NO178157B - Use of pSG5 as a Temperature Sensitive Plasmid and Method for Using Hybrid Plasmid with the pSG5 Replicon for Studies of Streptomyces - Google Patents

Use of pSG5 as a Temperature Sensitive Plasmid and Method for Using Hybrid Plasmid with the pSG5 Replicon for Studies of Streptomyces Download PDF

Info

Publication number
NO178157B
NO178157B NO891267A NO891267A NO178157B NO 178157 B NO178157 B NO 178157B NO 891267 A NO891267 A NO 891267A NO 891267 A NO891267 A NO 891267A NO 178157 B NO178157 B NO 178157B
Authority
NO
Norway
Prior art keywords
psg5
plasmid
hybrid
temperature
marker
Prior art date
Application number
NO891267A
Other languages
Norwegian (no)
Other versions
NO891267L (en
NO178157C (en
NO891267D0 (en
Inventor
Wolfgang Wohlleben
Gunter Muth
Alfred Puhler
Bernhard Nussbaumer
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of NO891267D0 publication Critical patent/NO891267D0/en
Publication of NO891267L publication Critical patent/NO891267L/en
Publication of NO178157B publication Critical patent/NO178157B/en
Publication of NO178157C publication Critical patent/NO178157C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/76Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Saccharide Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)

Abstract

The streptomycetes plasmid pSG5 is temperature-sensitive. It is thus possible with the aid of the pSG5 replicon to prepare temperature-sensitive hybrid plasmids. The latter are suitable for screening for DNA segments which are homologous with DNA segments of the hybrid plasmid.

Description

Foreliggende oppfinnelse vedrører anvendelse av naturlige temperatur sensitive pSG5-replikoner og fremgangsmåte for anvendelse av hybridplasmid med pSG5-replikonet for studier av Streptomyces. The present invention relates to the use of natural temperature-sensitive pSG5 replicons and a method for using a hybrid plasmid with the pSG5 replicon for studies of Streptomyces.

Fra det europeiske patenskr if tet (EP-B) nr. 0 158 872 er streptomycet-plasmid pSG5 kjent, og dette plasmidet kan bli isolert fra en kultur av streptomyces ghanaensis DSM 2932. Dette~plasmidet egner seg for fremstilling av hybridvektorer, for eksempel for såkalte skyttelvektorer, som på grunn av et innsatt E.coli-replikon kan bli formert i E. coli-stammer. Slike vektorer er for eksempel kjent fra den europeiske patentmeldingen med Veroffentlichungs-nr. (EP-A) 158 201. From the European Patent (EP-B) No. 0 158 872 streptomycete plasmid pSG5 is known, and this plasmid can be isolated from a culture of streptomyces ghanaensis DSM 2932. This plasmid is suitable for the production of hybrid vectors, for example for so-called shuttle vectors, which due to an inserted E. coli replicon can be propagated in E. coli strains. Such vectors are known, for example, from the European patent application with Veroffentlichungs no. (EP-A) 158,201.

Det er nå blitt oppdaget at pSG5 er temperaturfølsomt. It has now been discovered that pSG5 is temperature sensitive.

Det er overraskende at pSG5 har den egenskap å være temperaturfølsomt, på grunn av at det ikke tidligere er blitt oppdaget naturlige streptomycet-plasmider som har denne egenskapen. Fordi pSG5 og de med et replikonfremstilt hybridplasmid har et vidt vertsområde, åpner den nye an-vendelsen ifølge oppfinnelsen av dette plasmidet til mange muligheter for fagmannen: Når man konstruerer et plasmid med replikonet til pSG5 som inneholder en markør, og transformerer en kompatibel vertsstamme med dette og øker deretter temperaturen over terskelverdien, så blir etter seleksjon med hensyn på markøren bare slike transformanter tilveiebragt som har integrert plasmidet i sin helhet eller delvis i sitt genom. På grunn av at slike integrasjoner oppnås vesentlig bare i homologe områder av genomet, egner denne fremgangsmåten seg til å finne slike homologe områder i genomet til vertsstam-men. It is surprising that pSG5 has the property of being temperature sensitive, due to the fact that natural streptomycete plasmids have not previously been discovered to have this property. Because pSG5 and those with a replicon-produced hybrid plasmid have a wide host range, the new use according to the invention of this plasmid opens up many possibilities for the person skilled in the art: When one constructs a plasmid with the replicon of pSG5 containing a marker, and transforms a compatible host strain with this and then increases the temperature above the threshold value, then after selection with regard to the marker only such transformants are provided which have integrated the plasmid in its entirety or in part into its genome. Due to the fact that such integrations are achieved essentially only in homologous regions of the genome, this method is suitable for finding such homologous regions in the genome of the host strain.

