NO158375B - PYROTECHNICAL TASK RATES. - Google Patents

PYROTECHNICAL TASK RATES. Download PDF

Info

Publication number
NO158375B
NO158375B NO833739A NO833739A NO158375B NO 158375 B NO158375 B NO 158375B NO 833739 A NO833739 A NO 833739A NO 833739 A NO833739 A NO 833739A NO 158375 B NO158375 B NO 158375B
Authority
NO
Norway
Prior art keywords
fog
cesium
specified
kit
compound
Prior art date
Application number
NO833739A
Other languages
Norwegian (no)
Other versions
NO833739L (en
NO158375C (en
Inventor
Manfred Weber
Original Assignee
Feistel Pyrotech Fab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Feistel Pyrotech Fab filed Critical Feistel Pyrotech Fab
Publication of NO833739L publication Critical patent/NO833739L/en
Publication of NO158375B publication Critical patent/NO158375B/en
Publication of NO158375C publication Critical patent/NO158375C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D3/00Generation of smoke or mist (chemical part)
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pest Control & Pesticides (AREA)
  • Materials Engineering (AREA)
  • Glass Compositions (AREA)
  • Air Bags (AREA)
  • Fireproofing Substances (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catalysts (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Powder Metallurgy (AREA)

Description

Oppfinnelsen angår pyrotekniske tåkesatser som frembringer tåker som er ugjennomtrengelige i det synlige og infrarøde område. Tåkesatsene ifølge oppfinnelsen er definert i kravene. The invention relates to pyrotechnic fog kits that produce fogs that are impenetrable in the visible and infrared range. The mist rates according to the invention are defined in the claims.

Kunstig tåke anvendes i teknikken for å unngå frost Artificial fog is used in the technique to avoid frost

på plantefelter (spesielt ved frukt- og vindyrking). Herunder frembringer man vanligvis enten røktåke eller oljetåke eller sprøyter ut en fin vanntåke som i tillegg kan være stabili- on planting fields (especially when growing fruit and wine). This usually creates either smoke or oil mist or sprays out a fine water mist which can also be stable

sert ved hjelp av glycerol, fettalkoholer eller lignende stoffer, og som spres ut i et mer eller mindre tykt skikt over den beplanting som skal beskyttes, for å reflektere den fra jorden utstrålte varme og dermed hindre en avkjøling. served with the help of glycerol, fatty alcohols or similar substances, and which is spread out in a more or less thick layer over the vegetation to be protected, in order to reflect the heat radiated from the earth and thus prevent cooling.

For oppnåelse av dette formål må disse tåker opprettholdes For the achievement of this purpose, these fogs must be maintained

over lengre tidsrom, dvs. at tap som fås ved kondensasjon og vindbevegelse, stadig må erstattes ved løpende fremstil- over a longer period of time, i.e. that losses caused by condensation and wind movement must constantly be replaced during ongoing production

ling av ny tåke. Til dette formål anvendes der således stort sett kontinuerlig arbeidende anlegg. ling of new fog. For this purpose, plants that work continuously are used.

Kunstige tåker anvendes ytterligere fremfor alt i den militære sektor til kamuflasje av militæranlegg, troppeav-delinger og kjøretøyer. Spesielt ved beskyttelse av troppe-avdelinger og kjøretøyer kommer det an på å skjule disse kortvarig mot direkte innsikt fra fienden, og til dette for- Artificial fogs are further used above all in the military sector to camouflage military installations, troop units and vehicles. Especially when protecting troop units and vehicles, it is important to hide these for a short time from direct insight from the enemy, and for this purpose

mål blir der vanligvis i retning mot fienden skutt ut en pyroteknisk ladning som deler seg opp som en haglladning og danner et stort antall tåkefrembringende partikler som sørger for en meget rask og jevn tåkelegning av større om- target, a pyrotechnic charge is usually launched in the direction of the enemy, which splits up like a shot charge and forms a large number of fog-producing particles that ensure a very fast and uniform fog laying of larger areas

råder (se DE-B 30 31 369 og den der anførte litteratur). prevails (see DE-B 30 31 369 and the literature cited there).

