NO169776B - PROCEDURE FOR PREPARING A MODIFIED SPAERIC POLYMERIZATION CATALYST AND USING THE CATALYST - Google Patents

PROCEDURE FOR PREPARING A MODIFIED SPAERIC POLYMERIZATION CATALYST AND USING THE CATALYST Download PDF

Info

Publication number
NO169776B
NO169776B NO872444A NO872444A NO169776B NO 169776 B NO169776 B NO 169776B NO 872444 A NO872444 A NO 872444A NO 872444 A NO872444 A NO 872444A NO 169776 B NO169776 B NO 169776B
Authority
NO
Norway
Prior art keywords
catalyst
spherical
prepolymer
prepolymerization
polymerization
Prior art date
Application number
NO872444A
Other languages
Norwegian (no)
Other versions
NO872444L (en
NO872444D0 (en
NO169776C (en
Inventor
Claude Brun
Auguste Cheux
Michel Avaro
Original Assignee
Atochem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9337202&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO169776(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Atochem filed Critical Atochem
Publication of NO872444D0 publication Critical patent/NO872444D0/en
Publication of NO872444L publication Critical patent/NO872444L/en
Publication of NO169776B publication Critical patent/NO169776B/en
Publication of NO169776C publication Critical patent/NO169776C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Dental Preparations (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Polymerization Catalysts (AREA)

Abstract

Process for the treatment of a spherical catalyst for the polymerisation of olefins, containing at least one transition metal, a magnesium compound and a halogen, characterised in that ethylene is prepolymerised in the presence of the spherical catalyst, in the presence of a cocatalyst chosen from alkylaluminiums, at least partially in suspension, to a degree of prepolymerisation adapted to the polymerisation process in which the prepolymer will be subsequently used, a spheroprotector being used in combination with the various components not later than after the prepolymerisation, the accepted formula of the said spheroprotector being: AlR'mR''nClpHq in which 0.05 < p </= 1 0 < m < 2.95 0 < n < 2.95 0 </= q </= 1 it being known that m + n + p + q = 3 and R' and R'', which are identical or different, are linear, branched or cyclic hydrocarbon radicals containing from 1 to 14 carbon atoms. The catalyst thus treated conserves its spherical morphology in the subsequent polymerisation of ethylene. It is particularly suited for the manufacture of linear polyethylene powder with spherical morphology.

Description

Foreliggende oppfinnelse angår en fremgangsmåte for fremstilling av modifiserte sfæriske olefinpolymeriserings-katalysatorer som muliggjør opprettholdelse av morfologien under polymeriseringen. Fremgangsmåten består i å for-polymerisere etylen med den forutsetning at man under betegnelsen etylen også mener blandinger av etylen og olefiner, inntil en viss redusert fremstillingsgrad, idet et produkt kalt ferrobeskytter, i den hensikt å bevare den sfæriske karakter og i det vesentlige bestående av et spesifikt halogenert alkylaluminium, forenes med komponenter senest efter forpolymeriseringen. En slik modifisert katalysator er spesielt tilpasset for fremstilling av lineært polyetylen i pulverform med sfærisk morfologi. The present invention relates to a method for the production of modified spherical olefin polymerization catalysts which enable the morphology to be maintained during the polymerization. The method consists in pre-polymerizing ethylene with the assumption that the term ethylene also means mixtures of ethylene and olefins, up to a certain reduced degree of production, with a product called ferroprotectant, with the intention of preserving the spherical character and essentially consisting of a specific halogenated alkyl aluminium, is combined with components at the latest after the pre-polymerisation. Such a modified catalyst is particularly suitable for the production of linear polyethylene in powder form with a spherical morphology.

Oppfinnelsen angår i tillegg anvendelse av en katalysator, fremstilt som ovenfor, ved fremstilling i suspensjon eller gassfase av et lineært, pulverformig polyetylen med sfærisk morfologi. The invention also relates to the use of a catalyst, prepared as above, in the production in suspension or gas phase of a linear, powdery polyethylene with a spherical morphology.

For å fremstille lineære sfæriske polymerer: etylenhomopoly-merer og etylen-a-olefinkopolymerer, er det kjent å benytte sfæriske katalysatorer på basis av overgangsmetaller og mere spesielt titan. Under de industrielle polymeriseringsbe-tingelser blir ikke desto mindre den sfæriske morfologi til katalysatoren hurtig ødelagt. De sfæriske partikler ødelegges hurtig til partikler med dårlig definert morfologi av for eksempel granulær tilstand, noe som fører til mer eller mindre granulære polymerer med dårlig risleevnekarakteristika som er forbundet med den mer eller mindre sfæriske morfologi til den oppnådde polymer. Disse polymerer er også anriket på finfordelt partikkelformig materiale med partikkelstørrelse under 100 ym, noe som fører til sikkerhetsproblemer og med-fører vanskeligheter ved fremstillingen. In order to produce linear spherical polymers: ethylene homopolymers and ethylene-α-olefin copolymers, it is known to use spherical catalysts based on transition metals and more particularly titanium. Under the industrial polymerization conditions, however, the spherical morphology of the catalyst is rapidly destroyed. The spherical particles are quickly destroyed into particles with ill-defined morphology of, for example, granular state, which leads to more or less granular polymers with poor flowability characteristics which are associated with the more or less spherical morphology of the obtained polymer. These polymers are also enriched in finely divided particulate material with a particle size below 100 µm, which leads to safety problems and entails difficulties in manufacturing.

Fremgangsmåten ifølge oppfinnelsen og ifølge hvilken katalysatorens sfæriske morfologi beholdes under polymeriseringen av benyttede olefiner bekrefter det prinsipp ifølge hvilket de dannede polymerer er katalysatorens morfologiske repli-kator, fører til en forpolymerkatalysator som ved polymerisering i suspensjon eller gassfase av etylen eller blandinger av etylen og a-olefin tillater å oppnå et lineært polyetylen i pulverform i sfærisk morfologi. Denne sfæriske morfologi fastslås deretter subjektivt. Uten å ønske å være bundet av noen spesiell teori, kan man fastslå at et polyetylenpulver har en sfærisk morfologi når pulverpartiklene i middel og ved optisk mikroskopisk undersøkelse i det vesentlige er sfæriske, symmetriske, uten forlengelse og med en overflate i størrelsesorden 20. Denne tilnærmelsesmetode synes bekreftet av de eksperimentelle analyser som er angitt av J.K.Beddow, Fine Particle Research Group., Chemical and Materials Engineering, University of Iowa i "Proceedings og the ACS Division of Polymeric Materials: Science and Ingineering" vol. 53 Fall Meeting 1985 - Chicago s. 261-262. The method according to the invention and according to which the catalyst's spherical morphology is retained during the polymerization of used olefins confirms the principle according to which the formed polymers are the catalyst's morphological replicator, leads to a prepolymer catalyst which, by polymerization in suspension or gas phase of ethylene or mixtures of ethylene and a- olefin allows to obtain a linear polyethylene in powder form in spherical morphology. This spherical morphology is then determined subjectively. Without wishing to be bound by any particular theory, it can be determined that a polyethylene powder has a spherical morphology when the powder particles in the medium and by optical microscopic examination are essentially spherical, symmetrical, without elongation and with a surface of the order of magnitude 20. This approximation method seems confirmed by the experimental analyzes reported by J.K.Beddow, Fine Particle Research Group., Chemical and Materials Engineering, University of Iowa in "Proceedings and the ACS Division of Polymeric Materials: Science and Engineering" vol. 53 Fall Meeting 1985 - Chicago pp. 261-262.

