractions, mixing and then compression of both fractions together.

Ytterligere fordelaktige utførelsesformer av fremgangsmåten ifølge oppfinnelsen for utskillelse av en nitrogenrik fraksjon fra en matefraksjon som i det vesentlige inneholder nitrogen og hydrokarboner, som er gjenstander i de uselvstendige patentkrav, er kjennetegnet ved at dersom det er anordnet minst én kompressor (metankompressor) som komprimerer den metanrike fraksjon til det ønskede utleveringstrykk ved normal drift, skjer komprimeringen av den nitrogenrike fraksjon og den metanrike Further advantageous embodiments of the method according to the invention for separating a nitrogen-rich fraction from a feed fraction which essentially contains nitrogen and hydrocarbons, which are objects of the independent patent claims, are characterized by the fact that if at least one compressor (methane compressor) is arranged which compresses the methane-rich fraction to the desired delivery pressure during normal operation, the compression of the nitrogen-rich fraction and the methane-rich

fraksjon ved hjelp av metankompressoren, fraction using the methane compressor,

dersom matefraksjonen blir komprimert før tilføringen inn i fremgangsmåten ved hjelp av minst én kompressor (matekompressor), skjer komprimeringen av den nitrogenrike fraksjon og den metanrike fraksjon ved hjelp av matekompressoren, if the feed fraction is compressed before feeding into the process using at least one compressor (feed compressor), the compression of the nitrogen-rich fraction and the methane-rich fraction takes place using the feed compressor,

og and

komprimeringen av den nitrogenrike og/eller den metanrike fraksjon skjer med en kompressor som ikke har noen funksjon under normal drift. the compression of the nitrogen-rich and/or the methane-rich fraction takes place with a compressor which has no function during normal operation.

Ifølge oppfinnelsen blir den nitrogenrike fraksjon og den metanrike fraksjon under et avbrudd i tilføringen av matefraksjonen nå ikke lenger avgitt fra NRU, men komprimert, blandet og tilført NRU som erstatningsmatefraksjon. NRU henholdsvis den lignende type fremgangsmåte kan således drives nesten fullstendig i lukket krets-løp. Prinsipielt må det regnes med visse tap av mategass ved utettheter så vel som trykkbegrensende fakkelregulatorer. For utligning av disse tap er det anordnet en regulert påfyllingsstrøm som blir blandet av nitrogen og metan. According to the invention, the nitrogen-rich fraction and the methane-rich fraction during an interruption in the supply of the feed fraction are now no longer emitted from the NRU, but compressed, mixed and supplied to the NRU as a replacement feed fraction. NRU or the similar type of method can thus be operated almost completely in a closed circuit. In principle, certain losses of feed gas due to leaks as well as pressure-limiting flare regulators must be taken into account. To compensate for these losses, a regulated top-up flow is arranged which is mixed with nitrogen and methane.

Fremgangsmåten ifølge oppfinnelsen for utskillelse av en nitrogenrik fraksjon fra en matefraksjon som i det vesentlige inneholder nitrogen og hydrokarboner, så vel som ytterligere fordelaktige utførelsesformer av denne, som er gjenstander i de uselvstendige krav skal beskrives nærmere i det følgende ved hjelp av utførelseseksemplet vist på figur 2. The method according to the invention for separating a nitrogen-rich fraction from a feed fraction which essentially contains nitrogen and hydrocarbons, as well as further advantageous embodiments thereof, which are objects of the independent claims shall be described in more detail in the following by means of the embodiment shown in figure 2.

Utførelseseksemplet vist på figur 2 skiller seg fra det som er vist på figur 1 bare ved de to ledninger 6 og 7 så vel som ventilene c til f. The embodiment shown in Figure 2 differs from that shown in Figure 1 only in the two lines 6 and 7 as well as the valves c to f.