Fra EP-A 0 243 856 er en fremgangsmåte for fremstilling av mutanter kjent og kjennetegnet ved at man isolerer hele DNA-et fra utgangsstammen og overfører dem til korte fragmenter, og integrerer disse i et plasmid som inneholder en markør, og som er temperaturfølsomt og som blir replikert i utgangsstammen, transformerer den oppnådde hybrid-populasjonen i utgangsstammen, selekterer transformantene ved seleksjon på markøren, eliminerer ved økning av temperaturen over terskelverdien til de temperaturfølsomme plasmidene hybridplasmidene og selekterer mutantene ved fornyet seleksjon på markøren. From EP-A 0 243 856, a method for the production of mutants is known and characterized by isolating the entire DNA from the starting strain and transferring them to short fragments, and integrating these into a plasmid containing a marker, which is temperature-sensitive and which is replicated in the starting strain, transforms the obtained hybrid population in the starting strain, selects the transformants by selection on the marker, by increasing the temperature above the threshold value of the temperature-sensitive plasmids, eliminates the hybrid plasmids and selects the mutants by renewed selection on the marker.

Betegnelsen "korte" fragmenter betyr DNA-fragmenter som blir tilveiebragt med hyppig kuttende restriksjonsenzymer så som Sau3A eller Taql, eller med mekaniske metoder (ultralyd, skjæring), og de som på grunn av promoterregionen ennå inneholder signalet for translasjonsstopp. The term "short" fragments means DNA fragments which are obtained with frequent cutting restriction enzymes such as Sau3A or Taql, or with mechanical methods (ultrasound, shearing), and those which, due to the promoter region, still contain the signal for translational stop.

Etter eliminasjon av plasmider ved seleksjon på markøren for overlevende celler som har plasmid-DNA i deres kromosom (som fortrinnsvis skjer via de i plasmidet integrerte homologe DNA), blir mutantene umiddelbart oppnådd. After elimination of plasmids by selection on the marker for surviving cells that have plasmid DNA in their chromosome (which preferably occurs via the homologous DNA integrated in the plasmid), the mutants are immediately obtained.

Plasmidet pSG5 er i EP-A 0 243 856 oppført som egnet utgangsplasmid. Ifølge oppfinnelsen kan man nå ved innsetting av dette plasmidet se bort i fra mutasjon til temperaturføl-somme replikasjonsmutanter. Dermed blir man spart for ikke bare mutasjonen og den spesielt anvendte seleksjonen, men man unngår også faren ved å frembringe uønskede fler-mutasjoner. Plasmid pSG5 er også spesielt egnet for denne fremgangsmåten. The plasmid pSG5 is listed in EP-A 0 243 856 as a suitable starting plasmid. According to the invention, by inserting this plasmid one can now disregard mutation to temperature-sensitive replication mutants. In this way, one is spared not only the mutation and the specially applied selection, but one also avoids the danger of producing unwanted multiple mutations. Plasmid pSG5 is also particularly suitable for this method.

Temperaturf ølsomheten til pSG5 utarter seg ved at dette plasmidet blir ustabilt ved temperaturer fra 36° C og replikeres ikke mere. Den øvre grensen til det anvendbare temperaturområdet er avhengig av vertscellen: I S. venezuelae ligger det f.eks. på 38°C, i S. lividans ved 39°C og i S. ghananensis ved 45°C. Hvis kulturer som inneholder pSG5 eller et avkom av dette plasmidet, blir inkubert ved en temperatur på 36° C eller over, blir "plasmidet tynnet ut" og er etter noen generasjoner ikke mere påviselige. The temperature sensitivity of pSG5 deteriorates in that this plasmid becomes unstable at temperatures from 36° C and no longer replicates. The upper limit of the applicable temperature range depends on the host cell: In S. venezuelae, it is e.g. at 38°C, in S. lividans at 39°C and in S. ghananensis at 45°C. If cultures containing pSG5 or a progeny of this plasmid are incubated at a temperature of 36°C or above, the plasmid is "thinned out" and after a few generations is no longer detectable.