I henhold til dette angår foreliggende oppfinnelse en fremgangsmåte for fremstilling av en modifisert sfærisk Accordingly, the present invention relates to a method for producing a modified spherical

polymeriseringskatalysator for olefiner inneholdende minst ett overgangsmetall, en magnesiumforbindelse og et halogen, der man, i nærvær av den umodifiserte sfæriske katalysator og en kokatalysator valgt blant alkylaluminiumforbindelser, i det minste delvis i suspensjon, forpolymeriserer etylen til en forpolymeriseringsgrad som er under 100 når forpolymeren skal benyttes som katalysator i en suspensjonspolymeri-seringsprosess og over 50 for en gassfasepolymeriserings-prosess uten at, i det sistnevnte tilfelle, forpolymeren representerer mer enn 10% av sluttpolymeren, og denne fremgangsmåte karakteriseres ved at det under eller efter forpolymeriseringen tilsettes en sfærobeskytter i form av et halogenert alkylaluminium med formelen: polymerization catalyst for olefins containing at least one transition metal, a magnesium compound and a halogen, wherein, in the presence of the unmodified spherical catalyst and a cocatalyst selected from alkylaluminum compounds, at least partially in suspension, ethylene is prepolymerized to a degree of prepolymerization that is below 100 when the prepolymer is to is used as a catalyst in a suspension polymerization process and over 50 for a gas phase polymerization process without, in the latter case, the prepolymer representing more than 10% of the final polymer, and this method is characterized by the addition of a spheroprotector in the form of a halogenated alkyl aluminum with the formula:

der there

idet m+n+p+q=3 where m+n+p+q=3

hvorved R' og R'', like eller forskjellige, er lineære, podede eller cykliske hydrokarboner inneholdende 1 til 14 karbonatomer. wherein R' and R'', the same or different, are linear, grafted or cyclic hydrocarbons containing 1 to 14 carbon atoms.

Sfærobeskytteren kan slik den er definert, være et monohalogenert alkylaluminium men er fortrinnsvis resultatet av en blanding av de to alkylaluminiumer, den ene ikke-halogenert aluminium og den andre et monohalogenert alkylaluminium, idet det imidlertid kan dreie seg om en blanding av ett eller flere ikke-halogenerte alkylaluminiumer og ett eller flere monohalogenerte alkylaluminiumer. Alkylrestene i de to forbindelser av aluminium velges vilkårlig blant de tidligere definerte. Den fremstilles ved blanding av de to forbindelser under kjente betingelser, tilpasset den nøyaktige manipulering av produktene i andeler som overholder definisjonen av den gitte formel. Man oppnår en flytende blanding. The sphere protector, as it is defined, can be a monohalogenated alkylaluminum but is preferably the result of a mixture of the two alkylaluminums, one non-halogenated aluminum and the other a monohalogenated alkylaluminum, as it may however be a mixture of one or more non-halogenated -halogenated alkyl aluminums and one or more monohalogenated alkyl aluminums. The alkyl residues in the two compounds of aluminum are chosen arbitrarily from those previously defined. It is prepared by mixing the two compounds under known conditions, adapted to the precise manipulation of the products in proportions that comply with the definition of the given formula. A liquid mixture is obtained.

Disse alkylaluminiumer som brukes i fremstillingen av sfærobeskytteren, er kjent i seg selv og velges blant de som vanligvis benyttes som kokatalysator. De tilsvarer den generelle formel A1RX Hx og Al RxClyHz der x+zogx+y+z = 3 og der R betyr en lineær, forgrenet eller cyklisk These alkyl aluminums, which are used in the production of the sphere protector, are known per se and are selected from among those which are usually used as cocatalysts. They correspond to the general formula A1RX Hx and Al RxClyHz where x+zogx+y+z = 3 and where R means a linear, branched or cyclic

Cl_i4hydrokarbonrest. Som eksempel skal nevnes: Cl_i4hydrocarbon residue. As an example, the following should be mentioned:

Forpolymeren som oppnås ifølge oppfinnelsens fremgangsmåte benyttes som katalysator i polymeriseringsprosesser i suspensjon og i gassfase, enten i hvirvelsjikt eller i omrørt sjikt. Ifølge den tilsiktede polymeriseringsprosess kan forpolymeriseringen i nærvær av katalysatoren mer eller mindre være tilskyndet. I det tilfelle der forpolymer benyttes som katalysator i en suspensjonsprosess er forpoly-meriseringsgraden fortrinnsvis under 100 mens forpolymeri-seringsgraden for en gassfaseprosess fortrinnsvis er over 50 og slik at den dannede forpolymer representerer minst 10 vekt-5é av sluttpolymeren. The prepolymer obtained according to the method of the invention is used as a catalyst in polymerization processes in suspension and in the gas phase, either in a fluidized bed or in a stirred bed. According to the intended polymerization process, the prepolymerization in the presence of the catalyst can be more or less encouraged. In the case where prepolymer is used as a catalyst in a suspension process, the degree of prepolymerization is preferably below 100, while the degree of prepolymerization for a gas phase process is preferably above 50 and so that the formed prepolymer represents at least 10% by weight of the final polymer.

Den opprinnelige sfæriske polymeriseringskatalysator for olefinene er et produkt kjent i seg selv. Det er vanligvis resultatet av kombinasjonen av minst en overgangsmetallfor-bindelse, en magnesiumforbindelse, et halogen og minst én elektrondonor eller -akseptor og enhver annen forbindelse som kan benyttes i denne type katalysator. The original spherical polymerization catalyst for the olefins is a product known per se. It is usually the result of the combination of at least one transition metal compound, a magnesium compound, a halogen and at least one electron donor or acceptor and any other compound that can be used in this type of catalyst.