Til dette formål er der kjent et stort antall forskjel-lige røk- og tåkeblandinger. Som eksempler kan der nevnes titantetraklorid, silisiumtetraklorid, klorsulfonsyre, resp. disses kombinasjoner med ammoniakk eller svoveltrioksid som væskeformet tåkedanner eller rødt fosfor, HC-blandinger (heksakloretan/zink/zinkoksid) og ammoniumperklorat/zinkoksid som faste tåkedannere. Ved bruk blir disse stoffer .omdannet til egnede produkter enten ved en sekundær forbrenningsreaksjon eller ved hjelp av den varme som frigjøres ved stoffenes omset-ning med hverandre. Avgjørende for kvaliteten av tåkedannelsen er den hastighet som tåken dannes med, tåkekonsentrasjonen og arten av dens utbredelse samt varigheten av tåkelegnin-gen. Tåkeblandinger som er egnet for alle disse formål, er allerede kjent (se DE-B 30 31 369). A large number of different smoke and fog mixtures are known for this purpose. Examples include titanium tetrachloride, silicon tetrachloride, chlorosulfonic acid, resp. their combinations with ammonia or sulfur trioxide as a liquid fog generator or red phosphorus, HC mixtures (hexachloroethane/zinc/zinc oxide) and ammonium perchlorate/zinc oxide as solid fog generators. When used, these substances are converted into suitable products either by a secondary combustion reaction or by means of the heat released when the substances interact with each other. Decisive for the quality of the fog formation is the speed with which the fog is formed, the fog concentration and the nature of its spread as well as the duration of the fog. Mist mixtures suitable for all these purposes are already known (see DE-B 30 31 369).

Der skal også henvises til DE-A 25 56 256, DE-A Reference should also be made to DE-A 25 56 256, DE-A

25 09 539, DE-A 18 12 027, DE-B 12 46 488, DE-A 30 12 405, DE-A 27 29 055, DE-A 27 43 363 og DE-A 19 13 790. 25 09 539, DE-A 18 12 027, DE-B 12 46 488, DE-A 30 12 405, DE-A 27 29 055, DE-A 27 43 363 and DE-A 19 13 790.

For en vidstrakt anvendelse i moderne forsvarsteknikk har imidlertid disse blandinger en helt vesentlig ulempe. Mens det tidligere spesielt kom an på å frembringe en tåke som var tettest mulig i synlig lys, har militære overvåknings-stasjoner idag også infrarødt-peileapparater og varmebilde-apparater som utnytter det forhold at militære mål som følge av sin energiomsetning sender ut en meget intens varmestrå-ling som kan oppdages på stor avstand. Da infrarød stråling ved bestemte bølgelengder absorberes effektivt som følge However, for a wide-ranging application in modern defense technology, these mixtures have a very significant disadvantage. While in the past it was particularly important to produce a fog that was as dense as possible in visible light, military monitoring stations today also have infrared tracking devices and thermal imaging devices that take advantage of the fact that military targets, as a result of their energy turnover, emit a very intense heat radiation that can be detected from a great distance. As infrared radiation at certain wavelengths is effectively absorbed as a result

av atmosfæriske bestanddeler som CC>2 og vanndamp, arbeider disse apparater fortrinnsvis i de såkalte "vinduer" i atmos-færen som ligger ved 0,7-1,5 um, 2-2,5 um, 3-5 um og 8-12 um. Spesielt forsøker man å arbeide i området 8-12 um, da forstyr-relser som følge av røk, dis og normal tåke antar et minimum i dette område. Omvendt er det hensikten med pyrotekniske tåkesatser å sikre en størst mulig absorpsjon eller reflek-sjon av IR-strålingen i dette området. of atmospheric constituents such as CC>2 and water vapour, these devices work preferably in the so-called "windows" in the atmosphere which lie at 0.7-1.5 µm, 2-2.5 µm, 3-5 µm and 8- 12 um. In particular, one tries to work in the area of 8-12 µm, as disturbances due to smoke, haze and normal fog assume a minimum in this area. Conversely, the purpose of pyrotechnic fog sets is to ensure the greatest possible absorption or reflection of the IR radiation in this area.

Videre inneholder de fleste pyrotekniske tåkesatser etsende, giftige eller sterkt sure komponenter såsom fosfor-pentoksid, saltsyre, svovelsyre og titan- eller zinksalter, som er usedvanlig skadelige for mennesker og planter i de konsentrasjoner som forekommer i tåker. Ved tilsetning av metalloksider, buffersubstanser og ammoniumforbindelser har man av denne grunn sørget for at den frembragte tåke i de fleste nåværende tåkesatser er nøytrale eller bare så sure som absolutt nødvendig. En oppgave ifølge oppfinnelsen ligger derfor også i å modifisere de kjente, tåkesatser slik at de så vidt mulig ikke reagerer surt. Furthermore, most pyrotechnic fog kits contain corrosive, toxic or strongly acidic components such as phosphorus pentoxide, hydrochloric acid, sulfuric acid and titanium or zinc salts, which are exceptionally harmful to humans and plants in the concentrations found in fogs. By adding metal oxides, buffer substances and ammonium compounds, it has therefore been ensured that the fog produced in most current fog kits is neutral or only as acidic as absolutely necessary. A task according to the invention therefore also lies in modifying the known mist kits so that, as far as possible, they do not react acidly.