Foreliggende oppfinnelse vedrører følgelig anvendelse av naturlige temperatursensitive pSG5-replikoner for fremstilling av temperatursensitive hybridplasmider og tilsvarende anvendelse for oppdaging av IS-elementer og transposons. The present invention therefore relates to the use of natural temperature-sensitive pSG5 replicons for the production of temperature-sensitive hybrid plasmids and corresponding use for the detection of IS elements and transposons.

Oppfinnelsen vedrører også fremgangsmåte for anvendelse av hybridplasmid med pSG5-replikonet for studier av streptomyces, kjennetegnet ved at man for fremstilling av streptomycet-mutanter for isolering av det muterte genet, og for isolering av det tilsvarende villtype-genet, isolerer hele DNA-et fra streptomycet-utgangsstammer, overfører dem til korte fragmenter, integrerer disse i et hybridplasmid med pSG5-replikonet, som inneholder en markør, transformerer den oppnådde hybridplasmidpopulasjonen i utgangsstammen, selekterer ved seleksjon på markøren til transformanten, eliminerer hybridplasmidene ved forhøying av temperaturen over terskelverdien og selekterer ved ny seleksjon på markøren til mutanten. The invention also relates to a method for using a hybrid plasmid with the pSG5 replicon for studies of streptomyces, characterized in that for the production of streptomycete mutants for isolation of the mutated gene, and for isolation of the corresponding wild-type gene, the entire DNA is isolated from streptomycete starting strains, transfer them to short fragments, integrate these into a hybrid plasmid with the pSG5 replicon, which contains a marker, transform the obtained hybrid plasmid population in the starting strain, select by selection on the marker of the transformant, eliminate the hybrid plasmids by raising the temperature above the threshold value and select by new selection on the marker of the mutant.

Anvendelse ifølge oppfinnelsen av pSG5-replikonet kan også bli anvendt til å finne homologe gener til et eksisterende gen. Man har dermed et brukbart alternativ for opprettelse av en gen-bank og "screening" med merkede DNA-prober. Disse alternativer er spesielt verdifulle, hvis man ikke oppnår et riktig resultat ved hybridisering. En annen fordel med denne metoden er at man kan unngå arbeid med radioaktive forbindel-ser . Use according to the invention of the pSG5 replicon can also be used to find homologous genes to an existing gene. One thus has a usable alternative for creating a gene bank and "screening" with labeled DNA probes. These options are particularly valuable if a correct hybridization result is not achieved. Another advantage of this method is that you can avoid working with radioactive compounds.

Tilsvarende kan også insersjonselementer (IS-elementer) og transposons, som er blitt tatt opp i genomet til vertsstam-mene som undersøkes, også bli funnet. Anvender man nemlig bare plasmidet med markøren uten ytterligere innskutt DNA, så står homologe områder bare til rådighet når et IS-element eller transposon fra kromosomet er blitt overført til plasmidet før temperaturøkingen. Dermed muliggjør seleksjon på markøren at slike DNA-elementer blir funnet. Correspondingly, insertion elements (IS elements) and transposons, which have been taken up in the genome of the host strains under investigation, can also be found. Namely, if you only use the plasmid with the marker without further inserted DNA, then homologous regions are only available when an IS element or transposon from the chromosome has been transferred to the plasmid before the temperature increase. Thus, selection on the marker enables such DNA elements to be found.

De nevnte undersøkelsene kan bli utført så som tilsvarende fremgangsmåte for isolering av mutanter i EP-A 0 243 856. The aforementioned investigations can be carried out in the same way as the corresponding method for isolating mutants in EP-A 0 243 856.

Oppfinnelsen tilveiebringer dermed en rekke fordeler: The invention thus provides a number of advantages:

1. På grunnlag av at pSG5-plasmider eksisterer, på grunn av det store vertsomfanget, mangfoldige anvendbare vektor-familier med forskjellige seleksjonsmarkører så som resistens overfor neomycin, tiostrepton, kanamycin (EP-A 0 158 201) og gentamicin (EP-A 0 248 207) samt farvemarkører så som melanin og andre farvestoffer, henholdsvis pigmenter (EP-A 0 257 416 og 0 257 417). 2. Benytter man et plasmid fra den nevnte vektorfamilien med en markør som er seleksjonerbar i E. coli så kan man ut i fra fremgangsmåten kjent i EP-A 0 243 856 ved innsetting av cosmid-banker, isolere store DNA-fragmenter med en utstrek-ning på omtrent 40 kb. Hvis den markøren som er seleksjonerbar i E. coli blir integrert i kromosomet til verten, så kan genomet til den slik oppståtte mutanten bli overført til en cosmid-gen-bank. Seleksjon på markøren (det er hensiktsmessig at det er samtidig med cosmidets egen markør) fører da umiddelbart til de cosmid-klonene av interesse. Man blir dermed spart for den arbeidskrevende, mye anvendte "screening" gjennom hybridisering. I forhold til den kjente fremgangsmåten i EP-A 0 243 856 kan man dermed oppnå store genregioner i nærheten av det muterte genet i et trinn. Man kan på denne måten isolere gen-"clustere", også for eksempel genet for en hel biosyntesevei. Man er heller ikke mere avhengig av at det eksisterer egnede spaltningsseter for restriksjonsenzymer i nærheten av det muterte genet. 1. On the basis that pSG5 plasmids exist, due to the large host range, diverse useful vector families with different selection markers such as resistance to neomycin, thiostrepton, kanamycin (EP-A 0 158 201) and gentamicin (EP-A 0 248 207) as well as color markers such as melanin and other dyes, respectively pigments (EP-A 0 257 416 and 0 257 417). 2. If you use a plasmid from the aforementioned vector family with a marker that is selectable in E. coli, you can, based on the method known in EP-A 0 243 856 by inserting cosmid banks, isolate large DNA fragments with an extent -ning of approximately 40 kb. If the marker which is selectable in E. coli is integrated into the chromosome of the host, then the genome of the resulting mutant can be transferred to a cosmid gene bank. Selection on the marker (it is appropriate that it is at the same time as the cosmid's own marker) then immediately leads to the cosmid clones of interest. One is thus spared the labour-intensive, widely used "screening" through hybridisation. Compared to the known method in EP-A 0 243 856, large gene regions in the vicinity of the mutated gene can thus be obtained in one step. In this way, gene "clusters" can be isolated, including, for example, the gene for an entire biosynthesis pathway. One is also no longer dependent on the existence of suitable cleavage sites for restriction enzymes in the vicinity of the mutated gene.

I de følgende eksempler blir oppfinnelsen nærmere forklart. Prosentangivelsene er basert på vekten, hvis ikke noe annet er angitt. In the following examples, the invention is explained in more detail. The percentages are based on weight, unless otherwise stated.

EKSEMPEL 1 EXAMPLE 1

Isolering av helt- DNA Isolation of whole DNA

0,1 g mycel av en 3 dager gammel homogenisert streptomyce-tenkultur av stammen S. ghanaensis (ATCC 14672; US-PS 3 674 866) som ikke produserer melanin (mel~), blir pelletert i 1,5 ml Eppendorf-reaksjonsrør i en Eppendorf-sentrifuge i 1 min. og deretter vasket en gang med 0,5 ml TE (10 mM Tris-HCl, 1 mM EDTA (pH 8) med 10$ sakkarose). Pelleten blir deretter resuspendert i 0,5 ml lysozymløsning (0,3 M sakkarose, 25 mM tris-HCl (pH 8), 25 mM EDTA, 10 mg/ml lysozym) og inkubert i 60 min ved 37°C. Etter tilsetting av 0,2 ml 5^-ig SDS-oppløsning og blanding av oppløsningen, blir denne inkubert i . an Eppendorf centrifuge for 1 min. and then washed once with 0.5 ml TE (10 mM Tris-HCl, 1 mM EDTA (pH 8) with 10% sucrose). The pellet is then resuspended in 0.5 ml lysozyme solution (0.3 M sucrose, 25 mM tris-HCl (pH 8), 25 mM EDTA, 10 mg/ml lysozyme) and incubated for 60 min at 37°C. After adding 0.2 ml of 5 µg SDS solution and mixing the solution, this is incubated in