Overgangsmetallforbindelsen velges vanligvis blant forbindelser med formelen Me(0R)nXm_n der: Me er vanadium, krom og spesielt titan; - X er brom, jod og helt spesielt klor; The transition metal compound is usually selected from compounds of the formula Me(OR)nXm_n where: Me is vanadium, chromium and especially titanium; - X is bromine, iodine and especially chlorine;

R er en alifatisk eller aromatisk C^_l4hydrokarbonrest eller COR' der R' er en alifatisk eller aromatisk Ci- i$-hydrokarbonrest; R is an aliphatic or aromatic C 1-14 hydrocarbon residue or COR' where R' is an aliphatic or aromatic C 1-14 hydrocarbon residue;

"m" er verdien til overgangsmetallet og "n" er en verdi "m" is the value of the transition metal and "n" is a value

under eller lik "m". below or equal to "m".

Overgangsmetallforbindelsen som spesielt anbefales velges blant forbindelser av titan med formelen Ti(OR)xCl4_x, idet R er som angitt ovenfor, idet x ligger mellom 0 og 4. The transition metal compound that is particularly recommended is chosen from compounds of titanium with the formula Ti(OR)xCl4_x, R being as stated above, x being between 0 and 4.

Magnesiumforbindelsen velges vanligvis blant forbindelser med formelen Mg(0R)nX2_n der X er brom., jod og spesielt klor; R er hydrogen eller en alkyl- eller cykloalkylrest og "n" er lik eller under 2. The magnesium compound is usually chosen from compounds with the formula Mg(0R)nX2_n where X is bromine, iodine and especially chlorine; R is hydrogen or an alkyl or cycloalkyl radical and "n" is equal to or less than 2.

Elektrondonor- eller akseptoren er en flytende eller fast organisk forbindelse som er kjent å gå inn i blandinger i disse katalysatorer. Elektrondonoren kan være en mono- eller polyfunksjonell forbindelse som fortrinnsvis velges blant alifatiske eller aromatiske karboksylsyrer eller disses alkylestere, alifatiske eller cykliske etere, ketoner, vinylestere, akrylderivater og spesielt alkylakrylater eller -metakrylater samt silaner. Spesielt skal man som elektron-donorer merke seg forbindelser som metylparatoluat, etyl-benzoat, etyl- eller butylacetat, etyleter, etylparaanisat, dibutylftalat, dioktylftalat, diisobutylftalat, tetra-hydrofuran, dioksan, aceton, metylisobutylketon, vinylacetat, metylmetakrylat og silaner som fenyltrietoksysilan, aromatiske eller alifatiske alkoksysilaner. The electron donor or acceptor is a liquid or solid organic compound known to enter into mixtures in these catalysts. The electron donor can be a mono- or polyfunctional compound which is preferably chosen from among aliphatic or aromatic carboxylic acids or their alkyl esters, aliphatic or cyclic ethers, ketones, vinyl esters, acrylic derivatives and especially alkyl acrylates or methacrylates as well as silanes. In particular, as electron donors, compounds such as methyl paratoluate, ethyl benzoate, ethyl or butyl acetate, ethyl ether, ethyl paraanisate, dibutyl phthalate, dioctyl phthalate, diisobutyl phthalate, tetrahydrofuran, dioxane, acetone, methyl isobutyl ketone, vinyl acetate, methyl methacrylate and silanes such as phenyltriethoxysilane should be noted. aromatic or aliphatic alkoxysilanes.

Elektronakseptorene er en Lewissyre fortrinnsvis valgt blant aluminiumklorid, bortrifluorid, kloranil eller eventuelt alkylaluminium og alkylmagnesium. The electron acceptors are a Lewis acid preferably chosen from aluminum chloride, boron trifluoride, chloranil or optionally alkyl aluminum and alkyl magnesium.

I en foretrukket metode for forpolymerisering i suspensjon under heftig omrøring, forpolymeriseres etylen, eventuelt i nærvær av en kjedeavbryter og/eller en kokatalysator valgt blant alkylaluminium, kjent for denne anvendelse, ved en temperatur mellom 0 og 110°C og fortrinnsvis mellom 20 og 60° C, for et absolutt totalt trykk under 20 bar, i det vesentlige utgjort av en inert gass som nitrogen. For maksimalt å bevare katalysatorens opprinnelige sfæriske morfologi, anbefales det å styre tilmatningen av monomer til reaktoren. En midlere matehastighet som har vist seg gunstig, ligger under eller lik 500 NI x t"<1> x g"<1> katalysator i suspensjon følges opp inntil en forpolymeriseringsgrad tilpasset den senere polymeriseringsprosess idet forpolymeri-seringsgraden defineres av forholdet mellom summen av vekten av forpolymeren pluss vekten av katalysator som benyttes. På et egnet stadium under forpolymeriseringen tilsettes de sfærobeskyttende forbindelser. Disse kan innføres i forpoly-meriseringsreaksjonsmediet. Den kan likeledes med fordel tilsettes til forpolymeren efter forpolymeriseringen, enten direkte til reaksjonsmediet eller til forpolymeren lagret i suspensjon eller i tørr tilstand under inertgass. In a preferred method for prepolymerization in suspension under vigorous stirring, ethylene is prepolymerized, optionally in the presence of a chain interrupter and/or a cocatalyst selected from alkylaluminium, known for this application, at a temperature between 0 and 110°C and preferably between 20 and 60 ° C, for an absolute total pressure below 20 bar, essentially consisting of an inert gas such as nitrogen. In order to maximally preserve the original spherical morphology of the catalyst, it is recommended to control the supply of monomer to the reactor. An average feed rate that has proven favorable is below or equal to 500 NI x t"<1> x g"<1> catalyst in suspension is followed up until a degree of prepolymerization adapted to the later polymerization process, the degree of prepolymerization being defined by the ratio between the sum of the weight of the prepolymer plus the weight of catalyst used. At a suitable stage during the prepolymerization, the sphere protecting compounds are added. These can be introduced into the pre-polymerization reaction medium. It can also be advantageously added to the prepolymer after the prepolymerization, either directly to the reaction medium or to the prepolymer stored in suspension or in a dry state under inert gas.

I en annen foretrukket gjennomførelsesform går man ved forpolymerisering i suspensjon under heftig omrøring frem til forpolymeriseringen under de ovenfor beskrevne betingelser frem til en redusert fremskridelsesgrad for forpolymeriseringen, fortrinnsvis under 20 g polymer pr. gram katalysator . In another preferred embodiment, the prepolymerization is carried out in suspension under vigorous stirring under the conditions described above until a reduced degree of progress for the prepolymerization, preferably below 20 g of polymer per grams of catalyst.