For realisering av den foran beskrevne kretsløpsdrift blir utleveringen av den nitrogenrike fraksjon 4" avbrutt ved lukking av ventilen c, og den nitrogenrike fraksjon blir i stedet innblandet med den metanrike fraksjon via ledningen 6 med åpen ventil d. De blandede fraksjoner blir komprimert i kompressoren ved til de ønskede henholdsvis nødvendige anleggstrykk, og deretter tilført utskillingsprosessen på ny via ledningene 7 og 1 ved åpen ventil f, idet metanutleveringsventilen e er lukket. To realize the circuit operation described above, the delivery of the nitrogen-rich fraction 4" is interrupted by closing the valve c, and the nitrogen-rich fraction is instead mixed with the methane-rich fraction via line 6 with open valve d. The mixed fractions are compressed in the compressor by to the desired and necessary plant pressures, and then added to the separation process again via lines 7 and 1 at open valve f, the methane release valve e being closed.

Dersom det ikke skulle være anordnet en kompressor V som er vist på figur 1 og 2, måtte man trekke frem en kompressor som er egnet for kretsløpsdriften, som da ville bli trukket frem utelukkende for komprimeringen av de to fraksjoner under avbrekket av tilføringen av matefraksjonen. If a compressor V as shown in figures 1 and 2 were not to be arranged, a compressor suitable for circuit operation would have to be drawn out, which would then be drawn out exclusively for the compression of the two fractions during the interruption of the supply of the feed fraction.

Dersom en NRU er integrert i et LNG-anlegg, må det som regel sørges for en komprimering av matefraksjonen som skal tilføres NRU. Kompressoren anordnet for dette kan nå trekkes frem ved fremgangsmåten ifølge oppfinnelsen for komprimeringen av den nitrogenrike fraksjon og den metanrike fraksjon som forenes før kompressoren. Denne fordelaktige utførelsesform av fremgangsmåten ifølge oppfinnelsen er særlig fordelaktig dersom det ikke er anordnet en metankompressor V som vist på figur 1 og 2. If an NRU is integrated into an LNG plant, as a rule provision must be made for the feed fraction to be supplied to the NRU. The compressor arranged for this can now be pulled forward by the method according to the invention for the compression of the nitrogen-rich fraction and the methane-rich fraction which are combined before the compressor. This advantageous embodiment of the method according to the invention is particularly advantageous if a methane compressor V is not arranged as shown in figures 1 and 2.

Den foran beskrevne utførelsesform har utover dette den fordel at mategass-kompressoren - ved LNG-anlegg er dette den såkalte "End Flash Gas"-kompressor - suger inn ved omgivelsestrykk. Dette har som følge at driftstrykket i lavtrykkskolonnen ikke må heves, noe som fører til en mindre innvirkning på driften av NRU, sammenlignet med en komprimering av fraksjonene som føres i kretsløpet ved hjelp av metankompressoren. Således oppfyller eksempelvis den nitrogenrike så vel som den metanrike fraksjon som er trukket ut av prosessen fremdeles produktkravene for normaldriften, noe som ikke er mulig ved en heving av trykket i lavtrykkskolonnen. Dette faktum forkorter overgangstiden mellom "avbruddsdriften" og normaldriften. In addition to this, the embodiment described above has the advantage that the feed gas compressor - at LNG plants this is the so-called "End Flash Gas" compressor - sucks in at ambient pressure. This means that the operating pressure in the low-pressure column does not have to be raised, which leads to a smaller impact on the operation of the NRU, compared to a compression of the fractions that are carried in the circuit by means of the methane compressor. Thus, for example, the nitrogen-rich as well as the methane-rich fraction that is extracted from the process still meets the product requirements for normal operation, which is not possible when the pressure in the low-pressure column is raised. This fact shortens the transition time between the "interruption operation" and the normal operation.

Ved hjelp av fremgangsmåten ifølge oppfinnelsen kan det nå realiseres et hurtig opptak av normaldriften også etter lengre avbrudd i tilføringen av NRU-mategassen, fordi driften av skilleprosessen opprettholdes i lukket kretsløp og opp-varmingen av prosessen henholdsvis NRU blir på den måten unngått. With the help of the method according to the invention, a quick take-up of normal operation can now be realized even after longer interruptions in the supply of the NRU feed gas, because the operation of the separation process is maintained in a closed circuit and the heating of the process or the NRU is thus avoided.