10 min. ved 65 "C og deretter avkjølt ved romtemperatur. Deretter tilsettes 100 pl fenol/kloroform (5 g fenol, 5 ml kloroform, 5 mg 8-hydroksychinolin, 1 ml 0,1 M Tris (pH 8)) og blandes forsiktig på en rører ((<R>)vortex), helt til suspensjonen er homogen. Deretter sentrifugeres blandingen 5 min. i en Eppendorf-sentrifuge og den øverste, vandige fasen blir overført i et nytt reagensrør. Til den DNA-holdige løsningen tilsettes 70 pl 3 M ubuffret Na-acetat og 700 pl iospropanol. Etter blanding og inkubasjon i 15 min. ved romtemperatur, blir DNA-et pelletert ved sentrifugering (5 min i Eppendorf-sentrifuge) og supernatanten kvantitativt fjernet. DNA blir resuspendert i 300 pl TE og inkubert i 45 min. ved 37° C med 10 pl RNase-oppløsning (50 pg RNase/ml ). RNasen blir inaktivert med 100 pl fenol/kloroform og de denaturerte proteinene pelletert (5 min. i Eppendorf-sentrifuge). Den DNA-holdige oppløsningen blir pånytt behandlet med isopropanol (tilsetting av 30 pl 3 M Na-acetat og 400 pl isopropanol, 15 min. inkubasjon ved romtemperatur). DNA-pelleten som oppnås etter sentrifugeringen, blir vasket to ganger med 70%- ig etanol og pånytt pelletert. Etter tørking tar man DNA-et opp i 300 pl TE og anvender det for de videre trinnene. 10 minutes at 65 "C and then cooled at room temperature. Then 100 µl phenol/chloroform (5 g phenol, 5 ml chloroform, 5 mg 8-hydroxyquinoline, 1 ml 0.1 M Tris (pH 8)) is added and mixed gently on a stirrer ((<R>)vortex), until the suspension is homogeneous. The mixture is then centrifuged for 5 min in an Eppendorf centrifuge and the upper, aqueous phase is transferred into a new test tube. To the DNA-containing solution is added 70 µl of 3 M unbuffered Na acetate and 700 µl isopropanol. After mixing and incubation for 15 min at room temperature, the DNA is pelleted by centrifugation (5 min in an Eppendorf centrifuge) and the supernatant quantitatively removed. The DNA is resuspended in 300 µl TE and incubated in 45 min at 37°C with 10 µl RNase solution (50 pg RNase/ml). The RNase is inactivated with 100 µl phenol/chloroform and the denatured proteins pelleted (5 min in Eppendorf centrifuge). The DNA-containing solution is re-treated with isopropanol (addition of 30 µl 3 M Na-acetate and 400 µl isopropanol l, 15 min. incubation at room temperature). The DNA pellet obtained after centrifugation is washed twice with 70% ethanol and pelleted again. After drying, the DNA is taken up in 300 µl TE and used for the further steps.

EKSEMPEL 2 EXAMPLE 2

Spalting av helt- DNA med Sau3A Cleavage of whole DNA with Sau3A

1 pg DNA blir inkubert i spaltingsbuffer (50 mM Tris-HCl (pH 8), 10 mM MgCl2, 50 mM NaCl) i nærvær av 1 enhet Sau3A (produsent: BRL-Gibco, Karlsruhe) 1 t. ved 37°C. Reaksjonen blir stoppet ved fenolbehandling og DNA-et blir renset ved etanolfelling. 1 pg of DNA is incubated in cleavage buffer (50 mM Tris-HCl (pH 8), 10 mM MgCl 2 , 50 mM NaCl) in the presence of 1 unit of Sau3A (manufacturer: BRL-Gibco, Karlsruhe) for 1 h at 37°C. The reaction is stopped by phenol treatment and the DNA is purified by ethanol precipitation.

EKSEMPEL 3 EXAMPLE 3

Kloning av fragmenter av hel- DNA i plasmid pGM4 Cloning of fragments of whole DNA in plasmid pGM4