På dette tidspunkt blir forpolymeren isolert og så tatt opp i et forpolymeriseringssystem i gassfase for å bringe den reduserte fremskridelsesgrad av polymeriseringen til forpolymeringsgradene tilpasset den senere polymerisering. At this point, the prepolymer is isolated and then taken up in a gas phase prepolymerization system to bring the reduced rate of progress of the polymerization to the prepolymerization rates appropriate for the later polymerization.

Denne del av gassfaseforpolymeriseringen gjennomføres under vanlige betingelser for etylenpolymerisering i gassfase. Man kan for eksempel i en reaktor forene forpolymeren med redusert fremskridelsesgrad med en polyolefIncharge med en midlere granulometri under eller lik 3000 og fortrinnsvis eller lik 100 yim, i nærvær av fortrinnsvis en kokatalysator slik som angitt ovenfor. Efter homogenisering oppfølges forpolymeriseringen ved innføring av monomer og fortrinnsvis etylen eller en blanding av etylen og buten. Fortrinnsvis gjennomføres forpolymeriseringen i gassfase ved en temperatur mellom 30 og 110°C under et totalt trykk under eller lik 20 bar. This part of the gas-phase prepolymerization is carried out under normal conditions for ethylene polymerization in the gas phase. One can, for example, in a reactor combine the prepolymer with a reduced degree of progress with a polyolefin charge with an average granulometry below or equal to 3000 and preferably or equal to 100 µm, in the presence of preferably a cocatalyst as indicated above. After homogenization, the prepolymerization is followed by the introduction of monomer and preferably ethylene or a mixture of ethylene and butene. Preferably, the prepolymerization is carried out in the gas phase at a temperature between 30 and 110°C under a total pressure below or equal to 20 bar.

Denne forpolymerisering i gassfase oppfølges inntil man oppnår en forpolymeringsgass som er tilpasset den senere polymeriseringsprosess. Efter på maksimal måte å bevare den opprinnelige sfæriske morfologi, anbefales det å styre tilmatning av monomer til reaktoren. En midlere gunstig matehastighet ligger under eller der høyst 500 NI x l-<1> x g-<1 >av katalysatoren. This prepolymerization in gas phase is continued until a prepolymerization gas is obtained which is adapted to the later polymerization process. After preserving the original spherical morphology as much as possible, it is recommended to control the supply of monomer to the reactor. A moderately favorable feed rate is below or at most 500 NI x l-<1> x g-<1> of the catalyst.

Som tidligere kan sfærobeskytteren innføres på et hvilket som helst stadium av forpolymeriseringsprosessen eller sogar tilsettes til lagret forpolymer under inert gass efter forpolymeriseringen. Når sfærobeskytteren tilsettes til forpolymeren etter forpolymerisering skjer dette under inertatmosfære, enten ved blanding av forpolymer i suspensjon i en flytende væske eller ved impregnering av forpolymerpulveret. As before, the sphere protector can be introduced at any stage of the prepolymerization process or even added to stored prepolymer under inert gas after the prepolymerization. When the sphere protector is added to the prepolymer after prepolymerization, this takes place under an inert atmosphere, either by mixing the prepolymer in suspension in a liquid liquid or by impregnating the prepolymer powder.

Denne sfærobeskytter er forbundet i en fortrinnsvis andel på 500 til 4000 ppm, beregnet på aluminium, pr. 1000 til 25.000 ppm katalysator i forpolymeren med en forpolymeringserings-grad tilpasset den senere polymeriseringsprosess. Det angitte vektforhold mellom aluminium og katalysator ligger mellom 30 x 10~3 og 4. This sphere protector is connected in a preferably proportion of 500 to 4000 ppm, calculated for aluminium, per 1,000 to 25,000 ppm catalyst in the prepolymer with a degree of prepolymerization adapted to the subsequent polymerization process. The indicated weight ratio between aluminum and catalyst is between 30 x 10~3 and 4.

Der en kjedebegrenser benyttes ved forpolymeriseringen velges fortrinnsvis hydrogen. Where a chain limiter is used during the pre-polymerisation, hydrogen is preferably chosen.

Forpolymeren som oppnås ifølge oppfinnelsen lagres vanligvis i tørr form i påvente av en senere anvendelse som polymeriseringskatalysator i suspensjon eller i gassfase for fremstilling av lineært polyetylen i pulverform med sfærisk morfologi. Denne katalysator i form av forpolymer med sfærisk morfologi, bevarer sin morfologi under polymeriseringen og tillater, takket være denne egenskap, at man kan oppnå lineære polyetylener som likeledes har en sfærisk morfologi. The prepolymer obtained according to the invention is usually stored in dry form in anticipation of later use as a polymerization catalyst in suspension or in gas phase for the production of linear polyethylene in powder form with spherical morphology. This catalyst, in the form of prepolymer with spherical morphology, preserves its morphology during the polymerization and, thanks to this property, allows linear polyethylenes which also have a spherical morphology to be obtained.

Katalysatoren som behandles ifølge oppfinnelsen benyttes som en klassisk katalysator ved polymeriseringsprosesser i suspensjon eller gassfase, av olefiner. Selv om den kan benyttes som sådan, er det ikke utelukket, for å styre produktiviteten, i tillegg å tillate en kokatalysator i reaksjonsmediet. I dette tilfellet kan kokatalysatoren være en sfærobeskytter og helst benyttes sfærobeskytteren ved fremstilling av forpolymeren. The catalyst treated according to the invention is used as a classic catalyst in suspension or gas phase polymerization processes of olefins. Although it can be used as such, it is not excluded, in order to control the productivity, in addition to allowing a cocatalyst in the reaction medium. In this case, the co-catalyst can be a spheroprotector and preferably the spheroprotector is used in the production of the prepolymer.

Ved en fremgangsmåte for polymerisering av etylen i suspensjon arbeider man på vanlig måte i et flytende hydrokarbon-miljø ved temperaturer som kan ligge fra 120°C og undertrykk som kan gå opp til 250 bar. In a method for polymerization of ethylene in suspension, one usually works in a liquid hydrocarbon environment at temperatures that can range from 120°C and vacuum that can go up to 250 bar.

Polymerisering av etylen i gassfase og i nærvær av hydrogen og inertgass kan gjennomføres i en hvilken som helst reaktor som tillater en polymerisering i gassfase og spesielt i en hvirvelsjiktreaktor eller en reaktor med omrørt sjikt. Betingelsene som benyttes er kjente i teknikken. Man arbeider generelt ved en temperatur under smeltepunktet Tf for polymeren eller kopolymeren som skal syntetiseres og mere spesielt mellom 20 og Tf - 5°C og under et trykk slik at etylen og eventuelt andre hydrokarbon-monomerer presenterer seg i reaktoren i det vesentlige i dampfase. Polymerization of ethylene in gas phase and in the presence of hydrogen and inert gas can be carried out in any reactor that allows polymerization in gas phase and especially in a fluidized bed reactor or a reactor with a stirred bed. The conditions used are known in the art. One generally works at a temperature below the melting point Tf for the polymer or copolymer to be synthesized and more particularly between 20 and Tf - 5°C and under a pressure such that ethylene and possibly other hydrocarbon monomers present themselves in the reactor essentially in vapor phase.