Den nødvendige merkostnad for apparater og fremgangsmåteteknisk for fremgangsmåten ifølge oppfinnelsen er til sammenligning liten, slik at fordelene som oppnås med fremgangsmåten ifølge oppfinnelsen uten tvil forsvarer denne merkostnad. The necessary additional cost for apparatus and process technology for the method according to the invention is comparatively small, so that the advantages achieved with the method according to the invention undoubtedly justify this additional cost.

Claims (4)

1. Fremgangsmåte for utskillelse av en nitrogenrik fraksjon fra en matefraksjon som i det vesentlige inneholder nitrogen og hydrokarboner, hvor matefraksjonen blir separert til en nitrogenrik og en metanrik fraksjon ved rektifikasjon,karakterisert vedat under et avbrudd av tilføringen av matefraksjonen blir den nitrogenrike fraksjon (4") og den metanrike fraksjon (5") komprimert i det minste midlertidig og sammen tilført fremgangsmåten som matefraksjon, hvor kompresjonene av den nitrogenrike fraksjon (4")og den metanrike fraksjon (5") kan skje atskilt og/eller samlet.1. Process for separating a nitrogen-rich fraction from a feed fraction that essentially contains nitrogen and hydrocarbons, where the feed fraction is separated into a nitrogen-rich and a methane-rich fraction by rectification, characterized in that during an interruption of the supply of the feed fraction, the nitrogen-rich fraction becomes (4 ") and the methane-rich fraction (5") compressed at least temporarily and fed together into the process as a feed fraction, where the compressions of the nitrogen-rich fraction (4") and the methane-rich fraction (5") can take place separately and/or together. 2. Fremgangsmåte ifølge krav 1, hvor det er anordnet minst én kompressor (metankompressor) som komprimerer den metanrike fraksjon til det ønskede utleveringstrykk ved normal drift,karakterisert vedat komprimeringen av den den nitrogenrike fraksjon (4") og den metanrike fraksjon (5") skjer ved hjelp av metankompressoren (V).2. Method according to claim 1, where at least one compressor (methane compressor) is arranged which compresses the methane-rich fraction to the desired delivery pressure during normal operation, characterized in that the compression of the nitrogen-rich fraction (4") and the methane-rich fraction (5") takes place with the help of the methane compressor (V). 3. Fremgangsmåte ifølge krav 1 eller 2, hvor matefraksjonen komprimeres ved hjelp av minst én kompressor (matekompressor) før tilføringen inn i fremgangsmåten,karakterisert vedat komprimeringen av den nitrogenrike fraksjon (4") og den metanrike fraksjon (5") skjer ved hjelp av matekompressoren.3. Method according to claim 1 or 2, where the feed fraction is compressed using at least one compressor (feed compressor) before feeding into the method, characterized in that the compression of the nitrogen-rich fraction (4") and the methane-rich fraction (5") takes place using the feed compressor. 4. Fremgangsmåte ifølge ett av kravene 1 til 3,karakterisert vedat komprimeringen av den nitrogenrike fraksjon (4") og/eller den metanrike fraksjon (5") skjer med en kompressor som er uten funksjon ved normaldrift.4. Method according to one of claims 1 to 3, characterized in that the compression of the nitrogen-rich fraction (4") and/or the methane-rich fraction (5") takes place with a compressor which is out of function during normal operation.
NO20111247A 2009-02-19 2011-09-14 Nitrogen removal procedure NO20111247A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009009477A DE102009009477A1 (en) 2009-02-19 2009-02-19 Process for separating nitrogen
PCT/EP2010/000613 WO2010094396A2 (en) 2009-02-19 2010-02-02 Method for removing nitrogen

Publications (1)

Publication Number Publication Date
NO20111247A1 true NO20111247A1 (en) 2011-09-14

Family

ID=42356594

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20111247A NO20111247A1 (en) 2009-02-19 2011-09-14 Nitrogen removal procedure

Country Status (7)