Disse oppgaver blir overraskende løst ved de trekk These tasks are surprisingly solved by those moves

som er angitt i kravene, dvs. ved at man til de i og for seg kjente tåkesatser tilsetter en passende cesiumforbindelse which is stated in the requirements, i.e. by adding a suitable cesium compound to the fogging agents known per se

fortrinnsvis i en mengde på 0,5-50% og helst 5-25%. preferably in an amount of 0.5-50% and preferably 5-25%.

Ved denne tilsetning av cesiumforbindelser blir overraskende gjennomsiktigheten av tåkene med IR-lys, spesielt med bølgelengde på 3-5 og 8-12 um, helt avgjørende redusert, selv om det hittil ikke har vært mulig å fastslå hva denne virkning beror på. With this addition of cesium compounds, the transparency of the mists with IR light, especially with wavelengths of 3-5 and 8-12 µm, is surprisingly reduced, even though it has not been possible to determine what this effect is due to.

Som cesiumforbindelser kan der fortrinnsvis anvendes cesiumklorid, cesiumbromid, cesiumnitrat eller cesiumoksid. As cesium compounds, cesium chloride, cesium bromide, cesium nitrate or cesium oxide can preferably be used.

Det foretrekkes å benytte en cesiumforbindelse som har fått tilsatt en heksakloretansats med silisium og aluminium som metallpulver. Tåkesatsen kan fortrinnsvis inneholde 50-70 vektprosent heksakloretan, 20-40 vektprosent silisium- og/eller aluminiumpulver og 1-20% cesiumforbindelse. It is preferred to use a cesium compound to which a hexachloroethane mixture with silicon and aluminum has been added as metal powder. The mist batch can preferably contain 50-70% by weight hexachloroethane, 20-40% by weight silicon and/or aluminum powder and 1-20% cesium compound.

Da cesium-salter i det nære infrarød-område opptil Then cesium salts in the near infrared range up to

12 um som kjent ikke oppviser noen absorpsjon som kan føres tilbake til svingninger som cesiumioner tar del i (cesium-halogenider oppviser ingen svingninger og cesiumnitrat bare en svingning av nitratgruppen ved 7,2 um), kan virkningen ikke skyldes en absorpsjon av IR-lyset. Da de anvendte mengder er relativt små i forhold til mengden av hele tåkesatsen og bare utgjør gjennomsnittlig 25%, samtidig som de øvrige tåkedannende bestanddeler er tilstede i tilsvarende mindre mengde, kan heller ikke økningen av partikkeltallet i det dispergerte system være ansvarlig for virkningen. Da også synkehastigheten og kondenserbarheten av de dannede tåkeskyer ifølge observasjonene hittil ikke avviker fra verdiene for tilsvarende tåkesatser uten tilsetning av cesiumsalter, synes heller ikke en forbedring av spredningsvirkningen av de frem-stilte partikler å være ansvarlige for virkningen. Hvis man nemlig antar at Stokes<1> lov som en første tilnærming gjelder for disse partikler, dvs. at synkehastigheten er proposjonal med kvadratet av partikkeldiameteren, ville en økning av partikkeldiameteren fra 1 um i vanlige tåkesatser til 10 um, noe som vil være nødvendig for en effektiv spredning i IR-området på 8-12 um, bety en økning av synkehastigheten med en faktor på 100. Det må derfor være en sak for videre forskning å finne en tilfredsstillende teori for hvorfor de pyrotekniske tåkesatser ifølge oppfinnelsen har en tilfredsstillende tetthet både i det synlige og i det infrarøde området. 12 µm which is known to show no absorption traceable to oscillations in which cesium ions take part (cesium halides exhibit no oscillations and cesium nitrate only an oscillation of the nitrate group at 7.2 µm), the effect cannot be due to an absorption of the IR light . As the amounts used are relatively small in relation to the amount of the entire fog batch and only amount to an average of 25%, while the other fog-forming components are present in correspondingly smaller amounts, the increase in the number of particles in the dispersed system cannot be responsible for the effect either. As the sinking speed and condensability of the fog clouds formed, according to the observations so far, do not deviate from the values for corresponding fog rates without the addition of cesium salts, an improvement in the scattering effect of the produced particles also does not seem to be responsible for the effect. Namely, if one assumes that Stokes<1> law as a first approximation applies to these particles, i.e. that the sinking speed is proportional to the square of the particle diameter, an increase of the particle diameter from 1 um in normal fog rates to 10 um, which would be necessary for an effective dispersion in the IR range of 8-12 um, means an increase of the sinking speed by a factor of 100. It must therefore be a matter for further research to find a satisfactory theory for why the pyrotechnic fog sets according to the invention have a satisfactory density both in the visible and in the infrared range.