De følgende eksempler illustrerer oppfinnelsen. The following examples illustrate the invention.

Fortrinnsvis blir den sfæriske katalysator som behandles ifølge oppfinnelsen, fremstilt under de nedenfor gitte betingelser. Preferably, the spherical catalyst which is treated according to the invention is produced under the conditions given below.

I en glassreaktor med volum 1,5 1, utstyrt med røreverk, innføres under nitrogen og etter tørking og spyling, 200 mM n-butyl-butyl sec. magnesium og 33 mM trietylaluminium, begge i molar oppløsning i heptan. Stoffene holdes i kontakt i 1 time ved 80°C. Man tilsetter derefter under omrøring 200 mM diisoamyleter ved 50°C og så efter 2 timer, fremdeles ved 50° C, 550 mM tertbutylklorid. Det hele filtreres og man vasker det oppnådde faststoff som utgjør en bærer, to ganger med 400 m<3> heptan ved 50°C. In a glass reactor with a volume of 1.5 1, equipped with a stirrer, introduce under nitrogen and after drying and rinsing, 200 mM n-butyl-butyl sec. magnesium and 33 mM triethylaluminum, both in molar solution in heptane. The substances are kept in contact for 1 hour at 80°C. 200 mM diisoamyl ether is then added with stirring at 50°C and then after 2 hours, still at 50°C, 550 mM tert-butyl chloride. The whole is filtered and the resulting solid, which constitutes a carrier, is washed twice with 400 m<3> of heptane at 50°C.

Man tar faststoffet i suspensjon i 400 cm<3> heptan ved 80°C og man tilsetter i løpet av 1 time 600 mM TiCl4. Det hele filtreres og man vasker den oppnådde katalysator med to ganger 400 cm<3> heptan. Katalysatoren tørkes ved 70°C under nitrogen og lagres under inert atmosfære. Den faste katalysator foreligger i partikkelform med sfærisk granulometri og en midlere dimensjon på ca. 30 ym. The solid is suspended in 400 cm<3> of heptane at 80°C and 600 mM TiCl4 is added over the course of 1 hour. The whole is filtered and the catalyst obtained is washed twice with 400 cm<3> of heptane. The catalyst is dried at 70°C under nitrogen and stored under an inert atmosphere. The solid catalyst is available in particle form with spherical granulometry and an average dimension of approx. 30 etc.

EKSEMPEL EXAMPLE

Fremstilling av forpolymeren Preparation of the prepolymer

Til en tørr og avgasset reaktor på 8,2 1 innføres under nitrogen og omrøring ved 400 omdr./min. suksessivt og ved 40°C To a dry and degassed reactor of 8.2 1 is introduced under nitrogen and stirring at 400 rpm. successively and at 40°C

3 1 tørr heksan 3 1 dry hexane

6 mM ren triheksylaluminium (THA) 6 mM pure trihexylaluminum (THA)

3 g sfærisk katalysator, tatt i suspensjon i 75 cm<3>3 g of spherical catalyst, taken in suspension in 75 cm<3>

heksan hexane

0,8 har absolutt hydrogen, samt 0.8 has absolute hydrogen, as well

4 bar absolutt nitrogen, 4 bar absolute nitrogen,

og derefter: and then:

etylen i en mengde av 30 Nl/t i 1 time fulgt av en mengde på 60 Nl/t i 1 time, mengde på 130 Nl/t i 2 timer og til slutt 200 Nl/t i 50 minutter. ethylene in an amount of 30 Nl/h for 1 hour followed by an amount of 60 Nl/h for 1 hour, an amount of 130 Nl/h for 2 hours and finally 200 Nl/h for 50 minutes.

Man stanser innføringen av etylen, det totale trykk faller fra 6 bar absolutt til 5 bar absolutt i løpet av 5 minutter. Omrøringen stanses for avsetning og å evakuere supernatanten. Efter fjerning av gjenværende oppløsningsmiddel ved 50° C under nitrogen ekstraherer man forpolymerpulveret som lagres under en inert atmosfære. Man gjenvinner 650 g tørt forpolymerpulver med sfærisk morfologi, uten agglomerater, med en forpolymeriseringsgrad på 218 g forpolymer pr. gram katalysator med en midlere diameter for partiklene, dp 50, lik 280 ym. The introduction of ethylene is stopped, the total pressure drops from 6 bar absolute to 5 bar absolute within 5 minutes. The stirring is stopped to settle and to evacuate the supernatant. After removing the remaining solvent at 50° C under nitrogen, the prepolymer powder is extracted and stored under an inert atmosphere. One recovers 650 g of dry prepolymer powder with spherical morphology, without agglomerates, with a prepolymerization degree of 218 g of prepolymer per grams of catalyst with a mean diameter for the particles, dp 50, equal to 280 ym.

Fremstilling av sfærobesk<y>ttere og katalysator i form av aktiv forpolymer Production of spherobesk<y>tters and catalyst in the form of active prepolymer

I et Schlenkrør innføres og blandes under fravær av lys, under omrøring og nitrogenspyling, ren alkylaluminium og et monoklorert alkylaluminium med et molforhold. for hver prøve som gitt i tabell I nedenfor. De således fremstilte kom-plekser ansettes dråpevis på den tidligere nevnte pulver-formige forpolymer som omrøres og som holdes under en inert atmosfære. Den avsatte mengde er slik at konsentrasjonen av aluminium på forpolymeren er 2000 ppm. In a Schlenk tube, pure alkyl aluminum and a monochlorinated alkyl aluminum with a molar ratio are introduced and mixed in the absence of light, with stirring and nitrogen purging. for each sample as given in Table I below. The thus produced complexes are applied drop by drop to the previously mentioned powdery prepolymer which is stirred and which is kept under an inert atmosphere. The amount deposited is such that the concentration of aluminum on the prepolymer is 2000 ppm.