pGM4 (EP-A 0 257 416 og 0 257 417) blir som i eksempel 2 fullstendig lineærisert med BamHI. Begge DNA-probene ble blandet i spaltingsbufferen og oppvarmet til 70°C ved tilsetting av merkaptoetanol (sluttkons. 10 mM) og ATP (0,1 mM) innstilt på ligasereaksjonsbetingelsene. I nærvær av 1 enhet T4-DNA-ligase (Boehringer Mannheim) blir blandingen inkubert i 12 t. ved 14°C. Til slutt blir blandingen trans-formert i protoplastene til utgangsstammene og sådd ut på regenerasjonsskåler. Disse blir etter 20 t belagt med soft-agar som inneholder så mye tiostrepton at sluttkonsentra-sjonen i skålen inneholder 50 pg/ml. pGM4 (EP-A 0 257 416 and 0 257 417) is, as in example 2, completely linearized with BamHI. Both DNA probes were mixed in the cleavage buffer and heated to 70°C by addition of mercaptoethanol (final conc. 10 mM) and ATP (0.1 mM) adjusted to the ligase reaction conditions. In the presence of 1 unit of T4 DNA ligase (Boehringer Mannheim), the mixture is incubated for 12 h at 14°C. Finally, the mixture is transformed into the protoplasts of the starting strains and sown on regeneration dishes. After 20 hours, these are coated with soft agar that contains so much thiostrepton that the final concentration in the dish contains 50 pg/ml.

EKSEMPEL 4 EXAMPLE 4

Tilveiebringing og seleksjon av mutanter Generation and selection of mutants

Transformantene blir inkubert i en skyttelkultur i et S-medium (Hopwood et al., "Genetic Manipulation of Streptomyces, a Laboratory Manual", The John Innes Foundation, Norwich 1985) i ca. 36 t. ved 28°C. Deretter blir temperaturen forhøyet til 39° C og påny inkubert ca. 36 t. ved denne temperaturen. Kulturen blir høstet sterilt, vasket i TE + 10% sakkarose og inkubert i fullmedium med tiostrepton (20 mg/l) i ytterligere 48 t. ved 39°C. Til slutt blir de slik til-veiebragte mutantene sådd ut og karakterisert (alt ved inkubasjon 39°C). The transformants are incubated in a shuttle culture in an S medium (Hopwood et al., "Genetic Manipulation of Streptomyces, a Laboratory Manual", The John Innes Foundation, Norwich 1985) for approx. 36 hours at 28°C. The temperature is then raised to 39° C and incubated again for approx. 36 h. at this temperature. The culture is harvested sterile, washed in TE + 10% sucrose and incubated in complete medium with thiostrepton (20 mg/l) for a further 48 h at 39°C. Finally, the mutants obtained in this way are sown and characterized (all by incubation at 39°C).

EKSEMPEL 5 EXAMPLE 5

Isolering av mutert DNA Isolation of mutated DNA

DNA blir isolert fra mutantene ifølge eksempel 1 og spaltet med et restriksjonsenzym som ikke har noe spaltningssete i det integrerte plasmidet, og ligert med T4-DNA-ligase. Herved blir det integrerte plasmidet, som nå inneholder det muterte genet, dannet som eneste cykliske DNA som er replikasjons-dyktig. Etter transformasjon i en egnet stamme så som S. lividans selekterer man på tiostrepton-resistens og isolerer ut i fra transformantene det plasmidet som inneholder det muterte genet. DNA is isolated from the mutants according to example 1 and cleaved with a restriction enzyme which has no cleavage site in the integrated plasmid, and ligated with T4 DNA ligase. Hereby, the integrated plasmid, which now contains the mutated gene, is formed as the only cyclic DNA capable of replication. After transformation into a suitable strain such as S. lividans, one selects for thiostrepton resistance and isolates from the transformants the plasmid containing the mutated gene.

Claims (6)