En annen hensikt med den foreliggende oppfinnelse er Another purpose of the present invention is

å øke tåkeutbyttet av fosforholdige tåkesatser. to increase the fog yield of phosphorus-containing fog sets.

De vanligvis anvendte metaller magnesium og titan fører til et askeinnhold etter avbrenning av tåkesatsene på 60-70%. The commonly used metals magnesium and titanium lead to an ash content of 60-70% after burning the fog batches.

Overraskende er det nå lykkes å øke effektiviteten Surprisingly, it has now succeeded in increasing efficiency

av slike tåkesatser ved at man istedenfor magnesium og titan anvender en zirkonium/nikkel-legering med fortrinnsvis 70% zirkonium og 30% nikkel. Askeinnholdet av slike satser kan på denne måte reduseres helt ned til 5%. Tilsetninger av bor virker i samme retning og forbedrer ytterligere IR-ab-sorpsjonen. Ved tilsetning av ammoniumklorid kan effektiviteten ytterligere økes. of such mist rates by using a zirconium/nickel alloy with preferably 70% zirconium and 30% nickel instead of magnesium and titanium. In this way, the ash content of such batches can be reduced all the way down to 5%. Additions of boron act in the same direction and further improve the IR absorption. By adding ammonium chloride, the efficiency can be further increased.

En tåkesats som inneholder en zirkonium/nikkel-legering, kan fortrinnsvis ha følgende sammensetning: Rødt fosfor 30-50% A fog kit containing a zirconium/nickel alloy can preferably have the following composition: Red phosphorus 30-50%

zirkonium/nikkel-legering 3-15% zirconium/nickel alloy 3-15%

bor 5-20% boron 5-20%

cesiumforbindelse 5-25% cesium compound 5-25%

og eventuelt aluminiumpulver i mengder på 3-20%. and possibly aluminum powder in amounts of 3-20%.

Etter eventuelt ammoniumklorid kan fortrinnsvis foreligge i mengder på 5-25%. After any ammonium chloride can preferably be present in amounts of 5-25%.

Den store fordel ved de foran beskrevne tåkesatser består i at de er passivt virksomme. Det .vil si at de ikke oppviser noen egen varmetoning og således ikke endrer omgi-velsesbildet i infrarødsikt-apparater. The big advantage of the above-described fog kits is that they are passively active. This means that they do not exhibit any heat tinting of their own and thus do not change the surrounding image in infrared vision devices.

I de følgende eksempler er en rekke tåkesatser ifølge oppfinnelsen sammenlignet med tilsvarende tåkesatser uten tilsetningen ifølge oppfinnelsen. In the following examples, a number of fogging kits according to the invention are compared with corresponding fogging kits without the addition according to the invention.

Eksempel 1 Example 1

Ammoniumperklorattåke. Ammonium perchlorate mist.

1,7 kg ammoniumperklorat, 1,5 kg zinkoksid, 0,8 kg polyklorisopren og 0,5 kg ammoniumklorid ble knadd til en deig med en oppløsning av 0,5 kg dioktylftalat i 1 liter metanol. Blandingen ble presset gjennom en sil med en maske-vidde på 0,3-0,5 mm og tørket på en rist. Det tørkede granu-lat ble deretter presset til presslegemer på ca. 50 g under et trykk på 500-1500 bar som angitt i DE-B 30 31 369. 20 presslegemer ble forenet med en tennsats som angitt i eksem- 1.7 kg of ammonium perchlorate, 1.5 kg of zinc oxide, 0.8 kg of polychloroisoprene and 0.5 kg of ammonium chloride were kneaded into a dough with a solution of 0.5 kg of dioctyl phthalate in 1 liter of methanol. The mixture was pressed through a sieve with a mesh size of 0.3-0.5 mm and dried on a grid. The dried granulate was then pressed into compression bodies of approx. 50 g under a pressure of 500-1500 bar as stated in DE-B 30 31 369. 20 pressing bodies were united with an ignition set as stated in example

pel 2 i DE-B 30 31 369 i en plast- eller metallhylse for dannelse av en ladning. pel 2 in DE-B 30 31 369 in a plastic or metal sleeve to form a charge.

Tennsatsen inneholdt følgende bestanddeler: magnesiumpulver (1,2 kg), vivianitt (0,9 kg), amorft bor (2,39 kg), pulverformet klorparafin (0,8 kg) og svartkruttmel (4,71 kg). Magnesiumpulveret og vivianitten ble først blandet sammen. Deretter ble klorparafinen oppløst i to liter perkloreten tilsatt og sammenblandet. Det amorfe bor ble så tilsatt og blandingen gjentatt i fem minutter. Som siste bestanddel ble svartkruttet tilsatt og blandet med de andre bestanddeler i ti minutter, hvoretter blandingen ble tørket og presset under et trykk på 1500 bar. The primer contained the following ingredients: magnesium powder (1.2 kg), vivianite (0.9 kg), amorphous boron (2.39 kg), powdered chlorinated paraffin (0.8 kg) and black powder (4.71 kg). The magnesium powder and vivianite were first mixed together. The chlorinated paraffin dissolved in two liters of perchlorethylene was then added and mixed together. The amorphous boron was then added and the mixing repeated for five minutes. As the last ingredient, the black powder was added and mixed with the other ingredients for ten minutes, after which the mixture was dried and pressed under a pressure of 1500 bar.

Den samme blanding som angitt foran ble dessuten blan- The same mixture as indicated above was also mixed

det med 0,4 kg cesiumnitrat og bearbeidet på samme måte til presslegemer på ca. 50 g. Som foran ble 20 presslegemer for- that with 0.4 kg of cesium nitrate and processed in the same way into compacts of approx. 50 g. As before, 20 pressing bodies were pre-

enet med en tennsats i en hylse for å danne en ladning. united with an igniter in a sleeve to form a charge.

For bedømmelse av tåkevirkningen ble tre hvite plater For judging the fogging effect, three white plates were used

som var oppvarmet til ca. 40°C oppstilt ved siden av hveran- which was heated to approx. 40°C placed next to each

dre i terrenget med en avstand på 10 m og observert på en avstand av 100 m med infrarødsikt-apparater og optiske sikt-apparater ved bølgelengder på 10 um, 3,5 um og 0,6 um. Tåkeladninger med den ovennevnte sammensetning ble skutt ut med en drivladning ca. 40-50 m foran målet, hvor der i løpet av sekunder dannet seg en 3-15 m høy og 25t40 m bred og dyp tåkevegg. Ved temperaturer på 22°C og en relativ luftfuktig- dre in the terrain at a distance of 10 m and observed at a distance of 100 m with infrared vision devices and optical vision devices at wavelengths of 10 µm, 3.5 µm and 0.6 µm. Fog charges with the above composition were launched with a propellant charge approx. 40-50 m in front of the target, where within seconds a 3-15 m high and 25t40 m wide and deep fog wall formed. At temperatures of 22°C and a relative humidity

het på 48% ble de nedenstående dekkforhold observert. at 48%, the following tire conditions were observed.

Med meget god forstås en tildekning på 95-100%, dvs. at målet ikke lenger kan skjelnes fra bakgrunnen. Med "god" forstås en tildekning på 80-95%, dvs. at målet nesten ikke kan bestemmes. Med "moderat" forstås en tildekning på 50-80%. Med "dårlig" forstås en tildekning på under 50%, noe som medfører at målet tydelig kan fastslås. Very good means coverage of 95-100%, i.e. that the target can no longer be distinguished from the background. By "good" is meant a coverage of 80-95%, i.e. that the target can hardly be determined. "Moderate" means a coverage of 50-80%. By "poor" is meant a coverage of less than 50%, which means that the target can be clearly determined.

Eksempel 2 Example 2

Heksakloretan-tåke Hexachloroethane mist

2,5 kg heksakloretan, 0,8 kg zinkoksid, 0,4 kg sili- 2.5 kg hexachloroethane, 0.8 kg zinc oxide, 0.4 kg silicon

ciumpulver, 0,3 kg aluminiumpulver og 0,3 kg amorft bor ble blandet intensivt og formet til en deig i et knaapparat med 2 kg av en 10%'s elastomerbindemiddeloppløsning i ace-ton. Blandingen ble bearbeidet til presslegemer på samme måte som i eksempel 1. Presslegemene ble isolert ved hjelp av et ytterligere overtrekk av metakrylharpiks og forenet til tåkeladninger i henhold til eksempel 1. cium powder, 0.3 kg of aluminum powder and 0.3 kg of amorphous boron were mixed intensively and formed into a dough in a kneader with 2 kg of a 10% elastomer binder solution in acetone. The mixture was processed into compacts in the same manner as in Example 1. The compacts were isolated by means of a further coating of methacrylic resin and combined into fog charges according to Example 1.

Den samme blanding som ovenfor, men med tilsetning av 1 kg cesiumnitrat ble bearbeidet til tåkeladninger på tilsvarende måte. The same mixture as above, but with the addition of 1 kg of cesium nitrate, was processed into fog charges in a similar way.

Tåkevirkningen bedømmes på samme måte som i eksempel 1, idet resultatene.er angitt i den nedenstående tabell. The fogging effect is assessed in the same way as in example 1, the results being given in the table below.

De dannede tåker hadde en pH-verdi på ca. 5-7. Elastomeren bestod av butadien. Polybutadien kan også anvendes. The mists formed had a pH value of approx. 5-7. The elastomer consisted of butadiene. Polybutadiene can also be used.

Eksempel 3 Example 3

Rød fosfortåke Red phosphorus mist

0,65 kg rødt fosfor, 0,15 kg jern(III)oksid, 0,15 kg aluminiumpulver og 0,15 kg magnesiumpulver ble knadd sammen med 0,2 kg 10%'s elastomerbinder og bearbeidet til presslegemer i henhold til eksempel 1. 0.65 kg of red phosphorus, 0.15 kg of iron (III) oxide, 0.15 kg of aluminum powder and 0.15 kg of magnesium powder were kneaded together with 0.2 kg of 10% elastomer binder and processed into compacts according to example 1 .

På samme måte ble blandinger som ytterligere inneholdt 0. 40 kg cesiumnitrat, bearbeidet til presslegemer. In the same way, mixtures which further contained 0.40 kg of cesium nitrate were processed into compacts.

Tåkevirkningen ble bestemt i henhold til eksempel The fog effect was determined according to Example

1, og følgende resultater ble oppnådd. 1, and the following results were obtained.

0,65 kg heksakloretan, 0,2 kg siliciumpulver og 0.65 kg of hexachloroethane, 0.2 kg of silicon powder and

0,15 kg aluminiumpulver ble blandet sammen og under svakt trykk presset inn i en hylse som var forbundet med en driv-og tennsats. 0.15 kg of aluminum powder was mixed together and pressed under slight pressure into a sleeve which was connected to a drive and ignition set.

På samme måte ble der bearbeidet blandinger som ytterligere inneholdt 0,01-0,10 kg cesiumklorid. In the same way, mixtures were processed which further contained 0.01-0.10 kg of cesium chloride.

Følgende tåkevirkning ble oppnådd: The following fog effect was achieved:

I de etterfølgende eksempler er der angitt oppskrifter som har vist seg gunstige. In the following examples, there are recipes that have proven to be beneficial.

Som bindemiddel anvendes butadien (polybutadien). Butadiene (polybutadiene) is used as a binder.

Eksempel 5 Example 5

Eksempel 6 Eksempel 7 Example 6 Example 7

Eksempel 8 Example 8

Eksempel 9 Eksempel 10 Eksempel 11 Eksempel 12 Eksempel 13 Eksempel 14 Eksempel 15 Eksempel 16 Eksempel 17 Eksempel 18 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 Example 15 Example 16 Example 17 Example 18

Cesiumbromid og cesiumjodid gir de samme resultater som cesiumklorid. Cesium bromide and cesium iodide give the same results as cesium chloride.

Claims (10)

1. Pyrotekniske tåkesatser som frembringer tåker som er ugjennomtrengelige i det synlige og infrarøde område, karakterisert ved at de inneholder cesiumforbindelser som dispergeres ved avbrenning og absorberer stråling i infrarødtområdet.1. Pyrotechnic fog kits that produce fogs that are impenetrable in the visible and infrared range, characterized in that they contain cesium compounds that are dispersed during combustion and absorb radiation in the infrared range. 2. Tåkesats som angitt i krav 1, karakterisert ved innholdet av cesiumforbindelse er 0,5-50%.2. Fog rate as stated in claim 1, characterized by the content of cesium compound is 0.5-50%. 3. Tåkesats som angitt i krav 2, karakterisert ved at innholdet av cesiumforbindelse er 5-25%.3. Fog rate as specified in claim 2, characterized in that the content of cesium compound is 5-25%. 4. Tåkesats som angitt i et av de foregående krav, karakterisert ved at den som cesiumforbindelse inneholder cesiumklorid, cesiumbromid, cesiumnitrat eller cesiumoksid.4. Fog kit as specified in one of the preceding claims, characterized in that it contains cesium chloride, cesium bromide, cesium nitrate or cesium oxide as a cesium compound. 5. Tåkesats som angitt i et av de foregående krav, karakterisert ved at cesiumforbindelsen har fått tilsatt en heksakloretansats med silicium og aluminium som metallpulver.5. Fog batch as specified in one of the preceding claims, characterized in that the cesium compound has had a hexachloroethane batch with silicon and aluminum as metal powder added. 6. Tåkesats som angitt i krav 5, karakterisert ved at den inneholder 50-70 vektprosent heksakloretan, 20-40 vektprosent silicium- og/eller aluminiumpulver og 1-20 vektprosent cesiumforbindelse.6. Fog kit as specified in claim 5, characterized in that it contains 50-70 weight percent hexachloroethane, 20-40 weight percent silicon and/or aluminum powder and 1-20 weight percent cesium compound. 7. Tåkesats som angitt i krav 1 med fosforinnhold på over 50 vektprosent, karakterisert ved at den inneholder en legering av zirkonium og nikkel, fortrinnsvis i et legeringsforhold på 70 : 30.7. Fog set as stated in claim 1 with a phosphorus content of over 50 percent by weight, characterized in that it contains an alloy of zirconium and nickel, preferably in an alloy ratio of 70:30. 8. Tåkesats som angitt i krav 7, karakterisert ved at den ytterligere inneholder amorft bor.8. Mist mixture as specified in claim 7, characterized in that it further contains amorphous boron. 9. Tåkesats som angitt i krav 7 eller 8, karakterisert ved at den inneholder følgende stoffer i de angitte mengder: og eventuelt aluminiumpulver i mengder på 3-20%.9. Fog kit as specified in claim 7 or 8, characterized in that it contains the following substances in the specified amounts: and possibly aluminum powder in quantities of 3-20%. 10. Tåkesats som angitt i et av kravene 7-9, karakterisert ved at den inneholder ammoniumklorid i mengder på 5-25%.10. Fog kit as specified in one of claims 7-9, characterized in that it contains ammonium chloride in quantities of 5-25%.
NO833739A 1982-10-16 1983-10-14 PYROTECHNICAL TASK RATES. NO158375C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3238444A DE3238444C2 (en) 1982-10-16 1982-10-16 Pyrotechnic smoke packs

Publications (3)

Publication Number Publication Date
NO833739L NO833739L (en) 1984-04-17
NO158375B true NO158375B (en) 1988-05-24
NO158375C NO158375C (en) 1988-08-31

Family

ID=6175923

Family Applications (1)

Application Number Title Priority Date Filing Date
NO833739A NO158375C (en) 1982-10-16 1983-10-14 PYROTECHNICAL TASK RATES.

Country Status (14)

Country Link
EP (1) EP0106334B1 (en)
JP (1) JPS6042194B2 (en)
KR (1) KR910000506B1 (en)
AR (1) AR231962A1 (en)
AT (1) ATE40101T1 (en)
CA (1) CA1237581A (en)
DE (2) DE3238444C2 (en)
DK (1) DK164665C (en)
ES (1) ES8602564A1 (en)
FI (1) FI76066C (en)
IL (1) IL69859A (en)
NO (1) NO158375C (en)
SG (1) SG80491G (en)
ZA (1) ZA837647B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8820660D0 (en) * 1988-09-01 1988-11-16 Astra Holdings Plc Smoke producing article
DE4016854A1 (en) * 1990-05-25 1991-11-28 Diehl Gmbh & Co Camouflage and swap device
DE4327976C1 (en) * 1993-08-19 1995-01-05 Buck Chem Tech Werke Flare charge for producing decoys
DE19601506C2 (en) * 1996-01-17 2000-05-18 Rheinmetall W & M Gmbh Method and device for generating a visual barrier using an artificial fog
DE19914097A1 (en) * 1999-03-27 2000-09-28 Piepenbrock Pyrotechnik Gmbh Pyrotechnic active mass for generating an aerosol that is highly emissive in the infrared and impenetrable in the visual
DE19914033A1 (en) 1999-03-27 2000-09-28 Piepenbrock Pyrotechnik Gmbh Process for generating a camouflage fog that is transparent on one side in the infrared spectral range
DE10152023B4 (en) * 2001-10-22 2005-06-16 Buck Neue Technologien Gmbh Shock insensitive smoke projectiles
DE10308307B4 (en) * 2003-02-26 2007-01-04 Buck Neue Technologien Gmbh Projectile and submunition with preload body
JP4969841B2 (en) * 2005-01-19 2012-07-04 日本工機株式会社 Infrared shielding fuming composition
JP4969842B2 (en) * 2005-12-09 2012-07-04 日本工機株式会社 Red phosphorus fuming composition and method for producing the same
CN107021865A (en) * 2017-05-26 2017-08-08 北京理工大学 May interfere with visible ray, infrared and millimeter wave wide-band Smoke Material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE378780C (en) * 1922-05-03 1923-08-01 Harry James Nichols Smoke generator
GB1454258A (en) * 1972-08-23 1976-11-03 Secr Defence Smoke generating compositions
DE3012405A1 (en) * 1980-03-29 1981-10-01 Pyrotechnische Fabrik F. Feistel GmbH + Co KG, 6719 Göllheim COMBINATION FOG

Also Published As

Publication number Publication date
EP0106334B1 (en) 1989-01-18
DE3238444A1 (en) 1984-08-02
ATE40101T1 (en) 1989-02-15
ES526488A0 (en) 1985-12-01
DK426783A (en) 1984-04-17
FI76066C (en) 1988-09-09
ES8602564A1 (en) 1985-12-01
FI76066B (en) 1988-05-31
CA1237581A (en) 1988-06-07
EP0106334A2 (en) 1984-04-25
IL69859A (en) 1989-01-31
FI833595A (en) 1984-04-17
DE3378977D1 (en) 1989-02-23
JPS59131592A (en) 1984-07-28
ZA837647B (en) 1984-07-25
DK164665B (en) 1992-07-27
FI833595A0 (en) 1983-10-04
NO833739L (en) 1984-04-17
DK164665C (en) 1992-12-14
DE3238444C2 (en) 1986-10-30
JPS6042194B2 (en) 1985-09-20
SG80491G (en) 1991-11-15
KR910000506B1 (en) 1991-01-26
AR231962A1 (en) 1985-04-30
DK426783D0 (en) 1983-09-19
NO158375C (en) 1988-08-31
EP0106334A3 (en) 1985-12-04
KR840006473A (en) 1984-11-30

Similar Documents

Publication Publication Date Title
ES2218106T3 (en) PYROTECHNICAL ACTIVE MASS INTENDED FOR THE PRODUCTION OF A STRONGLY EMISSIVE AEROSOL IN THE INFRARED AND IMPENETRABLE SPECTRAL REGION IN THE VISIBLE SPECTRAL REGION.
NO158375B (en) PYROTECHNICAL TASK RATES.
NO810922L (en) PROCEDURE AND TASK RATE FOR MANUFACTURING OPTRONICALLY COVERED TASKS.
EP0329718B1 (en) Pyrotechnical mixture for producing a smoke screen
US6635130B2 (en) Pyrotechnic composition for producing IR-radiation
US4238254A (en) Pyrotechnic smoke charge containing guanidine nitrate
GB2158061A (en) Smoke generating pyrotechnic composition
WO1990013787A1 (en) Arrangement in a smoke camouflage system
EP2468700B1 (en) Pyrotechnic decoy material for infra-red decoys
KR102134706B1 (en) Flare composition for weather control used for rocket launching system
CN110260717B (en) Smoking agent capable of being released in large scale, preparation and ignition method
RU2350589C1 (en) Pyrotechnical smoke-forming composition
US4708869A (en) Persistent incapacitating chemical warfare composition and its use
RU2090548C1 (en) Pyrotechnical composition for deposit inducing
US6414040B1 (en) Composition for generating smoke
US3329624A (en) Composition for producing smoke
Walker Screening Smokes.
EP2360134A2 (en) Non-toxic, heavy metal-free zinc peroxide-containing IR tracer compositions and IR tracer projectiles containing same generating a dim visability IR trace
NO179670B (en) IR impervious fog-forming mixture
US20080257194A1 (en) Non-Toxic Metallic-Boron-Containing Ir Tracer Compositions and Ir Tracer Projectiles Containing the Same for Generating a Dim Visibility Ir Trace
US7985311B2 (en) Non-toxic heavy-metal free-zinc peroxide-containing IR tracer compositions and IR tracer projectiles containing same for generating a dim visibility IR trace
WO2006105636A1 (en) Non-toxic5 metallic-boron-containing ir tracer compositions and ir tracer projectiles containing the same for generating a dim visibility ir trace
US20200331822A1 (en) Use of a tetraphenylphosphonium halogenated salt as smoke-producing agent and smoke-producing pyrotechnic composition incorporating such a material
RU2155167C2 (en) Protective screen