Kopolymerisering av buten- 1 og etylen Copolymerization of butene-1 and ethylene

Man arbeider i en reaktor på 8,2 1, tørket på forhånd, i nærvær av 100 polyetylenpulver, utstyrt med et røreverk som dreier seg med en hastighet på 400 omdr./min. og som holdes ved 85° C under polymeriseringen. Til reaktoren som holdes under et undertrykk på ca. 1,33 Pa, sprøytes det inn buten 1 inntil man oppnår et trykk på 1 bar og derefter som kokatalysator et visst volum, gitt for hver analyse som angitt i tabell I nedenfor, av sfærobeskytteren identisk med den som benyttes ved fremstilling av forpolymeren ifølge oppfinnelsen. Man kompletterer innsprøyting av buten-1 for derved å oppnå et trykk på 2,5 bar. Man sprøyter derefter suksessivt inn i reaktoren 1,5 bar hydrogen og 13 bar etylen inntil man oppnår partialtrykket for hydrogen og etylen på respektive 1,5 og 13 bar. One works in a reactor of 8.2 1, dried in advance, in the presence of 100 polyethylene powder, equipped with a stirrer rotating at a speed of 400 rpm. and which is kept at 85° C during the polymerization. To the reactor, which is kept under a negative pressure of approx. 1.33 Pa, butene 1 is injected until a pressure of 1 bar is reached and then as a co-catalyst a certain volume, given for each analysis as indicated in table I below, of the sphere protector identical to that used in the production of the prepolymer according to the invention . The injection of butene-1 is completed in order to achieve a pressure of 2.5 bar. 1.5 bar of hydrogen and 13 bar of ethylene are then successively injected into the reactor until the partial pressure for hydrogen and ethylene of 1.5 and 13 bar respectively is reached.

Man innfører så i reaktoren x g (gitt i tabell I) av den på forhånd fremstilte aktive forpolymer ved å gjennomføre den tilførsel ved nitrogentrykk med derpå følgende innblåsing av nitrogen inntil det totale trykk i det indre av reaktoren når 21 bar. Man opprettholder trykket i reaktoren på denne verdi ved innsprøyting av etylen og buten-1 i et molforhold buten-1: etylen lik 0,0466. One then introduces into the reactor x g (given in Table I) of the pre-produced active prepolymer by carrying out the supply under nitrogen pressure with subsequent blowing of nitrogen until the total pressure in the interior of the reactor reaches 21 bar. The pressure in the reactor is maintained at this value by injecting ethylene and butene-1 in a molar ratio of butene-1:ethylene equal to 0.0466.

Efter 4 timers reaksjon, blir polymeriseringen stanset ved dekomprimering av reaktoren. Man spyler det hele med nitrogen og lar alt avkjøles. After 4 hours of reaction, the polymerization is stopped by decompressing the reactor. The whole thing is flushed with nitrogen and allowed to cool.

De manglende driftsbetingelser og resultater fra de kontroller som er gjenomført på det oppnådde lineære polytylen er gitt i tabell I idet eksemplene 1, 2, 7, 8, 9 og 10 er sammenligningseksempler. The missing operating conditions and results from the checks that have been carried out on the obtained linear polyethylene are given in Table I, with examples 1, 2, 7, 8, 9 and 10 being comparative examples.

EKSEMPEL 2 EXAMPLE 2

Til en tørr og avgasset reaktor på 8,2 1 innføres under nitrogen og omrøring 330 omdr./min. suksessivt ved 40°C Into a dry and degassed reactor of 8.2 1, under nitrogen and stirring 330 rpm. successively at 40°C

3 1 tørr heksan 3 1 dry hexane

. 10 mM THA . 10 mM THA

. 30 mM DEAC . 30 mM DEAC

. 10 cm<3> av en suspensjon av 88 g/l sfærisk forpolymer eller 0,88 g katalysator . 10 cm<3> of a suspension of 88 g/l spherical prepolymer or 0.88 g of catalyst

. 0,5 har hydrogen . 0.5 has hydrogen

Man innfører så i løpet av 15 minutter en blanding av etylen og buten inneholdende 1,6 mol-56 buten i en mengde av 30 Nl/t og derefter i løpet av 3 t og 15 min. den samme blanding i en mengde av 4 0 Nl/t. A mixture of ethylene and butene containing 1.6 mol-56 butene in a quantity of 30 Nl/h is then introduced over the course of 15 minutes and then over the course of 3 hours and 15 minutes. the same mixture in a quantity of 40 Nl/h.

Man stanser Innføring av monomerene. Omrøringen stanses for å muliggjøre dekantering og evakuering av supernatanten. Efter fjerning av gjenværende oppløsningsmiddel ved 50° C under nitrogen ekstraheres forpolymerpulveret som lagres under en inert atmosfære. Introduction of the monomers is stopped. Stirring is stopped to enable decantation and evacuation of the supernatant. After removing the remaining solvent at 50° C under nitrogen, the prepolymer powder is extracted and stored under an inert atmosphere.

Man gjenvinner 235 g tørt forpolymerpulver med sfærisk morfologi og uten agglomerater med en forpolymeriseringsgrad på 267 g forpolymer pr. gram katalysator med en midlere diameter for partiklene, dp 50, på 283 pm. Forpolymeren har en aluminiummengde i størrelsesorden 1000 ppm. 235 g of dry prepolymer powder with spherical morphology and without agglomerates is recovered with a degree of prepolymerization of 267 g of prepolymer per grams of catalyst with a mean diameter for the particles, dp 50, of 283 pm. The prepolymer has an amount of aluminum in the order of 1000 ppm.

Under betingelsene ifølge eksempel 1 polymeriserer man buten-1 og etylen i nærvær av den oppnådde aktive forpolymer. Under the conditions according to example 1, butene-1 and ethylene are polymerized in the presence of the obtained active prepolymer.

De manglende driftsbetingelser og resultatene av kontrollene som ble gjennomført på den oppnådde lineære polyetylen er gitt i tabell II. The missing operating conditions and the results of the checks carried out on the linear polyethylene obtained are given in Table II.

EKSEMPEL 3 EXAMPLE 3

Fremstilling av aktiv forpolymer Production of active prepolymer

Til en reaktor på 8,2 1 utstyrt med et røreverksystem innføres ved 50°C under nitrogen: To an 8.2 1 reactor equipped with an agitator system, introduce at 50°C under nitrogen:

. 3 1 tørr og under nitrogen avgasset heksan . 3 1 dry and degassed hexane under nitrogen

. 29 mM tri-n-heksylaluminium . 29 mM tri-n-hexyl aluminum

. 40 mM dietylaluminiumklorid . 40 mM diethylaluminum chloride

. 3 har nitrogen . 3 has nitrogen

Man injiserer til reaktoren 46 g katalysator i form av en suspensjon i 0,5 1 heksan. Deretter tilsettes: 46 g of catalyst are injected into the reactor in the form of a suspension in 0.5 l of hexane. Then add:

. 0,5 bar hydrogen . 0.5 bar hydrogen

. 100 Nl/t etylen i løpet av 1 time . 100 Nl/h ethylene within 1 hour

. 200 Nl/t etylen i løpet av 1 time . 200 Nl/h ethylene within 1 hour

Det dannede produkt tørkes ved stripping under nitrogen og man gjenvinner under nitrogen 387 g konsolidert katalysator med en reaksjonsgrad på 8,4 g PE/g katalysator. The product formed is dried by stripping under nitrogen and 387 g of consolidated catalyst with a reaction degree of 8.4 g PE/g catalyst is recovered under nitrogen.