Country Link
US (1) US20120017640A1 (en)
AU (1) AU2010214861A1 (en)
DE (1) DE102009009477A1 (en)
MX (1) MX2011008233A (en)
NO (1) NO20111247A1 (en)
RU (1) RU2011138229A (en)
WO (1) WO2010094396A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012211B1 (en) * 2013-10-18 2018-11-02 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PROCESS FOR DEAZATING NATURAL GAS WITH OR WITHOUT RECOVERING HELIUM
FR3013818A1 (en) * 2013-11-25 2015-05-29 Air Liquide CRYOGENIC DISTILLATION AIR SEPARATION APPARATUS AND METHOD FOR COLD HOLDING SUCH APPARATUS
FR3034427B1 (en) * 2015-04-01 2020-01-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude NATURAL GAS DEAZOTATION PROCESS
FR3110223A1 (en) * 2020-05-15 2021-11-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for extracting nitrogen from a stream of natural gas or bio-methane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919932A1 (en) * 1999-04-30 2000-11-02 Linde Ag Process for obtaining a pure methane fraction
DE10121339A1 (en) * 2001-05-02 2002-11-07 Linde Ag Process for separating nitrogen from a nitrogen-containing hydrocarbon fraction
FR2825119B1 (en) * 2001-05-23 2003-07-25 Air Liquide METHOD AND INSTALLATION FOR SUPPLYING AN AIR SEPARATION UNIT USING A GAS TURBINE
US7484385B2 (en) * 2003-01-16 2009-02-03 Lummus Technology Inc. Multiple reflux stream hydrocarbon recovery process
FR2904869B1 (en) * 2006-08-09 2008-11-07 Air Liquide UNIT AND METHOD FOR DEAZATING NATURAL GAS

Also Published As

Publication number Publication date
US20120017640A1 (en) 2012-01-26
WO2010094396A3 (en) 2013-04-18
RU2011138229A (en) 2013-03-27
DE102009009477A1 (en) 2010-08-26
WO2010094396A2 (en) 2010-08-26
MX2011008233A (en) 2011-08-17
AU2010214861A1 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
NO20111226A1 (en) Method of Separation of Nitrogen
CN105509383B (en) Refrigerant-recovery in natural gas liquefaction process
US7310972B2 (en) Process and apparatus for separation of hydrocarbons from liquefied natural gas
US20110226009A1 (en) Process for producing liquid and gaseous nitrogen streams, a gaseous stream which is rich in helium and a denitrided stream of hydrocarbons and associated installation
SA110310706B1 (en) Hydrocarbon gas processing
BRPI0613903B1 (en) PROCESS FOR RECOVERING HEAVY HYDROCARBON OTHER THAN METHANE FROM NATURAL GAS LIQUEFIED
US20110036120A1 (en) Method and apparatus for recovering and fractionating a mixed hydrocarbon feed stream
US20160069262A1 (en) Production of low pressure liquid carbon dioxide from a power production system and method
US10088228B2 (en) Apparatus for ethane liquefaction with demethanization
US20110048067A1 (en) Natural gas liquefaction method with high-pressure fractionation
PT1828697E (en) Method and installation for producing treated natural gas from a c3+ hydrocarbon-rich cut and ethane-rich stream
JP2018204825A (en) Gas production system
NO20111247A1 (en) Nitrogen removal procedure
US11408678B2 (en) Method and apparatus for separating hydrocarbons
US20200032704A1 (en) Production of low pressure liquid carbon dioxide from a power production system and method
AU2009313087B2 (en) Method for removing nitrogen
US20090293537A1 (en) NGL Extraction From Natural Gas
KR20130088141A (en) Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor
WO2017157817A1 (en) Method for separating of an ethane-rich fraction from natural gas
US20110232327A1 (en) Method for Processing Off Gas
TWI774783B (en) Natural gas production equipment and natural gas production method
AU2009313086B2 (en) Method for removing nitrogen
BRPI0412337B1 (en) PROCESS FOR RECOVERY OF HYDROCARBONS HEAVY THAN METHANE FROM NATURAL GAS LIQUEFIED

Legal Events

Date Code Title Description
FC2A Withdrawal, rejection or dismissal of laid open patent application