1. Anvendelse av naturlige temperatursensitive pSG5-replikoner for fremstilling av temperatursensitive hybridplasmider.1. Use of natural temperature-sensitive pSG5 replicons for the production of temperature-sensitive hybrid plasmids. 2. Anvendelse av naturlig temperatursensitive pSG5-replikoner for oppdaging av IS-elementer og transposons.2. Application of naturally temperature-sensitive pSG5 replicons for detection of IS elements and transposons. 3. Fremgangsmåte for anvendelse av hybridplasmid med pSG5-replikonet for studier av streptomyces, karakterisert ved at man for fremstilling av streptomycet-mutanter for isolering av det muterte genet, og for isolering av det tilsvarende villtype-genet, isolerer hele DNA-et fra streptomycet-utgangsstammer, overfører dem til korte fragmenter, integrerer disse i et hybridplasmid med pSG5-replikonet, som inneholder en markør, transformerer den oppnådde hybridplasmidpopulasjonen i utgangsstammen, selekterer ved seleksjon på markøren til transformanten, eliminerer hybridplasmidene ved forhøying av temperaturen over terskelverdien og selekterer ved ny seleksjon på markøren til mutanten.3. Method for using hybrid plasmid with the pSG5 replicon for studies of streptomycetes, characterized in that for the production of streptomycete mutants for isolation of the mutated gene, and for isolation of the corresponding wild-type gene, the entire DNA is isolated from streptomycete starting strains , transfers them into short fragments, integrates these into a hybrid plasmid with the pSG5 replicon, which contains a marker, transforms the obtained hybrid plasmid population into the starting strain, selects by selection on the marker of the transformant, eliminates the hybrid plasmids by raising the temperature above the threshold value and selects by new selection on the marker of the mutant. 4. Fremgangsmåte ifølge krav 3, karakterisert ved at man isolerer det muterte genet fra den selekterte mutanten.4. Method according to claim 3, characterized in that the mutated gene is isolated from the selected mutant. 5 . Fremgangsmåte ifølge krav 4, karakterisert ved at man isolerer det tilsvarende villtype-genet ved hjelp av det muterte genet.5 . Method according to claim 4, characterized in that the corresponding wild-type gene is isolated using the mutated gene. 6. Fremgangsmåte ifølge krav 4, karakterisert ved at hybridplasmidet med pSG5-replikonet inneholder en E. coli seleksjonshar markør og at en cosmid-bank innsettes ved isolasjon av det muterte genet.6. Method according to claim 4, characterized in that the hybrid plasmid with the pSG5 replicon contains an E. coli selectable marker and that a cosmid bank is inserted upon isolation of the mutated gene.
NO891267A 1988-03-23 1989-03-22 Use of pSG5 as a Temperature Sensitive Plasmid and Method for Using Hybrid Plasmid with the pSG5 Replicon for Studies of Streptomyces NO178157C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3809692A DE3809692A1 (en) 1988-03-23 1988-03-23 USE OF PSG5 AS A TEMPERATURE-SENSITIVE PLASMIDE

Publications (4)

Publication Number Publication Date
NO891267D0 NO891267D0 (en) 1989-03-22
NO891267L NO891267L (en) 1989-09-25
NO178157B true NO178157B (en) 1995-10-23
NO178157C NO178157C (en) 1996-01-31

Family

ID=6350421

Family Applications (1)

Application Number Title Priority Date Filing Date
NO891267A NO178157C (en) 1988-03-23 1989-03-22 Use of pSG5 as a Temperature Sensitive Plasmid and Method for Using Hybrid Plasmid with the pSG5 Replicon for Studies of Streptomyces

Country Status (16)

Country Link
EP (1) EP0334282B1 (en)
JP (1) JP2770975B2 (en)
KR (1) KR970003961B1 (en)
AT (1) ATE108485T1 (en)
AU (1) AU615524B2 (en)
CA (1) CA1335964C (en)
DE (2) DE3809692A1 (en)
DK (1) DK175475B1 (en)
ES (1) ES2056987T3 (en)
FI (1) FI95394C (en)
HU (1) HU213350B (en)
IE (1) IE63496B1 (en)
IL (1) IL89686A (en)
NO (1) NO178157C (en)
PT (1) PT90090B (en)
ZA (1) ZA892123B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3809691A1 (en) * 1988-03-23 1989-10-12 Hoechst Ag METHOD FOR SELECTION OF LARGE DNA SECTIONS
DE4011863A1 (en) * 1990-04-12 1991-10-17 Hoechst Ag REGULATED GENE EXPRESSION IN STREPTOMYCETES
FR2688515B1 (en) * 1992-03-13 1995-03-31 Institut Rech Agronomique THERMOSENSITIVE PLASMID.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158872B1 (en) * 1984-03-31 1989-01-18 Hoechst Aktiengesellschaft Streptomycetes plasmid psg5, process for its preparation and its use
DE3412093A1 (en) * 1984-03-31 1985-10-10 Hoechst Ag, 6230 Frankfurt HYBRID PLASMIDE WITH A STREPTOMYCETE AND ESCHERICHIA COLI REPLICON
DE3614310A1 (en) * 1986-04-28 1987-10-29 Hoechst Ag METHOD FOR ISOLATING MUTED GENES AND THE CORRESPONDING WILD-TYPE GENES
DE3627392A1 (en) * 1986-08-13 1988-04-28 Hoechst Ag COLOR MARKER FOR CLONING IN STREPTOMYCES LIVIDANS

Also Published As

Publication number Publication date
FI891335A (en) 1989-09-24
DE58908022D1 (en) 1994-08-18
KR970003961B1 (en) 1997-03-24
EP0334282A2 (en) 1989-09-27
CA1335964C (en) 1995-06-20
EP0334282A3 (en) 1989-11-29
DK146089A (en) 1989-09-24
JPH029376A (en) 1990-01-12
IL89686A0 (en) 1989-09-28
EP0334282B1 (en) 1994-07-13
HU213350B (en) 1997-05-28
DK146089D0 (en) 1989-03-22
PT90090A (en) 1989-11-10
ATE108485T1 (en) 1994-07-15
AU3158289A (en) 1989-09-28
IL89686A (en) 1994-12-29
HUT50511A (en) 1990-02-28
DK175475B1 (en) 2004-11-08
NO891267L (en) 1989-09-25
IE890898L (en) 1989-09-23
NO178157C (en) 1996-01-31
KR890014741A (en) 1989-10-25
PT90090B (en) 1994-06-30
FI95394B (en) 1995-10-13
JP2770975B2 (en) 1998-07-02
NO891267D0 (en) 1989-03-22
FI95394C (en) 1996-01-25
FI891335A0 (en) 1989-03-21
DE3809692A1 (en) 1989-10-12
ES2056987T3 (en) 1994-10-16
IE63496B1 (en) 1995-05-03
AU615524B2 (en) 1991-10-03
ZA892123B (en) 1989-11-29

Similar Documents

Publication Publication Date Title
US5013658A (en) Transposon tagging of genes in transformed plants
Lindgren et al. Genes required for pathogenicity and hypersensitivity are conserved and interchangeable among pathovars of Pseudomonas syringae
US6083686A (en) Increased production of Thermus aquaticus DNA polymerase in E. coli
Albers et al. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome
EP0346000A2 (en) Macrolide biosynthetic genes for use in streptomyces and other organisms
Sikorski et al. p62 cdc23 of Saccharomyces cerevisiae: a nuclear tetratricopeptide repeat protein with two mutable domains
Chung Tn4556, a 6.8-kilobase-pair transposable element of Streptomyces fradiae
CN111542610A (en) Novel strategy for precise genome editing
Chang et al. Directed replacement of mt A by mt a-1 effects a mating type switch in Neurospora crassa.
Flett et al. DNA deletions in spontaneous chloramphenicol-sensitive mutants of Streptomyces coelicolor A3 (2) and Streptomyces lividans 66
JP3289726B2 (en) Clavalanic acid biosynthesis gene
Hahn et al. Construction and Analysis of a Modified Tn4001Conferring Chloramphenicol Resistance inMycoplasma pneumoniae
US6855870B2 (en) Plant cinnamyl-alcohol dehydrogenase homologs
US6924106B2 (en) Rifamycin biosynthesis gene cluster
NO178157B (en) Use of pSG5 as a Temperature Sensitive Plasmid and Method for Using Hybrid Plasmid with the pSG5 Replicon for Studies of Streptomyces
US4992371A (en) Hybrid plasmids having a streptomycetes replicon and an escherichia coli replicon
JPS62259592A (en) Isolation of mutation gene and corresponding wile type gene of mutant
Xian-Min et al. Mutator transposon in maize and MULEs in the plant genome
DK167775B1 (en) PLASMID PSG5, METHOD OF INSULATION THEREOF, ITS APPLICATION FOR THE CONSTRUCTION OF PLASMID VECTORS, HYBRID PLASMIDES CONTAINING PSG5 OR ITS INTACT REPLICATION REGION, AND THE STREPTOMYCS GHANA 32
Rodicio et al. Cloning and expression of the Sal I restriction-modification genes of Streptomyces albus G
NZ228441A (en) Psg5 plasmid used in isolating is elements, transposons and mutated genes
Lee et al. Construction of strains for rapid homokaryon purification after integration of constructs at the histidine-3 (his-3) locus of Neurospora crassa
CN117425402A (en) Accelerating breeding of transgenic crops by genome editing
CN117255859A (en) Removable plant transgene locus with homologous guide RNA recognition site
JP2000166570A (en) Resistant gene to plant disease injury caused by microbe belonging to magnapothe grisea, plant transformed by the gene and production of the plant

Legal Events

Date Code Title Description
MK1K Patent expired