Man blander i en egnet beholder under nitrogenatmosfære 20 g konsolidert katalysator, 100 g av et polyetylenpulver og en blanding av 3 mmol DEAC og 9 mmol THA. 20 g of consolidated catalyst, 100 g of a polyethylene powder and a mixture of 3 mmol DEAC and 9 mmol THA are mixed in a suitable container under a nitrogen atmosphere.

Denne blanding tilføres under nitrogen til en polymeri-seringsreaktor på 8,2 1 og som på forhånd er tørket og avgasset og utstyrt med et røreverk. This mixture is fed under nitrogen to a polymerization reactor of 8.2 1 which has previously been dried and degassed and equipped with an agitator.

Man tilsetter suksessivt ved 50°C: Add successively at 50°C:

. 4 bar nitrogen . 4 bar nitrogen

. 0,8 bar hydrogen . 0.8 bar hydrogen

. 50 Nl/t etylen i løpet av 30 minutter . 50 Nl/h ethylene within 30 minutes

. 100 Nl/t etylen i løpet av 3 timer . 100 Nl/h ethylene within 3 hours

Man gjenvinner på denne måte 483 g pulver hvorav 383 g forpolymer med en polymeriseringsgrad på 158 g PE/g katalysator. 483 g of powder is recovered in this way, of which 383 g is prepolymer with a degree of polymerization of 158 g PE/g catalyst.

Kopolymerisering av buten- 1 og etylen Copolymerization of butene-1 and ethylene

Man benytter forpolymeren som ble oppnådd under de polymeri-seringsbetingelser som er angitt i eksempel 1. The prepolymer obtained under the polymerization conditions specified in example 1 is used.

Driftsbetingelsene og de oppnådde resultater for de gjennom-førte kontroller på det oppnådde lineære polyetylen er gitt i den følgende tabell III. The operating conditions and the results obtained for the performed checks on the obtained linear polyethylene are given in the following table III.

Claims (8)

1. Fremgangsmåte for fremstilling av en modifisert sfærisk polymeriseringskatalysator for olefiner inneholdende minst ett overgangsmetall, en magnesiumforbindelse og et halogen, der man, i nærvær av den umodifiserte sfæriske katalysator og en kokatalysator valgt blant alkylaluminiumforbindelsen, i det minste delvis i suspensjon, forpolymeriserer etylen til en forpolymeriseringsgrad som er under 100 når forpolymeren skal benyttes som katalysator i en suspensjonspolymeri-seringsprosess og over 50 for en gassfasepolymeriserings-prosess uten at, i det sistnevnte tilfelle, forpolymeren representerer mer enn 10% av sluttpolymeren, karakterisert ved at det under eller efter forpolymeriseringen tilsettes en sfærobeskytter i form av et halogenert alkylaluminium med formelen: der idet m+n+p+q=3 hvorved R' og R'', like eller forskjellige, er lineære, podede eller cykliske hydrokarboner inneholdende 1 til 14 karbonatomer.1. Process for the preparation of a modified spherical polymerization catalyst for olefins containing at least one transition metal, a magnesium compound and a halogen, wherein, in the presence of the unmodified spherical catalyst and a cocatalyst selected from the alkyl aluminum compound, at least partially in suspension, ethylene is prepolymerized to a degree of prepolymerization which is below 100 when the prepolymer is to be used as a catalyst in a suspension polymerization process and above 50 for a gas phase polymerization process without, in the latter case, the prepolymer representing more than 10% of the final polymer, characterized in that during or after the prepolymerization a sphere protector in the form of a halogenated alkyl aluminum with the formula: there where m+n+p+q=3 wherein R' and R'', the same or different, are linear, grafted or cyclic hydrocarbons containing 1 to 14 carbon atoms. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at sfærobeskytteren er oppnådd ved en blanding av minst et ikke halogenert alkylaluminium med minst et monohalogenert alkylaluminium.2. Method according to claim 1, characterized in that the sphere protector is obtained by a mixture of at least one non-halogenated alkyl aluminum with at least one monohalogenated alkyl aluminum. 3. Fremgangsmåte ifølge krav 1, karakterisert ved at utviklingsgraden av polymeriseringen er under 10 g polymer pr. gram katalysator.3. Method according to claim 1, characterized in that the degree of development of the polymerization is below 10 g of polymer per grams of catalyst. 4. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 3, karakterisert ved at monomeren ved forpolymeriseringen i gassfase innføres til reaktoren i en mengde lik eller under 500 NI/t/g sfærisk katalysator.4. Process according to any one of claims 1 to 3, characterized in that the monomer is introduced to the reactor during the prepolymerization in the gas phase in an amount equal to or less than 500 NI/t/g of spherical catalyst. 5. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 4, karakterisert ved at monomerene ved forpolymerisering i suspensjon innføres i reaktoren i en mengde lik eller under 500 Nl/t/g sfærisk katalysator.5. Method according to any one of claims 1 to 4, characterized in that the monomers during prepolymerization in suspension are introduced into the reactor in an amount equal to or less than 500 Nl/t/g of spherical catalyst. 6. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 5, karakterisert ved at sfærobeskytteren tilsettes i en andel på 500 til 4000 ppm, beregnet på aluminium, pr. 1000 til 25000 ppm katalysator i forpolymeren.6. Method according to any one of claims 1 to 5, characterized in that the sphere protector is added in a proportion of 500 to 4000 ppm, calculated for aluminium, per 1000 to 25000 ppm catalyst in the prepolymer. 7. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 6, karakterisert ved at vektforholdet mellom aluminium og katalysator ligger mellom 30.IO"<3> og 4.7. A method according to any one of claims 1 to 6, characterized in that the weight ratio between aluminum and catalyst is between 30.IO"<3> and 4. 8. Anvendelse av en katalysator, fremstilt som angitt ovenfor, eventuelt med en tilsatt kokatalysator, for fremstilling i suspensjon eller gassfase av lineært, pulverformig polyetylen med sfærisk morfologi.8. Use of a catalyst, prepared as indicated above, optionally with an added co-catalyst, for the production in suspension or gas phase of linear, powdery polyethylene with spherical morphology.
NO872444A 1986-07-08 1987-06-11 PROCEDURE FOR PREPARING A MODIFIED SPAERIC POLYMERIZATION CATALYST AND USING THE CATALYST NO169776C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8609930A FR2601372B1 (en) 1986-07-08 1986-07-08 PROCESS FOR THE TREATMENT OF SPHERICAL OLEFIN POLYMERIZATION CATALYSTS. APPLICATION OF THE CATALYST OBTAINED IN THE POLYMERIZATION OF OLEFINS

Publications (4)

Publication Number Publication Date
NO872444D0 NO872444D0 (en) 1987-06-11
NO872444L NO872444L (en) 1988-01-11
NO169776B true NO169776B (en) 1992-04-27
NO169776C NO169776C (en) 1992-08-05

Family

ID=9337202

Family Applications (1)

Application Number Title Priority Date Filing Date
NO872444A NO169776C (en) 1986-07-08 1987-06-11 PROCEDURE FOR PREPARING A MODIFIED SPAERIC POLYMERIZATION CATALYST AND USING THE CATALYST

Country Status (11)

Country Link
EP (1) EP0252804B1 (en)
JP (1) JP2689381B2 (en)
CN (1) CN1010024B (en)
AT (1) ATE58147T1 (en)
AU (1) AU598828B2 (en)
CA (1) CA1294944C (en)
DE (1) DE3766022D1 (en)
ES (1) ES2019393B3 (en)
FI (1) FI93367C (en)
FR (1) FR2601372B1 (en)
NO (1) NO169776C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682305B2 (en) * 1991-10-29 1997-11-26 住友化学工業株式会社 Method for producing olefin polymer
BR9301438A (en) * 1993-04-05 1994-11-15 Petroleo Brasileiro Sa Process of preparation of spherical ziegler catalyst for polymerization of alpha-olefins, spherical catalyst, process of obtaining spherical polyethylene of very high molecular weight and spherical polyethylene of very high by molecular

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312784A (en) * 1977-12-13 1982-01-26 Phillips Petroleum Co. Catalyst and process of polymerization of alpha monoolefins
JPS591723B2 (en) * 1980-01-17 1984-01-13 チッソ株式会社 Method for producing α-olefin polymer
JPS5928573B2 (en) * 1980-02-05 1984-07-13 チッソ株式会社 Method for producing α-olefin polymer
FR2586022B1 (en) * 1985-08-06 1987-11-13 Bp Chimie Sa POLYMERIZATION OF OLEFINS IN THE GASEOUS PHASE WITH A ZIEGLER-NATTA CATALYST AND TWO ORGANOMETALLIC COMPOUNDS
FR2591602B1 (en) * 1985-12-18 1988-02-26 Atochem PROCESS FOR THE TREATMENT OF SPHERICAL OLEFIN POLYMERIZATION CATALYSTS. APPLICATION OF THE CATALYST OBTAINED IN THE POLYMERIZATION OF OLEFINS.

Also Published As

Publication number Publication date
AU7532687A (en) 1989-01-12
ATE58147T1 (en) 1990-11-15
FI93367C (en) 1995-03-27
CA1294944C (en) 1992-01-28
EP0252804B1 (en) 1990-11-07
AU598828B2 (en) 1990-07-05
DE3766022D1 (en) 1990-12-13
JP2689381B2 (en) 1997-12-10
ES2019393B3 (en) 1991-06-16
NO872444L (en) 1988-01-11
FI93367B (en) 1994-12-15
FR2601372A1 (en) 1988-01-15
CN1010024B (en) 1990-10-17
FR2601372B1 (en) 1988-10-21
JPS6323905A (en) 1988-02-01
NO872444D0 (en) 1987-06-11
FI873012A (en) 1988-01-09
NO169776C (en) 1992-08-05
FI873012A0 (en) 1987-07-07
CN87104796A (en) 1988-01-20
EP0252804A1 (en) 1988-01-13

Similar Documents

Publication Publication Date Title
CA1265646A (en) PROCESS FOR THE START UP OF POLYMERISATION OR COPOLYMERISATION IN THE GAS PHASE OF .alpha.-OLEFINS IN THE PRESENCE OF A ZIEGLER-NATTA CATALYST SYSTEM
EP0297163B2 (en) A solid catalyst component for the polymerization of olefins and an olefin polymerization catalyst
JP2749731B2 (en) Method for producing catalyst for olefin polymerization
JPH02219806A (en) Vapor phase polymerization of ethylene which can prepare linear polyethylene with narrow molecular weight distribution
NO146991B (en) PROCEDURE FOR POLYMERIZATION OF ETHYLENE AND CATALYTIC SYSTEM FOR USE THEREOF
NO158943B (en) PROCEDURE FOR THE PREPARATION OF A POLYMERIZER FOR POLYMERIZATION OF ALKENES, CATALYST SYSTEMS FOR POLYMERIZATION OF ALKENES AND USE OF THIS CATALYSTER SYSTEM.
CZ196992A3 (en) Catalyst for polymerization and copolymerization of olefins
NO166867B (en) PROCEDURE FOR POLYMERIZATION OR COPOLYMERIZATION OF ALFA OLEFINES IN A VARIETY LAYER IN THE PRESENCE OF A ZIEGLER-NATTA CATALYST SYSTEM.
EP0036660A1 (en) Method for producing an olefin polymerization catalyst, catalyst and polymerization process
EP0551073A1 (en) Prepolymerized catalyst and use thereof
CZ280927B6 (en) Stereospecific polymerization process of alpha olefins
CA1090773A (en) Polymerisation catalyst
US4210559A (en) Catalyst for the preparation of polyalpha-olefins having broad molecular weight distributions
US4199476A (en) Olefin polymerization catalyst
JPS6060113A (en) Carried polyolfin catalyst for ethylene high temperature polymerization
EP0415704B1 (en) Catalysts for polymerization of olefins
JPH0277408A (en) Solid catalyst for alpha-olefin polymerization, its manufacture, and polymerization of alpha-olefin in presence of catalyst system containing it
US3819599A (en) Catalyst and process for the polymerization of ethylene and terminal olefins
US4321346A (en) Titanium trichloride catalyst and process for the production thereof
NO169776B (en) PROCEDURE FOR PREPARING A MODIFIED SPAERIC POLYMERIZATION CATALYST AND USING THE CATALYST
KR100251599B1 (en) Process for preparing a spherical catalytic component
JP2813392B2 (en) Ethylene polymerization method and catalyst component used
NO791644L (en) CATALYST, METHOD OF ITS PREPARATION AND METHOD OF PREPARATION OF ETHEN POLYMER
JPH0859731A (en) Production of olefin polymerization catalyst
EP3842463A1 (en) Preparation method of catalyst for ethylene polymerization

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees